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Abstract. In this paper, intravascular ultrasound (IVUS) grayscale images, acquired with 
a single-element mechanically rotating transducer, are processed with wavelet denoising 
and region-based segmentation to extract various layers of lumen contours and plaques. 
First, IVUS volumetric data is expanded on complex exponential wavelet-like basis 
functions, also known as Brushlets, which are well localized in time and frequency 
domains. Brushlets denoising have demonstrated in the past a great aptitude for denoising 
ultrasound data and removal of blood speckles. A region-based segmentation framework 
is then applied for detection of lumen border layers, which remains one of the most 
challenging problems in IVUS image analysis for images acquired with a single element, 
mechanically rotating 45 MHz transducer. We evaluated hard thresholding for Brushlet 
denoising, and compared segmentation results to manually traced lumen borders. We 
observed good agreement and suggest that the proposed algorithm has a great potential to 
be used as a reliable pre-processing step for accurate lumen border detection.  

Key words: Brushlet, Intravascular Ultrasound (IVUS), Denoising, Border Detection, 
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1   Introduction 

Cardiovascular disease (CVD) remains the leading cause of death worldwide. In 2004, 
CVD took about 800,000 lives in the United States with more than half of them due to 
atherosclerotic plaques [1]. There has been extensive interest in developing new imaging 
modalities to screen the progression and regression of atherosclerotic plaques in the past 
decade. Among them, intravascular ultrasound (IVUS) is the most widely used, real-time, 
and inexpensive imaging modality that not only provides pathological as well as 
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morphological cross-sectional grayscale images of arterial walls but also makes 
atherosclerotic tissue characterization feasible, using IVUS radiofrequency (RF) signals 
and images [2,3]. IVUS image segmentation has been a subject of interest for researchers 
due to the rapidly growing use of this imaging modality in catheterization procedures for 
the following two main reasons. First, one important parameter during angioplasty or stent 
implantation procedure, is the ratio of lumen to vessel wall cross sectional area for 
stenosis regions. For instance, the interventional cardiologist uses these measurements to 
select the appropriate type, length and diameter of a stent. Secondly, vessel walls and 
lumen contours are required to be traced prior to tissue characterization and plaque RF 
signals extraction. Pullback IVUS data files contain thousands of cross-sectional images, 
automatic extraction of vessel wall and lumen borders has been the topic of only a few 
research efforts [4,5,6,7] and  remains a challenging image processing problem.  
     Clinical application of automated segmentation methods has seen limited success due 
to the presence of guide wire, the presence of arc of calcified plaques, the motion of the 
catheter as well as heart, and appearance of sub branches. Generally speaking, on IVUS 
image data, detection of the external vessel wall border is relatively easier than internal 
lumen border. Comparing IVUS ultrasound probes, the lumen border is better depicted in 
images acquired with a 64-element phased-array 20 MHz transducer in comparison with 
those acquired with a single element mechanically rotating 45 MHz transducer. At higher 
center frequency spatial resolution is improved, at the cost of more scattering from red 
blood cells inside the lumen. Figure 1 illustrates the schematic cross-sectional anatomy of 
arterial wall and atherosclerotic plaque along with two distinct cross-sectional grayscale 
IVUS images acquired with 64-elements phased-array 20MHz as well as  a single-element 
rotating 45MHz VOLCANO transducer.   



     To improve image quality and be able to rely on a simple segmentation framework, we 
developped a three-dimensional (3D) Brushlet-based algorithm, taking into account blood 
flow during the pullback. The appearance of regions corresponding to plaques, vessel wall 
and surrounding fat is more stable within successive frames than for the blood pool. Based 
on this observation, expansion using a brushlet basis and thresholding operator was used 
to characterize persistent textures along the pull back dimension to remove random 
scattering blood and speckle. Denoising was performed in polar representation and results 
displayed in traditional Cartesian coordinates.   
     Segmentation of denoised images was performed with region-based optimal 
partitioning, combined with Markovian regularization, an iterated conditional mode 
(ICM) classification algorithm [8] was used, based on 4 classes. Extraction of the different 
layers, corresponding to the different ICM-classes, was finalized with a parametric 
deformable model.  
     This paper is organized as follows. Section 2 describes the acquisition system 
specification and data collection methodology. We review the Brushlet analysis, denoising 
and segmentation algorithms in Section 3. The experimental results are then demonstrated 
in Section 4. The paper is summarized with conclusions in Section 5.  
 
2   Data Collection 

We collected IVUS grayscale images from three patients using a single element 
mechanically rotating 45 MHz Revolution™ transducer and s5™ imaging system 
manufactured by VOLCANO (Rancho Cordova, CA). The catheter was advanced on top 
of the guide wire from the femoral artery toward the site of coronary arterial occlusion 
(i.e. right coronary artery (RCA), left anterior descending (LAD), left circumflex (LCX)) 
via aorta. Figure 2 illustrates schematically the heart, coronary arteries and the catheter 



path. During image acquisition, the catheter is pulled back from the distal to proximal 
locations with a speed of 0.5mm/sec, acquiring 30 frames/sec. Ultimately, each grayscale 
IVUS frame was constructed consisting of 500 radial lines that span 360o and 500 
samples/line after decimation and interpolation in radial and lateral directions, 
respectively. The original images, acquired in polar coordinates, were mapped to 
Cartesian coordinates to construct typical IVUS images, as shown in Figure 3.   

3   METHODOLOGY 

We apply a 3D (cross-sectional image of arterial content + pull-back distance) 
overcomplete brushlet analysis to sub-blocks of IVUS frames in polar coordinates during 
each pullback. We assume that there is a strong spatial coherence in the appearance of 
plaque, arterial wall and surrounding fats within blocks of the analysis. This coherence is 
organized in concentric circular layers and is better expressed and visualized in polar 
representations of the image data. Also, brushlet tiling and expansion is based on a regular 
square lattice which is better correlated with homogeneous textured patterns in polar 
( ),r θ rather than Cartesian ( ),x y image representation. The presence of blood speckles 

within the volume of analysis is also considered to be dynamic due to blood flow. The 
underlying hypothesis for bruhlet denoising via thresholding, is that blood speckle can be 
removed by including the pull-back dimension in the textural brushlet analysis in the 
frequency domain. Finally, the results are mapped back to Cartesian coordinates for visual 
display.  

 
 



3.1   Brushlet Basis  
 
Brushlets are windowed complex exponential functions in the family of steerable wavelets 
and were introduced in [9]. They divide the real axis into subintervals [ ]1,n na a + of length 

nl , and define a brushlet analysis function as follows 
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The nb and v  are two windowed functions, which are defined from the ramp function.  
The complex orthonormal basis function ,j nu , can be constructed using these two 

functions along with the complex exponential function ,j ne that is defined as 
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brushlet coefficients. It has been shown that the projected of f̂  onto the brushlet basis can 
be implemented in an efficient fashion using a folding technique and fast Fourier 
transform (FFT) [10]. In the reconstruction process, the original signal can be retrieved 
using inverse Fourier transform and unfolding operation.  
     In our application, a tensor product extension was used for the volume of IVUS data 
frames. Consequently, such an extension would lead to the orientation selectivity in the 
brushlet domain, which is described next.  
 

3.2   Frequency Tilling and Overcomplete Representation  
 
The decomposition of IVUS volumes onto the brushlet orthonormal basis provides 
selectable textural features with different orientations in the Fourier (brushlet) domain. 
Since we deal with volumetric datasets, this can be reliably performed by tilling the 
Fourier domain into quadrants (sub-cubes), each representing a specific size and 
orientation of a brushstroke, which is analogous to a wavelet scaling function.  
     We used an overcomplete multiscale representation of the brushlet coefficients for two 
reasons. First, we avoided aliasing effect and secondly, we intended to preserve as much 
textural information as possible in the transform domain due to the stringent behavior of 
blood and plaque signals that makes the lumen border detection very challenging.  



3.3   Thresholding for Removal of Blood Speckle 
 
The purpose of this study is to offer a reliable denoising algorithm by removing blood 
speckle (noise), such that the resulting denoised data can be employed as an input for any 
2D or 3D segmentation algorithm. We used two methods for eliminating blood noise via 
thresholding brushlet coefficients. We deployed a hard thresholding technique on both 
magnitude and real part of brushlet coefficients.    

 
3.4   Segmentation of IVUS Data  
  
We used the iterative conditional model (ICM) segmentation framework to segment the 
IVUS data into 4 regions (layers), characterized by their average gray values. The ICM 
segmentation framework corresponds to a discrete minimization of the piece-wise 
Mumford and Shah functional energy [11] replacing curvature constraints with a 
Markovian regularization of the contours. The Markovian regularization provides a very 
efficient computational framework to control orthogonal and vertical associations of 



similar class labels when applied on a regular lattice corresponding to 4-neighbor pixels in 
2D. Such a constraint is ideal for circular patterns such as vessel layers, when displayed in 
polar coordinates. We therefore applied the ICM on the IVUS original and denoised 
volumes in polar coordinates. Consequently, classification results were transformed to the 
Cartesian coordinates for visualization and extraction of the center contours with a 
standard parametric deformable model applied on thresholded ICM classifications for the 
four classes and imposing a regular growth of vessel contour areas by iteratively 
initializing the deformable model at the center of the transducer. This extraction step was 
performed after dilation of the ICM classification results with a horizontal line structuring 
element of 70 pixels, in polar coordinates. This computational step was designed to close 
the open and unconnected borders to obtain better results from parametric deformable 
model and estimate the lumen border more precisely, as illustrated in Figure 4.  

 

4   RESULTS AND DISCUSSION 

In the first experiment, we processed IVUS volumes of size 512 512 2× × and  the Fourier 
domain was tilled using four, four and two cubes in x, y and pull-back dimension 
respectively each with overcomplete representation. In this case, the brushstroke 
orientation was 90± , 90± and 180±  in x , y  and pull-back direction, respectively. We 



repeated the experiment using volumes of size 512 512 8× ×  to insure adequate spatial 
resolution in the pull-back dimension (8 slice depth). Higher spatial resolution in this 
dimension resulted in blurred denoised data due to the effects of the motion of the catheter 
and heart.  
     Figure 5 illustrates the results of our segmentation algorithm, in the second experiment, 
on original IVUS image and resulting denoised image using a hard thresholding operator. 
For this purpose, the thresholding was performed in each cube empirically for the 
threshold value of 50% of the maximum value of real part of the coefficients. The 
resulting denoised coefficients were then classified into four groups with uniform gray 
level values for ICM initialization. However, we only extracted the contours from the first 
two layers since they better approximated the true lumen border. As we can see, the 
segmentation algorithm outperforms on denoised images and the automated borders at 
two layers (red L1 and blue L2) are well correlated and matched with manually traced 
lumen border (yellow) traced by an  expert cardiologist.  
     For both experiments the regression analysis was performed to evaluate the agreement 
between automated and manual traced contours for 104 frames within a pullback, Figure 
6(a). In addition, we computed the Tanimoto coefficients to see how well the automated 
and manual contours are matched throughout the pullback, Figure 6(b). The average 
Tanimoto coefficients for L1 and L2 borders in the first experiment, using block size of 
512 512 2× × ,  found to be 41.75 13.66± and 69.16 7.37± , respectively, which was less than 
the computed Tanimoto coefficients for the second experiment using block size of 
512 512 8× ×  IVUS frames (case #1, Table 1). The Tanimoto coefficients show the highest 
agreement in positioning of automated and manually traced borders. According to Figure 
6(b), the higher Tanimoto coefficients were achieved for the first 50 frames where the 
pullback was more consistent. Our results show that the non-coherent pattern of blood 
speckle is better captured in longer IVUS volumes although the changes in plaque textures 
or motion artifacts may be more observed that can degrade the results (frames 51 and 81 
in figure 6(a)). This suggests an adaptive processing technique in future. Table 1 
summarizes the Tanimoto coefficients statistics as well as correlation values for 233 
frames extracted from three distinct cases using block size of 512 512 8× × IVUS frames. 
Overall, the extracted contour at the second layer (L2) found to have more agreement with 
manually traced borders.  
     In the third experiment, we processed the IVUS data with the same parameters whereas 
the hard thresholding technique was applied on the magnitude of brushlet coefficiets in 
each cube with threshold value of 15% of the maximum value. Movie 1, demonstrates the 
sequence of original (left hand side) and denoised (right hand side) images through the 
pullback. In this video, a counter-clock-wise vortex type patterns is visible. Regardless of 



source of such coherent dynamic patterns, the results become useful, particularly for 
images acquired with 45 MHz transducers, when the expert tries to delineate the lumen 
border visually. Genrally, experts go back and forth among frames in order to locate the 
lumen border visually and draw it manully. Our results not only ease this process but also 
make other techniques attractive such as optical flow to track these vortices and estimate 
the lumen border.  
 

5   CONCLUSION 

In this paper we presented a new 3D denoising technique based on brushlet 
representations to remove blood noise in IVUS images acquired with a 45MHz single- 



Table 1. Tanimoto coefficient statistics and correlation between automated and manually traced borders in 233 
frames collected from three distinct cases. 

 Number 
of Frames 

Mean 
Tanimoto 

Coefficients 

Maximum 
Tanimoto 

Coefficients 

Minimum 
Tanimoto 

Coefficients 

Correlation 
(p<0.0001) 

Case # 1 104 1: 64.12 10.56
2 : 71.34 4.74

L
L

±
±

 1:84.55
2 :81.02

L
L

 1: 42.78
2 :57.53

L
L

 1: 79.01
2 : 78.74

L
L

 

Case # 2 104 1: 71.10 9.69
2 : 72.70 4.05

L
L

±
±

 1:84.20
2 :81.09

L
L

 1: 48.33
2 : 60.87

L
L

 1: 0.78
2 : 0.80

L
L

 

Case # 3 25 1: 69.73 4.22
2 : 77.08 4.63

L
L

±
±

 1: 77.69
2 :86.93

L
L

 1: 60.47
2 : 70.14

L
L

 1: 0.94
2 : 0.95

L
L

 

 
element transducer. We further used denoised volumes as input to a 3D multi-region 
multi-channel segmentation algorithm to estimate the lumen border. We observed that the  
algorithm performs fairly well especially in consistent pullback where there is a strong 
spatial coherence in the appearance of plaque. In future, we will try to make the 
thresholding adaptively and look for more informative directions that provide more 
distinct differentiation between blood and non-blood textures.  
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