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ABSTRACT 

Computer aided diagnosis in the medical image domain requires sophisticated probabilistic models to formulate 
quantitative behavior in image space. In the diagnostic process detailed knowledge of model performance with respect to 
accuracy, variability, and uncertainty is crucial. This challenge has lead to the fusion of two successful learning schools 
namely generative and discriminative learning. In this paper, we propose a generative-discriminative learning approach 
to predict object boundaries in medical image datasets. In our approach, we perform probabilistic model matching of 
both modeling domains to fuse into the prediction step appearance and structural information of the object of interest 
while exploiting the strength of both learning paradigms. In particular, we apply our method to the task of true-false 
lumen segmentation of aortic dissections an acute disease that requires automated quantification for assisted medical 
diagnosis. We report empirical results for true-false lumen discrimination of aortic dissection segmentation showing 
superior behavior of the hybrid generative-discriminative approach over their non hybrid generative counterpart. 

Keywords: Quantitative Image Analysis, Segmentation, Generative and Discriminative Learning, Wavelet Analysis, 
Model Matching, X-ray CT. 

1. INTRODUCTION 
Probabilistic modeling for computer aided diagnosis in the medical image domain is an active area of research [7-10]. 
Computer aided diagnostic processes require detailed knowledge of statistical model behavior with respect to accuracy, 
variability, and model uncertainty for quantitative diagnostic reasoning. This challenge has lead to the fusion of two 
successful learning schools namely generative [11-13] and discriminative [14-16] learning. While both approaches were 
successfully applied to medical imaging problems in isolation [31-33], they have different strengths and weaknesses 
inherent in their theoretical formulation that speaks for selective ways of combining both learning paradigms. Further, it 
is known that each learning approach alone lacks the ability to completely address the problem domain due to the 
complexity of the modeling process in question [20, 21]. It is evident to find ways for combining both learning 
frameworks to fuse their strength for computational efficient learning in large knowledge and data domains. Such a 
hybrid provides superior applicability, adaptability, and performance over the individual learning frameworks in 
separation.  

For instance, generative models enable the natural integration of prior knowledge into the probabilistic model by 
working on a refined probability density through Bayes rule. Given expert knowledge one can condition and marginalize 
over the generative joint density in a Bayesian data-driven way to perform inferences. This perspective of modeling 
enables us to reuse relational information and coherences of the given problem setting while being able to refine our 
model with new incoming knowledge. On the other hand, discriminative learning has its effectiveness in its simple 
formulation omitting the need to model a complete joint distribution of the problem phenomenon. In contrary, a 
discriminative approach directly optimizes a maximum-margin criterion for a domain specific task such as classification 
or regression. Through maximum-margin learning discriminative methods aim for simple task specific classification 
rules that optimize generalization performance on unseen data. In combining selective parts of both learning frameworks 
it is possible to directly address the problem domain of specific practical systems while keeping the flexibility of the 
generative model. In practice we often face changing environments requiring the need for a modeling approach that can 
adapt to the new environment in a quantitative probabilistic way. It is this symbiotic relationship that makes such a 
hybrid approach suitable. 

In this paper we propose a generative-discriminative learning approach to predict object boundaries in medical image 
datasets. We apply our approach on CT medical datasets to perform true-false lumen segmentation of aortic dissection. 
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The segmentation problem is solved through generative-discriminative model matching exploiting object appearance and 
structural information cues in the learning process. For structural object information we use dyadic multi-scale Wavelet 
analysis to extract multi-scale edge information of the object of interest. Appearance information is modeled with a 
generative mixture model. Discriminative model knowledge aids in the model selection process of the generative model 
through weighted model matching. In comparison to deterministic or heuristic approaches our approach brings as a 
byproduct the following key advantages: i) easy integration of a priori knowledge through Bayesian data driven 
probabilistic modeling ii) optimized generalization error bounds through discriminative classification rules, and iii) 
model adaptability and natural refinement to changing data and knowledge environments through weighted model 
matching. 

The remainder of the paper is organized as follows: in section 2 we outline the medical background of aortic dissection 
an acute disease that requires immediate treatment. Next we continue with prior work in the domain of generative-
discriminative learning approaches closely related to the spirit of our work. Section 4 describes our approach using 
dyadic multi-scale Wavelet analysis and generative-discriminative model matching. Experimental results are shown in 
section 5. Finally we conclude with future work and open issues. 

2. MEDICAL BACKGROUND 
Life threatening aortic dissection occurs in two types (A and B) after the Stanford classification system, where a tear of 
the inner artery wall leads to the separation of the whole lumen into two channels. One, where blood continues to flow 
(true lumen) and the other, where the blood flow is zero (false lumen). Aortic dissection is a medical emergency and can 
quickly lead to death, even with optimal treatment. Aortic dissections resulting in rupture have an 80% mortality rate and 
50% of patients die before they even reach the hospital [6]. The accurate discrimination of both lumen volumes is crucial 
for immediate treatment procedures. Treatment of aortic dissection requires automated quantification for assisted 
medical diagnosis of the complete aortic lumen structure. Manual quantification is time consuming and prone to inter- 
and intra observer variability. Figure 1 shows examples of cross sectional planes of the aortic dissection lumen for 
various pathological cases. 

 
   

 
 

Fig. 1. Input samples of aortic dissection cross sectional planes 
showing various forms of the true and false lumen separated by the 
aortic dissection membrane. These samples are the input of our 
algorithm. 

3. PRIOR ART 
We provide two nodes of related work to situate our work. Closely related to the spirit of fusing both learning 
frameworks are learning approaches using i) variational maximum conditional likelihood [23, 24], ii) discriminative 
maximum entropy (MED) [25, 26], iii) probabilistic kernel methods [27,28], iv) multi-task probabilistic discrimination 
[29], and v) latent mixture and non-stationary discrimination [30]. Various approaches exist in realizing a hybrid 
learning framework to combine generative and discriminative modeling. 
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Li et al. [17] proposed a generative/discriminative learning algorithm for image classification. They presented a 
sequential two phase learning step using EM for generative learning to normalize the description length of the images. 
The output serves as the classifier input for the discriminative learning step. They outlined their method for single and 
multi-dimensional feature spaces. Everingham and Zisserman [18] applied their learning framework to face recognition. 
In their work they first use discriminative learning to classify visual features of complete head models using decision 
tree classifiers. The second step then verifies the decision accuracy within a generative framework employing edge 
features and chamfer matching. The authors reported excellent results. Zhang et al. [19] presented an integrated learning 
approach of both frameworks. They proposed a Random Attributed Relational Graph for generative modeling, where 
discriminative classifiers are used at the graph nodes to perform multi-view object detection. Other hybrid learning 
frameworks combining the two learning approaches can be found in [20-22]. Since we apply our framework to the task 
of true-false lumen segmentation in aortic dissection we briefly outline recent state of the art. A method has been 
reported by Kovacs et al. for automatic segmentation of the aortic dissection membrane [1]. The authors use eigenvalue 
analysis of the Hessian matrix to compute a probability score that a pixel belongs to the membrane.  

The philosophy of our approach is a different one. Rather than targeting the extraction of the dissection membrane we 
perform segmentation of the true and false lumen using dyadic multi-scale Wavelet analysis coupled with generative and 
discriminative model matching in a machine learning framework.  

4. METHODOLOGY 
A - Dyadic Multi-Scale Wavelet Analysis 

The Wavelet transform finds its use in many computer vision applications such as texture discrimination [35] or other 
frequency measures in image modeling. The Wavelet transform can be seen as decomposing a signal  onto 
a set of basis functions , which are scaled and shifted versions of a mother wavelet. To construct a translation-
invariant wavelet representation, the scale  is discretized while keeping the translation parameter  fixed. The discrete 
wavelet transform (DWT) can be implemented as a perfect reconstruction filter bank, where transform coefficients are 
obtained by successive applications of discrete filters. Dyadic wavelet transforms are scale samples of wavelet 
transforms sampled along a dyadic sequence of . The dyadic wavelet transform is defined as 

                      (4.1) 

In the two dimensional case  we have  

                           (4.2) 
 

Here  is a smoothing kernel dilated by a dyadic scale factor  and  denote the partial derivatives of  . 
As mentioned we can compute eq. 4.2 with a fast filter bank algorithm. We use spline dyadic Wavelets satisfying the 
inequality constraint with frame bounds , s.t.  

    (4.3) 

 

To extract structural object information we focus on object edges at multiple scales obtained through modulus maxima 
representations of the discrete filter responses of  . Translation-invariance provides us with an over-complete 
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frame representation suitable for edge localization. The Lipschitz regularity of edge points is derived from the decay of 
wavelet modulus maxima across scales. To achieve good edge detection results under noisy environments  is 
smoothed before its derivative is computed. Eq. 4.2 implies that the Wavelet transform coefficients are proportional to 
the coordinates of the gradient vector of  convoluted with a smoothing kernel. Thus the modulus of the gradient vector 
is proportional to the Wavelet transform modulus. The sharp variation points of the signal smoothed at different scales 
can be detected by finding the local maxima of the Wavelet transform magnitude. For a more detailed view on the 
underlying theory we refer to [34]. A point is declared as an edge point if the magnitude  has a local maximum in the 
direction  of the gradient computed as  

                                     (4.4) 
 

Rather than comparing the magnitude with its neighbors closest to the gradient direction we interpolate the two values in 
a kernel neighborhood using bilinear interpolation. After edges are detected we group together neighboring maximum 
magnitude responses. We compute local maxima of a five level dyadic Wavelet decomposition for multi-scale edge 
detection  

 

                                           (4.5) 
 

We discard the fine detail edges of level , since they do not give meaningful edge information. The level of 
scale identified depends on selected basis wavelets adopted for a DWT and structure size relative to the support of each 
wavelet. In our case multi-scale edges of level  were chosen since they show most of the coherent structural 
information of both lumens (see fig 2). From figure 2 one can observe false positive edges within the lumen structure. 
We apply a discriminative learning approach to reduce the false positive rate by injecting expert knowledge into the 
framework.  

     
 

      
 
Fig. 2. Multi-scale Wavelet edge detection by local maxima 
detection in the Wavelet domain. Level 4 multi-scale edges 
overlaid on the original image data. 
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B – Learning the Discriminative Object Model 
 
Starting from section A) we perform discriminative learning based edge refinement to reduce the false positive rate. Let 
us consider an input output mapping , where  denotes the binary 
class label (edge point label) of our observation  (feature vector). The feature space consists of vectorized circular 
patches ( ) encoding intensity and texture covariance cues for each edge point on the true-false lumen boundary. 
For all edge points we build a training instance matrix A  for all  edge points. For our discriminative learning 
task we use the Support Vector Machine (SVM) [14]. The goal is to find an optimal classification rule  
for unseen test cases, i.e. a rule that provides an optimal generalization error bound through maximum-margin 
classification between the two classes. Vapnik’s learning theory suggests that in order to increase generalization 
performance the classifier should have low VC dimension and thus a large margin . For an in depth review 
of the underlying theory we refer to [16]. For the case of non-separable data the SVM formulation is given by 
 

    (4.6) 
 
Here  is a penalty term providing a measure for the miss-classification distance between the 
margin bounds and the sample pair. The parameter  is a weighting factor for the miss-classification penalty. We note 
that the solution obtained is always unique. Eq. 4.6 is the primal version of the SVM. In the dual case we have the data 
represented as a dot product. The Lagrangian of eq. 4.6 results in 
 

  (4.7) 

 
and leads us to the dual by maximizing  in terms of  
 

     (4.8) 
  

Replacing the inner product with a kernel function  the solution of eq. 4.8 can be obtained through convex 
quadratic optimization. The final decision function of our kernerlized discriminative classifier is given by 
 

     (4.9) 

 
In our implementation we use a Gaussian RBF kernel  with  and a penalty 
weighting factor of  . Both parameters were obtained through cross-validation of our training set. Once our 
discriminative classifier is trained we refine our results obtained from A) to reduce the false positive rate. Most 
prominent lumen edge points are then predicted by computing the maximum posterior probability from eq. 4.9 as 
described in [36]. The next step is to model the appearance information of the object of interest. 
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C – Learning the Generative Appearance Model  

 
Given initial vessel cross section boundaries we estimate the intensity distribution inside the lumen by decomposing it 
into a set of mixture components. The density of each data point in a mixture model can be written as 
 

             (4.10) 

 

where each of the  components of the mixture is, for instance, a Gaussian with differing means and covariances 
 and  is the mixing proportion for component , such that  The goal is to 

maximize the log-likelihood of our mixture model given unlabeled data. Therefore we introduce a latent variable for the 
unknown class distribution. Expressed as a latent variable model we can write eq. 4.10 as 

      (4.11) 

 

where  is the prior for the latent variable taking on value , and  is the density 
under component . The hidden variable is a multinomial binary  element vector with . To estimate our 
mixture model we use the EM algorithm. Dependent on the disease state and progress the intensity distributions of the 
true and false lumen vary such that a fixed mixture model cannot be assumed a priori. However, the true and false lumen 
intensity lies within a range of mixture components. To perform model selection we perform a model matching between 
the discriminative and the generative model to fuse structural and appearance information into the learning framework.  

 
D –Generative and Discriminative Model Matching 

 
We perform model matching at a high-level representation to keep model independence in our learning framework. To 
perform matching we optimize the generative conditional density by taking the derivative of the distribution and 
maximize for high similarity of the discriminative probabilistic output mapping. Weighting parameters between both 
frameworks ensure adaptability for task specific modeling assumptions. We note that in that way both learning 
frameworks interact in a careful systematic way to share and communicate model performance for the final decision task. 
Below we give a brief summary of our matching algorithm. 
 
Algorithm: Generative-Discriminative Model Matching 
 
1| Train discriminative object model of true-false lumen boundary using expert knowledge   

 Solve dual SVM using QP: 

 
 

2 | For each cross sectional plane  compute eq. 4.5 to obtain edge feature map  of the object model: 
3 | Use discriminative model from step 1) and classify prominent edge point after:  

 

 Label the prominent edge point set as  
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4 | Compute the generative mixture model  on  (step 3) and 4) interchangeable) : 

 Maximize lower bound of log-likelihood using: 

      (4.12) 
 Estimate ML of  using iterative optimization: 

E-Step: Compute updated cond. expectation  at each step: 

      (4.13) 
 

       M-Step: Compute ML parameters on new : 

      (4.14) 
 
5 | For each  mixture component compute conditional density and perform model selection: 

 
      (4.15) 

     (4.16) 

 
 
In our experiments we build a decomposition of at least  mixture components and apply a matching to the 
discriminative shape model to detect the appropriate mixture model. Model training in step 1 was performed for 

 datasets randomly selected from our database, where each dataset consists of approximately 200-300 individual 
cross sections. Matching is performed between the conditional density of the mixture model and the discriminative 
object model in a least square cost functional. Our matching approach has the flexibility that generative and 
discriminative learning can be performed independently. Additionally, weighting parameters control the influence of 
each model. In that way our approach can adapt to different application scenarios and changing data domains. If we have 
high confidence that the generative model is a good representation for the problem phenomenon we favor the generative 
prediction over the discriminative model.   

5. EXPERIMENTS AND RESULTS 
Our approach integrates into an existing vessel segmentation platform [4]. In this platform the complete aorta lumen was 
segmented using a tracking approach, where successive cross sectional segmentations build up the aortic mesh structure 
of the lumen boundary. Cross sections were segmented from previously extracted centerline points. To find the whole 
lumen structure of the aorta the user defined start and end seeds of the aorta. Our algorithm works on individual cross 
sections as shown in the left part of below figure. Each cross sectional plane had a resolution of 256x256. All cross 
sectional planes were normalized to the intensity range [0-1]. We sampled individual cross section planes along the 
aortic medial axis in 5mm distances. 
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Fig. 3. Aorta segmentation of aortic dissection. The left part shows 
the segmented cross section boundaries in blue. One cross section 
boundary is shown on the left. The right view shows the aorta 
boundary mesh (red) as an iso-surface. 

 
To evaluate our approach we have tested our algorithm on various cases of aortic dissection covering a variety of disease 
phenotypes to address variations in segmentation complexity. We performed validation compared to expert grading for 
the hybrid generative-discriminative approach and a non-hybrid generative approach. The hybrid approach outperformed 
the generative approach with a mean sensitivity of 0.83 and a mean specificity of 0.87 with standard deviations of 
±0.098 and ±0.15 respectively. The generative approach alone performed with a mean sensitivity of 0.7 and a mean 
specificity of 0.85 with standard deviations of ±0.148 and ±0.253. Figure 4 shows the ROC statistics using our learning 
framework for 14 randomly selected datasets. Figure 5 shows examples of detected true-false lumen boundaries overlaid 
on individual cross sectional planes. 
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Fig. 4. ROC curve comparing segmentation performance between 
the hybrid generative-discriminative approach and generative only 
approach.  
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Fig. 5. Examples of true-false lumen segmentation boundaries 
overlaid in yellow on cross section image data using our 
generative-discriminative learning approach.  

6. CONCLUSION 
We have presented a hybrid learning approach combining generative and discriminative learning through multi-scale 
Wavelet analysis and probabilistic model matching. Obtained results seem promising. To our knowledge no such system 
was reported for the application of true-false lumen segmentation in aortic dissection datasets. The segmentation 
boundaries can be used for visualization of the two lumen channels and estimation of image based physiologic function 
such as cardiac blood flow. These measures are clinically relevant to track disease progress as well as quantitative 
assessment for acute disease diagnosis.  Future work is devoted to an in depth evaluation of our learning approach to 
other object targets as well as research towards a generalization of our learning algorithm to other application domains. 
Furthermore clinical validation studies will follow. 
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