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ABSTRACT 
 
 
This paper presents a new formulation of a deformable model segmentation in prolate spheroidal coordinates for 
segmentation of 3D cardiac echocardiography data. The prolate spheroidal coordinate system enables a representation 
of the segmented surface with descriptors specifically adapted to the "ellipsoidal" shape of the ventricle. A simple data 
energy term, based on gray-level information, guides the segmentation. The segmentation framework provides a very 
fast and simple algorithm to evolve an initial ellipsoidal object towards the endocardial surface of the myocardium with 
near real-time deformations. With near real-time performance, additional constraints on landmark points, can be used 
interactively to prevent leakage of the surface. 
 
Keywords: Real-time three-dimensional ultrasound, deformable model, finite element model, prolate spheroidal 
coordinates, deformable model 
 
 

INTRODUCTION 
 
We are interested in the class of segmentation methods based on deformable models. Physically-based deformable 
models, referred to as snake, are based on elasticity theory. Lagrangian equations of non-rigid motion are expressed in 
terms of position functions in Euclidean 3D space. The deformable model representation is parametric and the 
segmentation algorithm locates each point in space as a function of time. Deformation of the model is applied on its 
surface via minimization of individual equations of motion for each Cartesian coordinates. This energy expresses the 
equilibrium of internal and external forces on the surface. Such deformable models were introduced by Kass et al.1 as 
2D explicit deformable contours and generalized to the 3D case by Terzopoulos et al.2. A second family of 
segmentation methods based on deformable models was introduced by Osher and Sethian3 These models are based on 
an implicit formulation of the surface to deform, embedded in a level set function.  
In an original approach, Caselles et al. 4 proposed a reformulation of the snake deformable model as the definition of a 
geodesic curve whose length is constrained by image-based data information. For these three families of deformable 
models, initial data force relied on image gradients while regularization of the curve was achieved by constraining the 
motion of the curve with its curvature.  
A separate family of segmentation methods was proposed by Mumford and Shah 5 to segment an image into smooth 
areas and a "finite" set of contours. This variational approach was reformulated recently by Chan and Vese 6 into a 
level-set like deformable model approach where the data force measures the homogeneity of the inside volume enclosed 
by the deforming surface. 
The level set implementation for this family of geometric deformable models increases by 1 the dimensionality of the 
minimization space and relies on volume integrals for the data term. 
 
Segmentation of echocardiographic data with level-set based deformable models has been proposed by several groups, 
mainly on 2D ultrasound data. We cite as an example Paragios 7 who proposed a shape-driven variational segmentation 
approach, with temporal tracking of the image data via optical flow and use of prior statistical models of gray level 
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value distributions of the myocardium, the blood pool and the surrounding tissues. In a more recent study, Sarti et al. 8 
proposed a maximum likelihood segmentation method implemented in a level-set framework with Rayleigh probability 
distribution models.    
Different parameterization schemes of the endocardial surfaces were proposed to simplify the tasks of segmentation, 
tracking and deformation characterizations.  Stetten et al. 9 proposed a fuzzy labeling segmentation method which used 
a radial representation of the ventricular shape, based on hand-drawing training shapes with cylindrical symmetries. 
They applied their method to 3D ultrasound data. Jacob et al. 10 proposed a spatio-temporal deformable model 
framework based on the parameterization of 2D endocardial contours with B-splines and using 1D intensity-invariant 
phase-based image features. Shape-space basis functions were defined from a set of training manually segmented 
contours, leading to a time-consuming learning process.  
 
The idea developed in this paper follows a similar paradigm, trying to significantly reduce the complexity of the 
manipulation of a deformable model by describing the segmentation surface with a limited number of shape parameters. 
To do so we need to adapt the parameterization of the segmentation surface according to the geometry of the objects to 
segment. In our case, being interested in the segmentation of 3D echocardiographic data to extract the ventricular 
cavities, we opted for a prolate spheroidal coordinate system. The choice of this coordinate system was motivated by the 
cardiac modeling framework proposed by Hunter 11.  

METHOD 

1. Segmentation surface description 

We consider our image data on a domain Ω  in 3 . The segmentation task is modeled as the partition of the space Ω  
into two domains (inside and outside of the surface) separated by the boundary of the closed surface K  in Ω . 
 

2. Coordinate system 
 
In his approach, Hunter proposed a coordinate system in which the representation of the myocardium requires a 
minimal set of parameters. As the geometry of the heart ventricles resembles an ellipsoid, Hunter used a coordinate 
system called prolate spheroidal. This coordinate system is illustrated in defined as:  
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Figure 1: Prolate spheroidal coordinate system. 

 
In this coordinate system, isosurfaces with λ constant are ellipsoids. Even though we focus in this paper on prolate 
spheroidal coordinates, we can also consider in this work cylindrical and spherical coordinate systems and for this 
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reason, we will use a general formulation of the coordinate system for parameterization of the deformable surface: 
( )0 1 2, ,v v v . The 3 general variables of the 3D coordinate system relate to the specific coordinate systems mentioned 
above as follows:  

 

( ) ( )
( ) ( )
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=

=
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In these coordinate systems, it is convenient to describe the surface through an equation of the form:  
 ( )0 1 2,refv f v v=  (3) 
 
Hunter's descriptions used this representation to describe ventricular shapes, where reff  are bicubic Hermite 
interpolation functions. 
 

3. Hermite interpolation 

3.1. 1D case 

In 1D, let ( ) [ ]min max:reff v v v →  be a reference function for which we know the values ( )0,i
ref ref iH f v=  

 

and derivatives 
( )1, ref ii

ref

df v
H

dx
=   on N points: 

 ( ) { }min max min , 0,1,...,i
iv v v v i N
N

= + − =  (4) 

 
The cubic Hermite interpolation of ( )reff v  is defined on patches [ ]1i i iP v v +=  by: 
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i i i i
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or in more general terms: 
 ( ) ( ),

0,1 0,1

d i i d
ref ref i

d i
f v H Vδ

δ
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= =
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where [ ]1i iv v v +∈  and ( ) ( ) ( ) ( )1 max mini i i iV v v v v N v v v v+= − − = − −  is the local coordinate of point v . The 

functions ( )d
i Vδψ  are the Hermite basis functions, defined as: 
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From the definition of the Hermite interpolation functions we have: ( ) ( ) ( ) ( )j l

i k ik jlV V V Vψ ψ δ δ× = , which 

ensures that they form a basis of the real axis, on which the ,d i
refH , called the Hermite coefficients, constitute the 

coordinates in this basis. 
We point out here that if  ( )d

i Vδψ  are called the Hermite basis functions, they are not exactly the basis functions 

referenced in the decomposition of the function reff . These basis functions are: 
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With these basis functions we can write the standard decomposition of  reff  as: 

 ( ) ( )
N 1

,

i=0 d=0
v = d i d

ref ref if H f v∑∑  (9) 

 
 
The d

if  basis functions are translated versions of the function 0
df , plotted in Figure 2. 

 
Figure 2: Hermite basis functions in 1D (left) and 2D (right). 

 
For numerical implementation, we normalized these basis functions for the 2L  norm using: 

 
2 20 126 2= =

35 105i if f  (10) 
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3.2. 2D case 
 
In 2D, we decompose the function ( ) min max min max 2

1 2 1 1 2 2, :reff v v v v v v⎡ ⎤ ⎡ ⎤× →⎣ ⎦ ⎣ ⎦  for which we know the values of 

the function, its derivatives and cross derivatives: 1 2 1 2 1 2 1 20,0, , 1,0, , 0,1, , 1,1, ,, , ,i i i i i i i i
ref ref ref refH H H H  at points ( )1 2

1 2,i iv v  

with: ( )min max min , 0,1,...,ki k
k k k k k k

k

iv v v v i N
N

= + − =  

The parameter kN  represents the number of discretization points in the thk  direction. By interpolating each of the 

Hermite coefficients in Equation (6), we get a 2D interpolation of reff  on 1 1
, 1 1 2 2

i i j j
i jP v v v v+ +⎡ ⎤ ⎡ ⎤= ×⎣ ⎦ ⎣ ⎦  by: 
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where 
 ( ) ( ) ( )1 2 1 2

1 2 1 2
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, 1 2 1 2,d d d d
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and the local coordinates of the components in (8) for 1i i

k k kv v v +⎡ ⎤∈ ⎣ ⎦  are: 
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Here, the basis functions are translated versions of the 4 basis functions 1 2,

0,0
d df  represented in Figure 2. 

 
 
By interpolating the reff  function, we get a description of the segmentation surface K  given by ( )0 1 2,refv f v v=  

using only the 1 24 N N× ×  parameters 1 2 1 2, , ,d d i i
refH  (which we will call i

refH  in the remaining of this paper, as indices 

do not matter). From a practical point of view, values for kN  are usually lower than 10, and Hunter even suggested 

using 1 2 4N N= =  for cardiac ventricles. This allows us to describe a segmented ventricular surface with less than 
400 values to update, independently of the data size. For comparison, 3D level set methods require 1 computation per 
data voxel, leading to a computational space size up to 610  for echocardiographic data with standard spatial resolution. 
 

4.  Segmentation 
 
The object of this section is to derive a simple segmentation framework using a separation surface ( )i

refK H . Data 

information at node points V  will be extracted and input into a data force to deform the surface via modification of the 
i
refH  coefficients that describe K  . 
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4.1. Minimal partition problem 
For a general formulation of the deformable model segmentation framework, we chose the Mumford and Shah 
variational approach restricted to the segmentation of the image data 0u  into a partition iΩ  of Ω  of piecewise 
constant functions. 
This problem is called the “minimal partition problem” and is formulated as the minimization of the following 
functional: 
 

 ( ) 2 1
0,

inf ,
ii

MS i i Kc k i
F c K u c dHυ

Ω

⎧ ⎫= − +⎨ ⎬
⎩ ⎭

∑∫ ∫  (14) 

 
The term 1H  represents the length of the contour K  and the minimum of the energy is reached when ic  is the average 

value of 0u  inside iΩ . 
This problem was formulated into a level set framework by Chan and Vese in 6 with volume integrals. In a recent work, 
Jehan-Besson et al. derived a minimization approach for region-based variational segmentation approaches using shape 
gradients 12. In this work, we are looking at the problem of minimizing the functional  MSF  according to the descriptors  

i
refH  of K  . 

 

4.2. Application to graph equation surfaces 
 
We call ( )0 1 2, ,x v v v  the ( ), ,x y z  Cartesian coordinates of a point, function of its iv  variables in a given coordinate 

system. We now want to segment the data with a separation surface ( )i
refK H  described by a graph equation, i.e. 

under the form ( )0 1 2,refv f v v=  . 

Hence a point of the surface is parameterized by ( ) ( )( )0 1 2 1 2 1 2, , , , ,K K refx v v v x f v v v v=  where reff  is the function 

describing K  and parameterized by the i
refH  coefficients. 

 
For a given coordinate system, we define the following entities: 
 
- The Jacobian vectors: 
 

i i i
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- The local basis 
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( )0 1 2, ,i
i

i ii

x v v vJu
h vJ

∂
= =

∂
. 

 
These definitions allow us to give an expression of the elementary surface area KdA  of the contour K  and its 

elementary inside volume KdV  as: 
 
- Elementary surface area KdA : 
 
 1 2K KdA A dv dv=  (15) 
with 
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and 
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-Elementary volume KdV : 
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=

 (18) 

 
and therefore 

 0 1 2 0 1 2

0 1 2

K

K

dV h h h dv dv dv
V dv dv dv

=
=

 (19) 

 
 
We are now going to look for a computation strategy for the i

refH  coefficients of the surface K  in order to achieve a 
good segmentation of the data. Going back to the deformable model segmentation framework, energy minimization 
usually requires to be able to compute the gradient of the energy to minimize. In our case, computation of the first order 
derivatives of MSF  in i

refH   requires to first re-write the Mumford-Shah function MSF  in equation (14) with a 
Heaviside function H as: 
 

 ( ) ( )( )2 2 1
0 0, 1MS i in out K

F c K u c H u c H dHυ
Ω

= − + − − +∫ ∫  (20) 
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where the Heaviside H  function is defined as: 

 ( ) ( )0 1 2
0 1 2

1 if ,
, ,

0 otherwise
refv f v v

H v v v
≤⎧⎪= ⎨

⎪⎩
. (21) 

With the formulation of the image data term in MSF  as a volume integral, we compute: 
 

 ( )
1 2

0 1 2,
2

2
MS in out K

i out in Ki iv v
ref ref

F c c Af u c c V dv dv
H H

ν
⎛ ⎞∂ + ∂⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫  (22) 

 
The quantities ( )0 , , ,K K iu A V h  are Ω →  functions. In the integral, they are all being evaluated at the point 

( )( )1 2 1 2, , ,refx f v v v v . 

 
The derivative of the surface term is computed as: 
 

 
( ) ( ) ( ) ( ) ( )2 21 22 1 1 2 2 2

2 0 2 0 0 2 1 0 1 0 0 1 2 1 2 1 1 22 2 1
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i iK
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 (23) 
 
Since the ih  are evaluated at ( )0 1 2, ,v v v  and ( )0 1 2,refv f v v=  depends on i

refH  , we evaluated the derivative of ih  

according to i
refH  as: 

 
0

j j
i i ji

ref

h h
f f h

H v
∂ ∂

= =
∂ ∂

 (24) 

 
These equations may be used to solve the minimum partition problem with graph equation surfaces for any family of 
basis functions if  selected for the decomposition of reff . 
 

4.3. Numerical scheme 
 
Interestingly, the gradient of the energy MSF  is much faster to compute than the energy itself, as the volume integral 
becomes a surface integral, thus winning an order of magnitude in computational complexity. This observation lead us 
to discard standard numerical optimization methods based on the opposite assumption and to only follow the gradient of 
the energy in our optimization process. Minimization of MSF  was therefore performed with the very simple scheme: 
 

 ( )( ) ( ) ( )1 MSi i
ref ref i

ref

F j t
H j t H j t t

H
∂ ∆

+ ∆ = ∆ − ∆
∂

 (25) 

 
which defines the temporal iterative scheme updating the values of i

refH , and the deformation of the segmentation 

surface ( )i
refK H . 
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RESULTS 
 
We present in this section some experiments for segmentation of real-time three-dimensional echocardiographic 
ultrasound data acquired with a SONOS 7500 scanner from Philips. The data set used for our experiments was of size 
[176 160 144] in Cartesian coordinates. We illustrate here the main concepts which emerged from these tests. 
 

 
Figure 3: Segmentation of a 3D ultrasound volume with a prolate spheroidal surface representation. (left): Initial 

surface. (right): Segmented surface after 10 iterations. 

1. Influence of the parameters 
 
These experiments were performed with a surface representation in prolate spheroidal coordinates. Numerical 
implementation was ran with a discretization of the two angular parameters ( ),θ µ  onto ( )8,8  patches. To test 
computational speed limit of the method, the data force was simplified by manually setting the average value between 
the inside volume (i.e. the ventricular cavity) and the outside volume (i.e. the myocardium), which appears in Equation 
(22), to a fixed value, defined from the histogram of the data. The data force was evaluated on 8 8×  points on each 
patch to combine the influence of the whole patch area on the increment of the radius value. Each patch element 
returned a radius increment that influenced the position of the neighboring nodes via interpolation with the basis 
functions.  
The surface was initialized as an isosurface with 1λ = . The scale factor and the orientation of the isosurface were 
defined from the manual selection of two points at the apex and the base of the ventricle.  We list here a short discussion 
on the selection of numerical parameters: 
- Time increment t∆ : The value of the time increment directly controls the increment of the radial coordinate and the 
volume of the segmented object. In our case, we found that a time increment 0.04t∆ =  corresponding to a 4%  
increment in radius and volume was well adapted.  
- Number of iterations and stopping criteria: Fixing the interface gray value enabled to achieve a stable behavior of 
the segmentation process. About 10 iterations were required.  
- Curvature term ν : The curvature term is negligible due to the intrinsic smoothness of the surface described in 
prolate spheroidal coordinates and interpolated by Hermite functions across a small number of patches. We can easily 
suppress this term without decreasing the quality of the segmentation while enhancing speed performance and 
simplicity. 
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2. Towards real time segmentation 
 
The complexity of the proposed algorithm does not depend on the size of the data, but only on the density of the 
discretization when evaluating the surface integrals in Equation (22). As data values are only needed on node points, the 
algorithm can be run with data given in any arbitrary geometry. This argument in especially interesting for 3D 
echocardiography where data is acquired in a spherical geometry.  Our segmentation method could therefore be applied 
to the original data without the need for interpolation into Cartesian space. We performed some experiments for 
segmentation of 3D+Time data sets, with few iterations (3 to 5) between each frames, using the resulting surface as 
initialization for the next frame. With very few iterations, the first solutions were not correct, but the segmentation 
surface reached the heart walls in less than one heart beat, and then tracked the endocardial wall correctly over the next 
cycle. In this experiment, computation time between 2 frames got below 0.5s on a standard desktop computer (Pentium 
IV 2.2GHz) for a reasonable discretization of the surface. This very promising result allows us to believe that this 
algorithm may be implemented in real-time on 3D echocardiograph machines and could be used interactively by 
technicians and cardiologists. Finally, these surfaces can be very easily triangulated (using the integration points to 
build the triangles for instance), allowing fast and efficient 3D visualization. 
 

CONCLUSION 
 
We presented a formulation of the generic "variational" deformable model from Chan and Vese6 with a surface 
representation in prolate spheroidal coordinates that lead to near real-time segmentation, representing a leap of progress 
in performance when comparing to a standard level set implementations. Focusing on the segmentation of 3D 
echocardiographic data, our surface representation is particularly well adapted to the geometry of the ventricles, and the 
resulting surfaces are under a form widespread in the heart modeling community. In this respect, this method opens a 
new path in the assimilation of clinical data with anatomic modeling. From this point, many research directions might 
be explored, such as fitting more refine heart models with the data, or modifying the energies involved in the 
segmentation method for more accurate segmentation. 
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