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Abstract:  We formulate and test a hypothesis for the dramatic restructuring that the plant 
breeding and seed industry has recently undergone: the reorganization can be explained in part by 
the desire to exploit complementarities between intellectual assets needed to create genetically 
modified organisms. This hypothesis is tested using data on agricultural biotechnology patents, 
notices for field tests of genetically modified organisms, and firm characteristics. The presence of 
complementarities is identified with a positive covariance in the unexplained variation of asset 
holdings. Results indicate that coordination of complementary assets have increased under the 
consolidation of the industry. 
 
JEL Classifications: O32 - Management of Technological Innovation and R&D; Q16 - 
Agricultural R&D, Technology; L22 – Firm Organization and Market Structure: Markets vs. 
Hierarchies; Vertical Integration 
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I. Introduction 

 

One of the central problems in the economics of innovation concerns how industries change as 
they absorb fundamental research breakthroughs.  Rarely has change been more pronounced than 
in agriculture following the introduction of recombinant DNA technology and affiliated 
techniques of genetic engineering. By offering breeders the ability to alter plant traits by directly 
manipulating sequences of genetic code, tools of agricultural biotechnology change the 
possibilities for crop improvement profoundly. The new techniques enhance the speed and 
precision of agricultural R&D, while expanding the space of potential new products. Seed firms 
now offer farmers crop varieties embodying new approaches for controlling pests, managing 
physical stresses on plants, increasing crop yields, and growing differentiated, quality-enhanced 
crops.  

Concurrent with these technical changes in the R&D process, the agricultural inputs industry has 
over the past two decades witnessed a comprehensive restructuring. Several large chemical firms 
including Monsanto, Dow, and DuPont moved aggressively into plant biotechnology, making 
huge investments in the life sciences. As newly minted “agronomic systems” companies, these 
firms acquired all of the large, national seed firms in North America, including Pioneer, DeKalb, 
Asgrow, Garst, and many others.  Meanwhile, the research-intensive agricultural biotechnology 
sector, from its appearance in the 1980s as a large set of small start-up firms, had by the end of 
the 1990s already reached a second stage, with most of the start-ups either folded or acquired by 
the new agronomic systems giants. The industry’s consolidation was surprising not only for its 
rapid pace and comprehensive scope, but also for the extremely high valuations at which some 
predecessor firms were acquired. In 1997, for example, Monsanto acquired Holdens’ Foundation 
Seeds of Williamsburg, Iowa, together with two marketing subsidiaries, for $1.02 billion—
twenty-five times the annual sales of the mature, privately held firm whose revenues derived 
entirely from the breeding and distribution of corn seed.  

The emergent industry structure—with a relatively small number of tightly woven alliances, each 
organized around a major life sciences firm, each vertically integrated from basic R&D through 
to marketing—stands in contrast to the more diffuse structure of twenty years ago. This structure 
is likewise noteworthy when one considers trends in other research-intensive fields. The 
pharmaceutical biotechnology industry, for example, maintains a large number of freestanding 
firms specializing in R&D and earning revenues through various licensing agreements 
(Majewski, 1998). Hall and Ziedonis (2001) observe that the U.S. semiconductor industry has 
over the past two decades witnessed a substantial vertical disintegration, featuring the appearance 
of new firms specializing in the intellectual work of chip design while out-sourcing 
manufacturing tasks. Merges (1998) and Arora (1995) argue that factors increasing the strength of 
patents in the U.S. during the 1980s have generally enhanced firms’ ability to manage 
technologies through contractual arrangements, inducing an increase in vertical specialization. 

This change in the agricultural-inputs industry structure can be explained as a response to the 
emergence of new technological opportunities for directly tailoring the genetic makeup of crops. 
To take advantage of these opportunities firms need to develop or acquire an array of specialized 
capacities in plant genetics, including tools for plant genetic transformation, genes, and, elite crop 
germplasm, all of three of which have been patentable in the U.S. and other major markets since 
the mid 1980s. Furthermore, these three types of intellectual assets are mutually complementary 
within any given crop system: more of one type of asset yields an increase in the marginal value 
derived from the other two. These complementarities generate incentives for firms to gain access 
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to all three. However, for a variety of reasons, firms confront serious difficulties or transaction 
costs in accessing these assets from external sources via licensing agreements. The response of 
firms is thus to aggregate the intellectual assets in-house. 

While the general trend toward consolidation in the agricultural inputs industry is consistent with 
this complementarities cum transaction-costs hypothesis, it is consistent with alternative theories 
as well. Some economists have argued that the restructuring can be explained by firms’ desire to 
leverage control over key intellectual property to erect barriers to entry and exert market power 
(Lesser, 1998; Phillips and Stovin, 2000). Others in the industry see firms accumulating patents to 
use as ‘bargaining chips’ in negotiations with other firms (Jondle, 1992; Shimoda, 1995), or 
pursuing acquisitions in an opportunistic response to a transient shift in share prices (Ghodsian, 
1995). These and perhaps other explanations can each in principle provide a valid alternative—
another element of motivation—for the gross pattern of consolidation and integration. To 
evaluate a claim that technological complementarities played a key role, additional evidence is 
required. 

Fortunately, the complementarities cum transaction-costs model generates distinctive and testable 
implications about the details of firms’ intellectual property (IP) management strategies, which 
bare upon both their R&D and patenting choices and their merger and acquisition (M&A) 
strategies. If each of the key types of intellectual property is more valuable in combination with 
the others, and if combinations through external contracts are inhibited, then we should expect 
firms to invest in R&D that produces patent portfolios that are not merely larger, but also more 
diversified—following a strategy of “IP diversification through R&D.” Likewise, we should 
expect firms to be especially interested in pursuing mergers and acquisitions that combine 
dissimilar IP portfolios—following a strategy of “IP diversification through M&A.”  We would, 
conversely, not expect to see firms maintaining specialized R&D programs in just one or two of 
the three patent classes. Nor would we expect to find many mergers that combine similar 
specialized IP portfolios; opposites should attract. 

To test these hypothesis, data are gathered on agricultural biotechnology patents awarded to firms 
by the U.S. Patent and Trademark Office from 1975 and to 1998, and on characteristics of the 
firms to which these patents were assigned.1 Patents are sorted into three classes corresponding to 
the key categories of plant biotechnology: genetic transformation tools; genetic characteristics; 
and elite plant germplasm. Using a version of the patent production function pioneered by 
Griliches (1979) and Hausman, Hall, and Griliches (1984), patent counts in each of the three 
classes are estimated as functions of firm R&D spending and other characteristics. The presence 
of complementarities is identified with a positive covariance in the unexplained variation in 
patent counts.  To examine the relationship between patent holdings and M&A activity during the 
1990s, the test is performed on data configured two ways: with patents assigned to firms 
according to the industry’s organization in 1994, and again with patents assigned to firms 
according to the consolidated structure that had emerged by 1999. The procedure allows an 
examination of whether complementarities—as indicated by positive covariance in the 
residuals—had increased due to the industry’s consolidation.  

Results indicate that the patent portfolios of agricultural biotechnology firms exhibit on average a 
significantly greater dispersion across the three technology classes than can be explained by firm 
characteristics alone. That is, the evidence supports the hypothesis that firms “diversify through 
R&D.” Moreover, mergers and acquisitions over the five years between 1994 and 1999 served to 
increase the measured degree of dispersion in patent portfolios. This evidence in support of the 
“diversification through M&A” hypothesis is further borne out by a case-by-case analysis of 
individual mergers. We interpret both empirical findings as providing support for a model of 
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endogenous industry restructuring that emphasizes complementarities and transaction costs in the 
coordination of intellectual assets. 

The balance of the paper proceeds as follows. Section 2 develops the conceptual model that 
explains R&D strategy and M&A strategy as joint responses to a problem of coordinating 
complementary intellectual assets in the face of high transaction costs. Section 3 describes the 
data and statistical model used to test our IP management hypothesis that firms “diversify through 
R&D” and “diversify through M&A.” Empirical findings are presented in section 4. Section 5 
extends these results with an analysis of how the complementarities-with-transaction-costs 
framework clarifies the logic behind a number of individual mergers. Section 6 concludes with a 
discussion of how our empirical findings relate to alternative theories of market restructuring. An 
appendix details the rules employed to structure patent data into intellectual classes. 

 

II. Coordinating complementary intellectual assets 

 

The theory of asset complementarities provides an explanation of the potential benefits of 
deliberately coordinating intellectual assets (Teece, 1986).  When research processes or assets 
exhibit complementarities, the decentralization results of welfare economics are no longer 
assured. It is possible for agents acting independently to become stuck in a strategic dilemma, in 
which production of knowledge occurs at one of the (privately and socially) less desirable of 
multiple equilibria. When the owners of different assets adjust their own research outputs 
independently of one another, without taking into account the positive effect that their production 
has on the holders of other complementary assets, the total potential (private and social) value of 
the assets may not be realized. During times of rapid technological or environmental change, and 
in complex systems industries, effective coordination can be particularly valuable, yet is made 
even more difficult by additional uncertainty or complexity (Milgrom and Roberts, 1990). 

If coordination between complementary assets is required for their full value to be realized, how 
is it to be achieved? In theory, any of a number of different channels could suffice, ranging from 
the (external) market exchange of specific assets to the (internal) integration of assets within a 
firm. (A spectrum of possibilities is illustrated in Figure 1.) The most drastic response to an asset 
coordination challenge is the complete internalization of assets within a single firm through 
integration. In such an event, the assets are placed under a unified managerial authority that can 
dictate a move to a level of utilization corresponding to a (privately) preferred equilibrium. 
Integration is not, however, always the best solution to a coordination problem: as a firm grows in 
size, it must coordinate transactions between its internal assets through increasingly bureaucratic 
procedures of command and control. The advantages of exploiting complementarities internally 
must be balanced against increases in the cost of governance that accompany coordination of 
assets within a firm's boundaries. Indeed, the cost-of-governance argument implies that, ceteris 
paribus, complementary assets should be coordinated through arms-length market contracts. 

On the other hand, external transactions for knowledge are also inherently problematic and costly. 
The economic literature on problems of contracting for knowledge (Arora, Fosfuri, and 
Gambardella, 1999; Pisano, 1990; Rausser, 1999; Somaya and Teece, 2000; Zeckhauser, 1996) 
describe several general classes of problems that cause technology licensing markets to fail: (1) 
diffuse entitlement problems result from the fragmentation of technology space by the assignment 
of mutually blocking property rights often compounded by problems of poorly defined 
boundaries between separately assigned rights; (2) value allocation problems result from both 
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rational and biased asset valuation differences between buying  (in-licensing) and selling (out-
licensing) parties; (3) monitoring and metering problems involve difficulties in writing and 
enforcing contracts over technological and commercial contingencies that can arise in dynamic, 
uncertain environments; and (4) strategic problems arise from the rent dissipating effects of 
licensing to other firms and thereby creating new competitors in final product markets or result 
from the inevitable existence of market power and small-numbers bargaining problems in thin 
markets for individual, idiosyncratic, and highly specific intellectual assets. 

The choice of coordination channel is based on an ex ante assessment of the difference between 
the likely future benefits and costs of each option. When the ex ante distribution of expected 
returns under an internalized solution (appropriable rents from a full set of complementary assets 
minus the cost of internal governance of those assets) dominates the ex ante distribution of 
expected returns under an externalized solution (share of appropriable rents from a specialized 
subset of complementary assets minus the transaction costs of coordinating with external assets), 
internalization is the rational choice. The greater the degree of failure in markets for licensing 
knowledge and contracting R&D, the greater the transaction costs and thus the more likely will 
decisions be made to internalize complementary intellectual assets. 

Agricultural biotechnology, indeed, suffers from many of the ailments common to technology 
markets. Patenting authorities have apparently had a difficult time defining patent boundaries 
appropriately and reliably. The early history of patent awards clearly show patent examiners 
struggling to navigate unsteady terrain. Two early patents originally assigned to W.R. Grace & 
Co. would as written have given the company control over all genetically engineered varieties of 
cotton. The scope of these patents was eventually narrowed, following appeals and protests. Such 
reversals, even if not usually so dramatic, have been relatively common in the agricultural 
biotechnology field. At times patent litigation has seemed rampant in the industry. At one point in 
the mid 90s, while the six major companies developing Bt insect resistance traits for crops were 
simultaneously pursuing no less than seven cooperative R&D agreements among themselves, the 
same six companies were simultaneously fighting eight separate patent infringement lawsuits 
against one another other (Krattiger, 1997). More subtle licensing problems have arisen as well, 
such as ‘anti-stacking provisions’ where one company contracting to insert its genetic traits into a 
collaborating company’s germplasm prohibits any third-party genetic material into the same 
germplasm to be marketed together. While this could be understood as a blanket contract policy 
to avoid unforeseeable technological problems, it may also be a strategy to avoid rent dissipation 
effects or simply a refusal to confront value allocation problems. In general, the costs and risks 
associated with transacting IPRs over cutting-edge biotechnologies in agriculture have been high 
enough to inhibit those transactions (Barton, 1998; Wright, 1999). 

Given such an environment of high transaction costs, this theory of agricultural firms 
coordinating complementary intellectual assets is reduced to the two following testable 
hypotheses, the first predicting the pattern of firm diversification through R&D and the second 
predicting the pattern of firm diversification through M&A: 

Hypothesis 1.a:  We hypothesize that the following pairs of broadly defined intellectual asset are 
complementary: (1) plant genetic transformation technologies are complementary to trait-specific 
plant gene technologies; (2) plant genetic transformation technologies are complementary to 
germplasm of high-yielding commercial plant varieties; and (3) trait-specific plant gene 
technologies are complementary to germplasm of high-yielding commercial plant varieties. These 
combinations are summarized in Table 1, where a plus (+) indicates an individual pair of 
intellectual asset types is hypothesized to be complementary.  
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Hypothesis 1.b:  As a direct result of hypothesis 1.a, we hypothesize that firms’ portfolios will be 
biased towards a balance across all three mutually complementary technologies and away from 
specialization in a single technology. Specifically, we would expect firms to hold more balanced, 
diversified patent portfolios than would be explained solely by the firms’ observed 
characteristics.  

Hypothesis 2:  Firms have an incentive to execute mergers and acquisitions that combine 
disparate intellectual asset portfolios. Accordingly, we expect to see the degree of specialization 
decline over time as a result of mergers. Thus, we expect to observe that changes in market 
structure brought about by mergers and acquisitions over the course of several years increase the 
aggregate degree of portfolio diversification. If complementarities were not present, or were 
balanced by incentives toward technological specialization, we would not expect to see a 
systematic increase in diversification over time. 

 

III. Data and methodology 

 

The first task is to identify the particular intellectual assets or knowledge that contribute to the 
value of agronomic or seed product lines. Fortunately, the historical configuration of the 
agricultural inputs industry makes identification of the key types of knowledge assets rather 
convenient, given the roughly separate seed sector, the chemicals sector, and, more recently, the 
startup biotechnology R&D sector. The actual measurement of knowledge assets is, however, not 
as straightforward. While we are fundamentally interested in the intangible knowledge assets of a 
firm, no reliable direct measures exist from secondary sources that quantify such intangible 
assets. We follow the literature reviewed by Griliches (1990) and look to patent counts as an 
indirect measure of a firm’s economically significant knowledge. Our model assumes that a 
firm’s key intellectual assets in plant biotechnology are reasonably represented by the count of 
US utility patents assigned to that firm in three distinct technological categories:  technologies for 
plant transformation; gene sequences and genetically identified traits; and elite germplasm.2 

Technologies for plant transformation.  Utility patents cover an array of techniques for 
transferring DNA into plant cells and for regenerating from these cells mature plants that have the 
new genetic trait stably integrated and properly expressed.  Patents have been issued for genetic 
transformation methods including agrobacterium, microprojectiles, electoporation, and virus 
vectors. Plant tissue culture patents cover culture media and methods, somatic embryogenesis, 
plant regeneration, micropropagation, and in vitro selection techniques. Other patented 
technologies necessary for successful genetic transformation include selectable genetic markers, 
gene promotors, and other non-specific molecular mechanisms for the regulation of an inserted 
gene’s expression. The variable “TRANS” counts the number of patents granted to a firm from 
1975 through the end of 1998 for plant transformation technologies. 

Gene sequences and genetically coded traits and enhancements.  Utility patents are likewise 
granted for genes and genetic sequences, “the software” that codes for specific physical or 
behavioral traits of an organism. Patents have been issued for genes that improve crop yield, 
resist disease or pests, allow host plants to tolerate applied herbicides or environmental stress, 
improve nutrient content, delay the ripening of fruits, or cause the production of biological 
molecules in the tissues of the host plant. The variable “GENE” counts a firm’s gene patents 
granted from 1975 through 1998.  
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Elite germplasm.  Utility patents are also granted for plant varieties, “the hardware” or “the rest 
of the plant” which are genetically transformed to create genetically enhanced crop varieties. 
These patents are typically issued for hybrid crop lines, such as maize, and for major crop 
varieties that reproduce sexually, such as soybean. This class also includes a few patents on 
processes of plant breeding, hybridization, and selection. A firm’s germplasm utility patents 
granted from 1975 through 1998 are counted in the variable “GERM”. 

The test we develop to detect the presence of complementarities among these classes of 
intellectual property is fashioned after a test formulated by Arora and Gambardella (1990). 
According to a review by Athey and Stern (1999), most recent empirical studies of 
complementarity use such a revealed preferences-type approach. After controlling for all 
observable, exogenous characteristics, the unobservable complementarity can be detected as it 
drives positive correlation or clustering between observed actions that are assumed to be 
optimizing solutions of the firm. In agricultural biotechnology, the unobserved asset valuation of 
firm i, V(yi; θθθθi), is a function of the observed numbers of patents held by firm i in the three 
classes, yi = [yi1,yi2,yi3]T where yi1=TRANSi, yi2=GENEi, and yi3=GERMi, conditional on θθθθi, a set 
of conditioning firm characteristics that includes a firm’s share of the entire set of 
agbiotechnology patents, a firm’s holdings of other biotechnology patents, total firm sales, firm 
R&D expenditures, and a count of field tests conducted by that firm of genetically modified 
crops. These variables reflect, respectively, the following characteristics: a firm’s degree of 
monopolization of the total intellectual assets in the agricultural biotechnology industry, a firm’s 
internal stock of other related biotechnological knowledge, a firm’s overall size, the amount of 
resources a firm dedicates to developing its total stock of knowledge, and R&D activities 
undertaken by a firm specifically to develop its stock of knowledge in plant biology.  

A firm’s share of all plant biotechnology patents is simply what percentage the firm holds of the 
industry’s total agbiotech patents: the sum of the firm’s agbiotech patents divided by the sum of 
the industry’s. It is intended to serve as a proxy for the degree of market power that a firm 
exercises over the source of new product innovations in the agricultural biotechnology industry 
through concentration of proprietary technologies. By employing this variable in the 
complementarity test, we seek to separate out the market power hypothesis from the 
complementary intellectual assets and transaction costs hypotheses. 

The count of other biotechnology patents was made at the same time as the count of agricultural 
biotechnology patents.  It includes all of a firm’s patents in US patent classifications 435 
(molecular biology and microbiology), 436 (analytical and immunological testing), 530 (peptides, 
proteins, and lignins), and 930 (peptides and protein sequences), except for those patents already 
counted in TRANS, GENE, and GERM. By including this variable we encompass the entire set 
of biotechnology patents granted to a firm by the end of 1998.  

Total sales revenues in 1994 represent the overall size of a firm. It is expected that the size of a 
firm partially explains the propensity of a firm to develop and patent innovations.  Sales figures 
for 1994 were obtained from CompuStat, various analyst reports in Lexis-Nexis, a US 
biotechnology industry survey by Dibner (1995), and direct firm disclosures. 

Research and development intensity is the most significant available measure of a firm’s 
capacity to develop patented technologies relative to its size (Griliches, 1990; Hausman, Hall, and 
Griliches, 1984).  R&D intensity is the ratio of a firm’s total R&D expenditures to a firm’s total 
sales. Figures for 1994 R&D expenditures are taken from the same sources as those for sales. 
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The number of transgenic regulatory notices filed with USDA-APHIS by commercial 
agricultural biotechnology researchers can be considered a measure of R&D activities undertaken 
specifically to develop agricultural biotechnology knowledge assets (Huttner, Miller, and 
Lemaux, 1995). The USDA Animal and Plant Health Inspection Service (APHIS) regulates the 
release and field-testing of genetically modified organisms. Effective since April 1993, firms and 
other research organizations are required to file a ‘notice’ with APHIS whenever they intend to 
make a shipment or an outdoor field test of one of the major types of genetically modified plant 
or microorganism (as specified on a predefined list.) Our variable ‘NOTICES’ counts the 
cumulative number of such notices that a firm had made to APHIS between 1993 and the end of 
1998. 3 

Data were collected for a total of 76 separately named firms and business units, many of which 
are now commonly owned or merged. An individual firm or business unit was included in the 
sample if it met one or more of the three following criteria: (1) if patents in any of the three 
agricultural biotechnology classes were assigned to it, (2) if any APHIS notices had been 
submitted in its name, or (3) if it was otherwise known to play a significant role in the US 
agricultural biotechnology industry.4   

 

A. Constructing unconsolidated and consolidated industry samples 

Significant changes have occurred in the industry’s structure in recent years, with a major round 
of consolidation occurring specifically between 1994 and 1999.5 In order to explore with limited 
data the relationship between changes in industry structure and intellectual asset 
complementarities, the data were tabulated into two separate samples. The first sample aggregates 
our data on 76 separate business units and firms into 60 individual observations by adding 
together the data of merged firms, owners and subsidiaries, and alliances partners, in 60 distinct 
‘businesses or business groups’6 (See Table 4.a). This list of 60 reflects the relatively 
unconsolidated structure of the industry observed in 1994, just before the surge of agbiotech 
mergers and acquisitions commenced in earnest. The second sample tabulates the same data from 
the 76 separate firms and business units into 46 combined ‘businesses or business groups’ (Table 
4.b), reflecting the more consolidated industry's structure observed in 1999 resulting from five 
years of intense merger and acquisition activities.7 The same underlying data—the counts of 
patents and APHIS notices at the beginning of 1999 and the figures for sales and R&D from 
1994—were used in both samples, so they do not constitute true, separate data panels from 
different points in time; the only difference between the two samples rests in how the 
observations are tallied up. 

In essence, the first sample presents a counterfactual scenario: what would the allocation of 
patents (granted by 1999) have looked like if no mergers or acquisitions had occurred since 1994. 
Because of the lag of several years between (the unobservable) patent application and (the 
observable) patent grant, the first sample may also be interpreted as presenting the private 
information held by firm managers about intellectual assets in the pipeline pending as patent 
applications in 1994, when they began making decisions to consolidate. The second sample 
presents the actual scenario: what did the allocation of those same patents look like in 1999, after 
those decisions had been made by managers and the mergers and acquisitions had occurred, 
holding all other factors constant.   

 



8 

B.  The statistical model 

By definition, two classes of patents are complementary if an increase in the stock one raises the 
marginal value of the other. Formally, two classes of patents k, l, k≠l, are complementary if Vkl ≡ 
∂2V/∂yk∂yl > 0, where, as above, yk and yl denote a firm’s patent counts in the respective classes.  
Arora & Gambardella (1990) posit a testable criterion for the presence of complementarities:  for 
a pair of patent classes, the covariance between counts yk and yj, conditional upon firm 
characteristics θθθθ, must be positive:  

E[(yk − E(yk |θθθθ))⋅(yl − E(yl |θθθθ)) |θθθθ] > 0 

 or   

 Cov (yk,yl |θθθθ) > 0.         (1) 

Expected counts of the size of patent portfolios are generated, conditioned on other firm 
characteristics, E(yik |θi), for firms i = 1…I and patent classes k = TRANS, GENE, GERM. This is 
accomplished by estimating equations for TRANS(θ), GENE(θ), and GERM(θ) using observed 
patent counts— yik = [TRANSi, GENEi, GERMi] on the left hand side—and conditioning 
variables, θi, on the right hand side, for each of the i firms. Given the particular nature of these 
patent count data, we follow Hausman, Hall, and Griliches (1984) and specify a negative 
binomial model, a generalization of the Poisson model that allows for overdispersion of the 
dependent count variable.8 

The negative binomial, with Poisson parameter ikλ , represents the average count of events 
(patents) in class k which occur “randomly and independently” over a period of time for firm i 
when the observed number of events (patents) has been yik.  A useful specification of the Poisson 
parameter is   

λ ik  =   exp(βkθi).        (2) 

The expected value of the negative binomial is 

E[yik(θi)|θ]  =   λ ik/δk  =   exp(βkθi) / δk      (3) 

where the βk are vectors of coefficients to be estimated along with the negative binomial 
distribution’s variance parameter, δk, and the left-hand-side expected count parameter, λ ik. The 
conditioning set, θθθθ = [CONST, SHARE, (0.001×BIOTECHi), (0.00001×SALESi), RANDINTi, 
(0.001×NOTICESi)], is the same for all three patent class estimations.9  From the estimation 
results, residuals are obtained 

  u ik   =   yik − E[yik(θik)|θθθθ]   =   yik −  λ ik / δk     
 (4)  

from which standardized residuals can be calculated for each patent class k,  

  ε ik =  u ik / ikσ          
 (5) 
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where σ2 ik =   exp(βθik) / δk
2 is the estimated variance of the negative binomial process. Finally, 

the pairwise correlation of the standardized residuals of the three classes of patents can be 
calculated as  

ρ k,l =  Cov (ε k , ε l | θθθθ) / ( lkσσ ),       (6) 

where σ k is the standard deviation of the standardized residuals for patent class k ≠ l . 
Complementarity between the knowledge stocks of two technology classes would be indicated, in 
accordance with equation (1), by a positive correlation coefficient. We test for this condition in 
all three pairings of agricultural biotechnology patents classes in both the actual (consolidated) 
1999-structure sample and the counterfactual (unconsolidated) 1994-structure sample. 

Two important limitations of this residuals based complementarity test should be noted. First, the 
model necessarily assumes that the variables in the conditioning set, θθθθ, fully explain the 
systematic variation among firms in the numbers of patents held in each of the three plant 
biotechnology classes; in other words, the test is good only to the extent that there are no 
significant omitted variables. (Or, more accurately, it is claiming that just one significant 
explanatory variable has been necessarily omitted because it cannot be measured, that is the effect 
of the complementarity.) Second, in any such method for measuring revealed complementarity 
among multiple pairs of variables, each of the individual pair-wise tests is, in theory, sensitive to 
interaction effects with the others. In particular, strong complementarity between two pairs—say 
between A and B and between B and C—could drive a positive correlation between the third 
possible pairing—between A and C—even if A and C were in fact weak substitutes. Thus, the test 
has full explanatory power only to the extent that all three variables are mutually complementary. 

 

IV. Results 

 

Results from the negative binomial maximum likelihood estimations are presented in Table 2.a. 
for the unconsolidated industry sample (reflecting the industry structure in 1994 with 60 
observations) and in Table 2.b. for the consolidated industry sample (reflecting the industry 
structure in 1999 with the same firm data combined or consolidated into 46 observations). A 
number of insights can be gleaned from the coefficient estimates in the regressions since the 
estimated independent variable coefficients of the negative binomial model have a semi-elasticity 
interpretation (Cameron and Trivedi, 1996),  

β θk  =  
])([

1])([
θθθ

θθ

iiki

iik

yE
yE

⋅
∂

∂
 .        (7) 

 

 In the unconsolidated 1994 industry (Table 2.a), the measure of a firms’ share of total 
patents in the agbiotech industry (SHARE) is, as would be expected, a significant and positive 
predictor of the firm’s patent count in all three classes of technology. For the consolidated 1999 
industry (Table 2.b), where the significance of all the independent variables is lower, across the 
board, the effect of SHARE on germplasm patents (GERM) is still significant. This reflects the 
fact that the strongest players in the industry, those with the largest shares of total agbiotech 
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patents had moved aggressively during this time period to obtain access to germplasm. Most 
importantly, the significance of SHARE in these regressions assures us that the generated 
estimates of firm patent holdings—the E[TRANS(θ)|θθθθ], E[GENE(θ)|θθθθ], and E[GERM(θ)|θθθθ]—do 
take into account each firms’ degree of monopolization over the industry’s total intellectual 
capital stock, and it is thus not omitted from the model nor does it end up in the estimate 
residuals. 

  The conditioning variable that counts APHIS field-test filings (NOTICES) is, under both 
regimes, strongest for plant transformation and plant gene patents. In the unconsolidated 1994 
industry sample, APHIS filings positively and significantly predict transformation and gene 
patent counts, but not germplasm patent counts. This is understandable:  transformation and gene 
patents were already strongly correlated with one another in 1994 (Figure 1.a), and firms rich in 
these two technologies were generally able to generate more field tests of genetically modified 
organisms. Meanwhile most of the independent seed firms, while rich in germplasm patents, 
lacked access to transformation methods and genes except through costly, risky, and strategically 
unstable external licensing channels.  In fact, the point estimate for the NOTICES coefficient is 
negative (albeit not significantly so) for germplasm patents in the consolidated 1999 industry. 
This seems curious since in the 1999-structured industry the independent seed firms had been 
folded into the larger corporate groups who are indeed filing many notices with APHIS. 
However, this result is driven by the simple fact that, while NOTICES are rather spread out 
across firms, germplasm patents are concentrated into effectively just four firms: a large 
proportion of firms in the sample have a positive measure of NOTICES but do not have any 
germplasm patents. 

The negative relationships obtained between R&D intensity (R&DINT) and patent outputs 
contradict conventional wisdom from empirical R&D-patenting studies (Griliches, 1990) 10, 
although it is indistinguishably close to zero in the TRANS and GENE equations in both years. 
On closer examination, however, this seemingly counterintuitive result does make sense. Most of 
the seed firms rich in germplasm and independent in 1994 invested less intensively in R&D than 
did the chemical, pharmaceutical, and biotech R&D firms that make up the bulk of the industry. 
Since our R&D expenditure data are not field-specific, the variable captures a general-to-specific 
‘total-R&D’-to-‘agbiotech-patents’ relationship. The relationship is negative because enough of 
the firms with small agbiotech patent portfolios (such as Upjohn, Pfizer, Mitsubishi, Sumitomo, 
etc.) have greater R&D intensity than the major agbiotech patent holders. 

Finally, the size of the firm, as represented by the SALES variable, shows a significant positive 
relationship with gene patents in the unconsolidated 1994 industry sample, indicating simply that 
the larger corporations dominated in plant gene development before consolidation. In the 
consolidated 1999 industry sample, size matters only weakly in all three technologies. 

 

A. Estimated correlation between deviations in patent counts: hypothesis testing 

The results of the pair wise complementarity tests among the three classes of patents—the 
correlation coefficients of the standardized Poisson residuals—are displayed in Tables 3.a. and 
3.b.  Particularly in the consolidated 1999 industry results (Table 3.b), the correlation coefficients 
are close in magnitude to estimates generated by a similar procedure in Gambardella (1995), 
which he claims as evidence of complementarity among strategic research linkages of 
pharmaceutical firms. 



11 

The hypothesis that a correlation coefficient is greater than zero (H1: ρ k,l > 0)—the criterion 
revealing complementarity (Eq. 1 and 6)—is tested with a bootstrapped distribution of the 
estimate. The standardized residuals in two technologies are sampled with replacement, and the 
correlation coefficient between the drawn samples is calculated; iterated 1000 times. This process 
generates bootstrapped distributions of the correlation coefficient estimates from which a p value 
can be calculated for the null hypothesis that the correlation coefficient is less than or equal to 
zero (H0: ρ k,l ≤ 0). When p < 0.010 the null is rejected with 99% confidence; when p < 0.050, 
with 95% confidence; when p < 0.100, with 90% confidence.  

In order to display the correlation coefficient estimates, histograms of the bootstrapped 
distribution for each of the three technology-type pairings (TRANS-GENE, TRANS-GERM, and 
GENE-GERM) from the two different industry structure samples are smoothed by a kernel 
density estimator and plotted together (Figure 2). A quantile-quantile plot of each pairing 
demonstrates whether the two distributions are significantly different (Figure 3), particularly 
whether or which one stochastically dominates the other. 

Tests of Hypothesis 1.a: In the unconsolidated industry (as represented by the sample organized 
according to the 1994 industry structure), the estimated correlation between standardized 
residuals of the TRANS patent equation and the GENE patent equation is 0.562. (See Table 3.a.) 
The p value derived from the bootstrapped distribution of the correlation coefficient estimate is 
0.001; only a single value resulting from the 1000 bootstrap calculations is less than zero, and 
thus the null hypothesis that the correlation coefficient is less than or equal to zero is rejected 
with 99.9% confidence. In the consolidated industry (as represented by the sample organized 
according to the 1999 industry structure), the point estimate of the correlation between the 
TRANS and GENE equations’ standardized residuals is slightly larger, at 0.572, with a p value of 
0.015. (See Table 3.b.) The correlation between standardized residuals of the TRANS patent 
equation and the GERM patent equation in the 1994 unconsolidated industry sample, at a point 
estimate of -0.003 and less than zero over 49 percent of its bootstrapped distribution (p value = 
0.486), appears very nearly centered on zero, and the null hypothesis fails to be rejected. (See 
Table 3.a. and Figure 2.) Yet, in the consolidated 1999 industry sample the point estimate is 0.230 
with a p value of 0.100 (Table 3.b.), and the null is rejected with precisely 90 percent confidence. 
The correlation between GENE and GERM residuals in the unconsolidated 1994 industry sample 
is -0.142 and is less than zero over 87 percent of its bootstrapped distribution (p value = 0.869) 
and again the null hypothesis that the correlation coefficient is less than zero clearly fails to be 
rejected. (Table 3.a.; Figure 2.) In the consolidated industry sample the correlation is 0.321 with a 
p value of 0.135 (Table 3.b and Figure 2.); thus, the confidence with which the null is rejected is 
slightly weaker, at 86 percent.  

The complementarity criterion is clearly met for transformation technology patents (TRANS) and 
plant gene patents (GENE) under both the 1994 and the 1999 industry structures, and thus we do 
not hesitate to conclude that these two are indeed complementary technologies. Likewise, the 
unexplained deviations in transformation patents (TRANS) and germplasm patents (GERM) 
move together at least within the consolidated structure of the 1999 industry, revealing the 
complementarity of these two technologies. Finally, unexplained deviation in plant gene patents 
(GENE) and germplasm patents (GERM) in the consolidated 1999 industry are similarly 
correlated, revealing a degree of complementarity of these two technologies as well. 

Tests of Hypothesis 1.b:  Taken together, the results from the 1999-structured sample directly 
imply that firms’ patent portfolios are biased towards balance of this full set of mutually 
complementary agricultural biotechnologies and away from specialization in any one of the three. 
It should be noted that firm portfolios across the industry are more balanced than can be 



12 

explained solely by the firms’ conditioning characteristics, including their individual shares of 
total patent holdings. In other words, a randomized lottery generated by a negative binomial 
process to give away the industry’s intellectual assets in lots identical in size to observed firm 
shares would tend to assign lots of patents that are more clustered into one or two of the 
technologies than is actually observed. This hypothetical lottery would not spread the three types 
of intellectual assets as smoothly among firms as the actual industry has in fact done. 

Tests of Hypothesis 2:  Moving from the unconsolidated to the consolidated industry samples we 
detect a shift in the degree to which the three categories of plant biotechnology patents occur 
together. This suggests that, again on an industry wide basis, the internalization of asset 
ownership has been realized or “unlocked” a greater degree of complementarity in these 
intellectual assets. While the distribution of the TRANS-GENE correlation coefficient remains 
relatively unchanged by the restructuring of the sample from the 1994 industry’s structural 
regime to the 1999 industry’s structural regime, the point estimate does increase slightly.  A 
distinct shift is observed in the distribution for TRANS and GERM holdings from roughly zero to 
a significantly positive estimated correlation. Distributions of the estimates are shown to be 
significantly different by the corresponding TRANS-GERM q-q plot in Figure 3. Likewise, 
change in industry structure causes a distinct shift from the 1994 distribution to the 1999 
distribution of estimated correlation between the unexplained portions of GENE and GERM 
holdings, as shown in the GENE-GERM q-q plot in Figure 3. 

The direction of mergers and acquisitions between 1994 and 1999 has combined disparate 
intellectual asset portfolios, and the aggregate degree of technological specialization has 
decreased as a result. Conversely, the aggregate degree of portfolio diversification has increased 
over time. If complementarities were not present, or were balanced by incentives toward 
technological specialization, we would not have seen a systematic increase in diversification.  

 

V.  Individual acquisitions and mergers 

 

These results suggest the IP management logic behind many of the particular merger and 
acquisition events observed in the agricultural biotechnology industry during the five years from 
1994 to 1999.  The small sample size of firms and the simplicity of the procedures in this analysis 
make it convenient to display the patent count data, which illustrate firm-by-firm patterns in 
patent holdings in these three technologies. Tables 6.a and 6.b display the agbiotech patent 
portfolios of the individual firms or corporate groups, listing the actual count of patents alongside 
the model’s estimation of how many patents ‘should’ be held by each firm in each technology. 
The tables also show the standardized residuals; correlation between these columns is the test we 
have just used to reveal complementarity between the respective technology classes at the 
industry level. Qualitatively, at the firm level the standardized residual in a technology category 
indicates the direction and relative magnitude by which a firm’s actual holdings in that 
technology class deviate from predicted holdings. The following observations and commentary 
on individual merger and acquisition deals suggest a may suggest more systematic ways to seek 
or to predict acquisitions using this kind of individual firm data. 

Several interesting observations emerge from comparisons of firms’ portfolios in the industry 
before and after consolidation (Tables 6.a and 6.b respectively.) Consider the patent position of 
Monsanto in the 1994 industry: the firm held fewer patents than the model leads us to expect in 
all three categories, based on its strength in other biotechnologies, its size, its R&D intensity, and 
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its proclivity to file APHIS notices. The addition of ten cotton and soybean transformation 
(TRANS) patents through the purchase of Agracetus from W. R. Grace11 helps to explain that 
acquisition by Monsanto in 1996 even though it had been licensing Agracetus’ technology since 
1991. Other gaps in Monsanto’s portfolio were helped by the stepwise acquisition of Calgene 
between 1995 and 1997, which was rich in TRANS and GENE patents, and by the purchases of 
Holden’s Foundation Seed and Asgrow Agronomics in 1997, rich in corn and soybean GERM 
patents respectively. Interestingly, the acquisition of DeKalb by Monsanto in 1998 appears to 
have been more favorable for its transformation technologies than for its stock of corn 
germplasm. The planned addition of Delta & Pine Land clearly brought with it little in the way of 
patented technologies, which may in part explain why that acquisition was recently called off. 
With its numerous acquisitions, the assembled Monsanto group almost exactly fits the model’s 
expectations for its intellectual property portfolio in Table 4.b. The fact that it does not exceed 
expectations may in part explain Monsanto’s recent acquisition by a more diversified corporation, 
Pharmacia-UpJohn. 

The 1996 marriage of Ciba-Geigy and Sandoz in the formation of Novartis made good sense in 
light of the differences in their 1994 agricultural biotechnology portfolios. While Ciba clearly 
entered the deal as the stronger partner in all three technologies, the addition of Sandoz 
technologies allowed the combined Novartis to emerge in 1999 as a strong industry leader, 
exceeding portfolio expectations across the board and clearly ahead of the positions of both Ciba 
and Sandoz measured in the context of the 1994 industry structure. 

The Zeneca group strengthened its IP portfolio through its acquisition of Mogen in 1997.  
Mogen’s positions in the TRANS and GENE categories bolstered the portfolio of the existing 
Zeneca group (ICI, Zeneca, and Garst) already solid in these areas, while complementing the 
latter’s strong GERM presence. This acquisition put the Zeneca group well ahead of the model’s 
estimates in all three categories in the 1999 industry. 

Another good IP decision was the acquisition of Mycogen by Dow, which took place in 
sequential stages between 1996 and 1998. In the unconsolidated 1994 industry Dow was 
relatively weak in all three technologies while Mycogen was the star of the industry in generating 
GENE patents and held a solid advantage in TRANS patents. In the consolidated industry the 
combined Dow group is one of the strongest in TRANS and GENE technologies, yet is still 
lagging in germplasm. 

The purchase of Plant Genetic Systems (PGS) by Hoechst’s AgrEvo subsidiary in 1996 and 
Hoechst’s merger with Rhone-Poulenc in 1999 to create Aventis results in a combined 
agricultural biotechnology patent portfolio that still fails to achieve the model’s expectations for 
the firm in TRANS and GERM. Before the purchase and the merger, both Hoechst and Rhone-
Poulenc held small relative advantages in GENE patents and both lagged in TRANS and GERM 
patents. PGS added strength in TRANS and GENE patents, particularly in Bt insect resistance 
technologies; however, the end result in the Aventis portfolio, ahead of expectations only 
moderately in GENE patents, seems to combine the constituents’ weaknesses and to dilute some 
of their strengths. 

The industry dark horse is Savia (formerly Empresas La Moderna). In the 1994 industry ELM had 
no US patents and thus lagged in all three technology-asset categories. After the acquisition of 
PetoSeed in 1995, the piecewise acquisition of DNA Plant Technologies in 1996, and the 
formation of Seminis in 1997, the new Savia group in 1999 emerged ahead of model expectations 
in all three technologies and came to dominate in the vegetable seed sector. 
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The top seven firms in terms of intellectual-asset holdings clearly came to dominate in the 
consolidated 1999 industry. (See Table 5.) Together these seven firms controlled three quarters of 
the TRANS and GENE patents and nearly all of the GERM patents in the industry. Given the 
higher industry-wide correlation that has emerged in patent holdings, many of the opportunities 
for combining disparate complementary portfolios in these technologies appear to have already 
been exploited.  

 

VI. Conclusions 

 

This work uses the complementarity between different types of genetic engineering technologies 
to explain firm boundaries and industry consolidation of agricultural biotechnology. As a result 
R&D and M&A strategies are examined as joint, coordinated activities. We test the hypothesis 
that the reorganization of the industry can be explained in part by the desire to exploit these 
complementarities, using data on agricultural biotechnology patents, government permits to 
release genetically modified organisms, and firm characteristics from seventy-six companies 
engaged in agricultural biotechnology research. Statistically significant complementarity is 
measured by a positive covariance in the unexplained variation in the intellectual asset holdings 
of the firms across the industry. We find that firms build intellectual asset portfolios that are more 
evenly balanced than would be otherwise expected, and that the industry’s reorganization over the 
past five years has strengthened this effect. 

These findings support the hypothesis that the industry’s recent restructuring is causally driven by 
the attempt of firms to achieve coordination between complementary intellectual assets in the 
face of transaction costs on the external exchange of those assets. The findings, of course, do not 
rule out other considerations; however, they do raise questions about models that explain the 
industry’s recent restructuring in terms of economy-wide influences. The incentive to erect 
barriers to entry and enhance market power; the strengthening of the U.S. patent system; technical 
changes that increase the productivity of the IP management process—all of these factors operate 
across all technology sectors, so it is not clear why the differential outcomes we observe in these 
three agricultural biotechnology classes should obtain. 

As an example, if R&D and M&A strategies were jointly oriented toward a goal of achieving 
market power, then there would be no obvious reason to find in firms’ patent portfolios any 
systematic dispersion across the three patent classes. If anything, one might expect the reverse: 
incentives to develop narrowly specialized IP portfolios. Economies of scale in the R&D process 
might give firms an incentive to specialize their patent production activities more narrowly. 
Mergers and acquisitions would seek to internalize technological substitutes, not complements. 
By controlling as many patents as possible in one class, a firm might then be able to extract rents 
by controlling the market for an essential input to the product development process. Once 
established in a technology, a firm would be more likely to undertake arms length contracts to 
coordinate with complementary technologies given its stronger negotiating position and would 
thus be less likely to internalize complementary assets.  

In combination with complementarities and transaction costs, economy-wide forces could well 
have played an important role in the restructuring: a firm with a substantial portfolio of important 
intellectual property, for example, might indeed attempt to exert market power. The claim, rather, 
is that none of these other factors by themselves would have generated the dispersed pattern or the 
direction of change in IP holdings that we see in the data.  
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The case of the agricultural inputs industry provides a clear example of firms coordinating R&D 
strategy with M&A strategy, both in service to an overarching goal: assembly of the large and 
diverse arrays of intellectual property needed to pursue biotechnology-based approaches to 
complex agricultural product development, with greater reliability and lower cost than licensing 
the numerous component technologies.   
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FIGURE 1. SPECTRUM OF CHANNELS OF COMPLEMENTARY INTELLECTUAL ASSET COORDINATION 
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TABLE 1. HYPOTHESIZED ASSET COMPLEMENTARITIES UNDER THE NEW  
TECHNOLOGICAL REGIME OF AGRICULTURAL BIOTECHNOLOGY 
 
Having more of one asset 

has what effect on the 
marginal value of the 

others? 

Process 
 Technologies 

(TRANS) 

Genetic 
Traits: 

(GENE) 

Elite 
Germplasm 

Lines: 
(GERM) 

Process Technologies 
(TRANS) 

 
*   

Genetic Traits: 
(GENE) 

 
+ *  

Elite Germplasm Lines: 
(GERM) 

 
+ + * 

*On the diagonal, the self-effect is the economies of scale of that asset. 
 



21 

 
TABLE 2.A.  REGRESSION RESULTS FOR THE UNCONSOLIDATED INDUSTRY (1994 STRUCTURE) 

Dependent variables: Independent 

variables: TRANS GENE GERM 

CONST 
 

-1.186* 
(.314) 

-1.063* 
(.282) 

-2.38* 
(.358) 

SHARE .103* 
(.026) 

.117* 
(.020) 

.242* 
(.020) 

BIOTECH   
 

.157 
(.101) 

0.042 
(.159) 

.055 
(.165) 

SALES   
 

.125 
(.084) 

.206* 
(.057) 

.161 
(.112) 

R&DINT 
 

-.118 
(.234) 

0.092 
(.198) 

-1.912* 
(.820) 

NOTICES   
 

.720* 
(.211) 

.853* 
(.250) 

.135 
(.261) 

δδδδk (variance parameter) 
 

.147* 
(.042) 

0.076* 
(.027) 

0.049* 
(.022) 

Log Likelihood Function 218.9 1187.3 1106.0 

R2 
.202 .358 .828 

Heteroskedastic-consistent standard errors computed from analytic first and second derivatives (Eicker-White) in parentheses. 

* Indicates significant t statistic. 

 

 

TABLE 2.B.  REGRESSION RESULTS FOR THE CONSOLIDATED INDUSTRY (1999 STRUCTURE) 

Dependent variables: Independent 

variables: TRANS GENE GERM 

CONST 
 

-1.132* 
(.359) 

-0.783* 
(.294) 

-1.808* 
(.448) 

SHARES .062 
(.042) 

.074 
(.065) 

.210* 
(.031) 

BIOTECH   
 

.157 
(.140) 

.135 
(.255) 

-.121 
(.173) 

SALES   
 

.083 
(.094) 

.155 
(.103) 

.132 
(.127) 

R&DINT 
 

-.298 
(.311) 

-.123 
(.231) 

-2.416 
(1.330) 

NOTICES   
 

.620 
(.471) 

.298 
(.657) 

-.032 
(.320) 

δδδδk (variance parameter) 
 

0.152* 
(.053) 

0.086* 
(.038) 

0.159* 
(.075) 

Log Likelihood Function 378.8 1483.0 1299.5 

R2 
.755 .618 .984 

Heteroskedastic-consistent standard errors computed from analytic first and second derivatives (Eicker-White) in parentheses. 

* Indicates significant t statistic. 
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TABLE 3.A.  PAIR WISE CORRELATION AMONG THE STANDARDIZED RESIDUALS FROM  

THE REGRESSIONS  FOR THE UNCONSOLIDATED INDUSTRY (1994 STRUCTURE) 

Correlation coefficients  

TRANS 

 

GENE 

 

GERM 

TRANS 1.000 

 

  

GENE .562 

(.001) 

1.000 

 

 

GERM -.003  

(.486) 

-.142 

(.869) 

1.000 

 

In parenthesis: p value of test that coefficient is less than or equal to zero. 

 

 

TABLE 3.B.  PAIR WISE CORRELATION AMONG THE STANDARDIZED RESIDUALS FROM  

THE REGRESSIONS  FOR THE CONSOLIDATED INDUSTRY (1999 STRUCTURE) 

Correlation coefficients  

TRANS 

 

GENE 

 

GERM 

TRANS 1.000 

 

  

GENE .572 

(.015) 

1.000  

GERM .230 

(.100) 

.321 

(.135) 

1.000 

In parenthesis: p value of test that coefficient is less than or equal to zero. 
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FIGURE 2. BOOTSTAPPED DISTRIBUTIONS OF ESTIMATED CORRELATION COEFFICIENTS. 
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FIGURE 3.  QUANTILE-QUANTILE PLOTS COMPARING DISTRIBUTIONS OF THE CORRELATION COEFFICIENT ESTIMATES BETWEEN CONSOLIDATED AND UNCONSOLIDATED INDUSTRY SAMPLES. 
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TABLE 4.A.  ACTUAL VERSUS ESTIMATED PATENT PORTFOLIOS—WITH STANDARDIZED RESIDUALS— 
FOR THE UNCONSOLIDATED INDUSTRY (1994 STRUCTURE) 

 
Patent 
counts: TRANS Patent 

counts: GENE Patent 
counts: GERM Standardized 

residuals: 
  

Actual Estimate Actual Estimate Actual Estimate εεεε TRANS εεεε GENE εεεε GERM FIRM(S) 
0 1.75 1 5.26 0 0.11 -0.51 -0.51 -0.07 AgriDyne 
2 2.09 3 5.27 0 0.63 -0.02 -0.27 -0.18 Agritope 
2 2.90 6 5.81 0 1.99 -0.20 0.02 -0.31 American Cyanamid 
0 2.25 8 4.98 0 2.24 -0.58 0.37 -0.33 American Maize 
1 4.76 10 14.77 0 5.53 -0.66 -0.34 -0.52 Amoco 
2 4.15 11 9.86 0 3.68 -0.40 0.10 -0.42 Bayer 
4 2.01 0 5.10 0 0.50 0.54 -0.62 -0.16 Biosource 
0 2.00 1 4.77 0 0.86 -0.54 -0.48 -0.21 biosys/ Crop Genetics 
0 2.11 0 4.57 0 1.77 -0.56 -0.59 -0.29 Biotechnica 
5 2.18 0 4.84 0 1.95 0.73 -0.61 -0.31 Boswell/ Phytogen 

25 4.10 41 10.66 0 3.92 3.95 2.56 -0.44 Calgene 
0 2.25 0 5.10 3 2.07 -0.57 -0.62 0.14 Campbell Soup 
0 4.23 4 13.74 1 4.48 -0.79 -0.73 -0.36 Cargill 

13 6.84 37 15.98 16 8.90 0.90 1.45 0.53 Ciba-Geigy/ (Novartis**) 
9 3.37 5 8.17 19 3.00 1.18 -0.31 2.04 DeKalb 
1 2.15 0 4.86 0 1.56 -0.30 -0.61 -0.28 Delta & Pine Land 

20 2.95 14 7.25 4 2.18 3.80 0.69 0.27 DNA Plant Technology 
5 6.77 0 11.11 0 3.91 -0.26 -0.92 -0.44 Dow/ Lilly/ DowElanco 

11 10.75 28 29.34 5 11.83 0.03 -0.07 -0.44 Du Pont/ (Optimum Quality Grains**) 
0 2.24 10 5.09 0 1.68 -0.57 0.60 -0.29 Ecogen 
0 1.23 0 6.83 0 0.00 -0.43 -0.72 0.00 EcoScience 
0 2.08 0 4.59 0 1.78 -0.55 -0.59 -0.29 Empresas La Moderna (ELM) (now Savia) 
1 1.71 4 5.73 0 0.05 -0.21 -0.20 -0.05 ESCAGenetics 
1 2.27 2 5.10 0 2.00 -0.32 -0.38 -0.31 FMC 
0 2.32 0 4.77 0 1.48 -0.58 -0.60 -0.27 Genencor 
4 10.86 26 22.59 1 6.89 -0.80 0.20 -0.50 Hoechst/ Schering/ AgrEvo 
0 3.24 0 7.60 47 4.64 -0.69 -0.76 4.34 Holden's Foundation Seeds 
6 2.71 0 6.83 0 2.80 0.76 -0.72 -0.37 International Paper 
6 3.59 4 10.44 1 4.13 0.49 -0.55 -0.34 Japan Tobacco 
0 2.19 5 4.82 0 2.11 -0.57 0.02 -0.32 Jinro  
4 2.62 3 5.98 0 2.51 0.33 -0.34 -0.35 Kirin  
0 2.14 0 4.79 0 1.73 -0.56 -0.60 -0.29 Limagrain 
7 2.48 6 5.49 2 2.33 1.10 0.06 -0.05 Lubrizol 
0 1.97 7 5.36 0 0.30 -0.54 0.20 -0.12 MGI Pharma (Molecular Genetics Inc.) 
0 3.17 5 6.65 0 2.58 -0.68 -0.18 -0.35 Mitsubishi Chemical 
4 2.06 11 5.86 0 0.27 0.52 0.59 -0.12 Mogen International 

17 17.44 44 46.88 2 9.40 -0.04 -0.12 -0.53 Monsanto 
21 5.93 88 14.93 3 16.87 2.37 5.22 -0.75 Mycogen/ Agrigenetics 

0 2.97 6 5.52 0 1.90 -0.66 0.06 -0.30 Novo Nordisk  
0 1.99 10 5.57 0 0.26 -0.54 0.52 -0.11 NPS Pharmaceuticals 
0 2.25 0 5.05 0 1.74 -0.57 -0.62 -0.29 PetoSeed/ (Seminis**) 
0 2.70 2 5.79 6 1.66 -0.63 -0.43 0.74 Pfizer 

11 26.58 52 86.33 172 198.92 -1.16 -1.02 -0.42 Pioneer Hi-Bred International 
6 2.35 27 7.83 0 0.12 0.91 1.89 -0.08 Plant Genetic Systems 
0 1.67 1 5.56 0 0.04 -0.50 -0.53 -0.05 ProdiGene 
1 3.69 18 8.26 0 3.27 -0.54 0.93 -0.40 Rhone-Poulenc/ Harris Moran 
5 3.38 10 8.17 5 3.01 0.34 0.18 0.25 Sandoz/ Northrup King/ (Novartis**) 
1 2.41 4 5.48 0 2.34 -0.35 -0.17 -0.34 Sapporo 
0 2.09 0 4.62 0 1.74 -0.55 -0.59 -0.29 Scotts 
0 2.45 4 5.15 1 2.07 -0.60 -0.14 -0.16 Sumitomo Chemical  
0 2.09 5 5.01 0 0.83 -0.55 0.00 -0.20 Syntro 
0 2.46 3 5.13 3 2.24 -0.60 -0.26 0.11 Takara Shuzo  
0 2.70 0 6.34 0 6.13 -0.58 -0.59 -0.31 Thermo Trilogy*/ Thermo Ecotek* 
1 4.75 6 14.63 2 11.02 -0.60 -0.53 -0.34 Unilever (Conopco/ Van den Bergh) 
0 2.89 2 6.82 0 6.32 -0.60 -0.43 -0.32 Union Camp 
5 3.76 0 8.13 62 5.30 0.23 -0.67 3.09 Upjohn/ Asgrow 

10 3.28 10 7.54 0 6.43 1.30 0.21 -0.32 W R Grace/ Agracetus 
6 3.02 0 6.96 0 6.43 0.60 -0.62 -0.32 Westvaco 
6 3.15 0 7.90 0 7.20 0.56 -0.66 -0.34 Weyerhaeuser 
6 4.25 38 10.20 22 7.62 0.30 2.04 0.65 Zeneca/ ICI/ Garst 

* Independent startups after 1994 were treated as independent observations in the unconsolidated industry. 
** Patents assigned to firms created after 1994 by merger or joint venture were attributed in the unconsolidated industry to the parent 
firm at which the lead inventor of the patent had worked prior to the creation of the combined firm. 
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TABLE 4.B.  ACTUAL VERSUS ESTIMATED PATENT PORTFOLIOS—WITH STANDARDIZED RESIDUALS— 
FOR THE CONSOLIDATED INDUSTRY (1999 STRUCTURE) 

 
Patent 

counts: TRANS Patent 
counts: GENE Patent 

counts: GERM Standardized 
residuals: 

  

Actual Estimate Actual Estimate Actual Estimate εεεε TRANS εεεε GENE εεεε GERM FIRM(S) 
2 1.86 3 5.17 0 0.24 0.04 -0.28 -0.20 Agritope 
2 2.76 6 7.13 0 0.76 -0.18 -0.12 -0.35 American Cyanamid 
0 2.23 8 5.68 0 1.18 -0.58 0.29 -0.43 American Maize 
1 3.78 10 13.61 0 2.25 -0.56 -0.29 -0.60 Amoco 

11 11.83 67 34.07 1 3.96 -0.09 1.65 -0.59 Aventis (Hoechst/ Rhone-Poulenc/ PGS) 
2 3.55 11 10.83 0 1.32 -0.32 0.02 -0.46 Bayer 
4 1.77 0 5.06 0 0.18 0.65 -0.66 -0.17 Biosource 
2 2.13 0 5.41 0 0.98 -0.04 -0.68 -0.39 Boswell 
0 2.23 0 5.77 3 1.09 -0.58 -0.70 0.73 Campbell Soup 
0 3.44 4 11.80 1 2.04 -0.72 -0.66 -0.29 Cargill 

26 5.81 88 18.56 3 8.60 3.26 4.72 -0.76 Dow/ Mycogen/ Agrigenetics/ Phytogen 
22 39.03 80 124.83 177 185.51 -1.06 -1.17 -0.25 Du Pont/ OQG/ Pioneer 

0 2.14 10 5.59 0 0.81 -0.57 0.55 -0.36 Ecogen 
0 0.56 0 3.08 0 0.00 -0.29 -0.51 0.00 EcoScience 
3 4.10 0 10.18 0 0.55 -0.21 -0.93 -0.29 Eli Lilly 
1 1.20 4 4.30 0 0.01 -0.07 -0.04 -0.04 ESCAGenetics 
1 2.24 2 5.83 0 1.02 -0.32 -0.46 -0.40 FMC 
0 2.33 1 5.90 0 0.65 -0.59 -0.59 -0.32 Genencor/ Prodigene 
6 2.52 0 7.20 0 1.42 0.85 -0.79 -0.47 International Paper 
6 3.05 4 9.92 1 1.93 0.66 -0.55 -0.27 Japan Tobacco 
0 2.19 5 5.55 0 1.13 -0.58 -0.07 -0.42 Jinro  
4 2.51 3 6.74 0 1.21 0.37 -0.42 -0.44 Kirin  
0 2.24 1 5.58 0 0.91 -0.58 -0.57 -0.38 Limagrain/ Biotechnica/ Harris Moran 
7 2.36 6 6.11 2 1.12 1.18 -0.01 0.33 Lubrizol 
0 1.63 7 4.94 0 0.09 -0.50 0.27 -0.12 MGI Pharma (Molecular Genetics Inc.) 
0 2.99 5 8.10 0 1.02 -0.67 -0.32 -0.40 Mitsubishi Chemical 

64 63.06 100 98.76 130 132.71 0.05 0.04 -0.09 Monsanto/ Agracetus/ Asgrow/ Calgene/ 
DeKalb/ Delta&Pine#/ Holden's 

18 7.15 47 20.94 21 4.11 1.58 1.67 3.32 Novartis (Ciba/ Sandoz)/ Northrup King 
0 2.87 6 7.24 0 0.68 -0.66 -0.14 -0.33 Novo Nordisk  
0 1.59 10 4.94 0 0.08 -0.49 0.67 -0.11 NPS Pharmaceuticals 
0 2.52 2 6.73 6 0.65 -0.62 -0.53 2.64 Pfizer 
1 2.35 4 6.20 0 1.20 -0.34 -0.26 -0.44 Sapporo 

20 2.90 14 7.23 4 1.78 3.91 0.74 0.66 Savia (formerly ELM)/ DNAP/ PetoSeed/ 
Seminis 

0 2.60 3 6.72 0 0.59 -0.63 -0.42 -0.30 Schering 
0 2.11 0 5.34 0 0.92 -0.57 -0.68 -0.38 Scotts 
0 2.42 4 6.17 1 0.96 -0.61 -0.26 0.01 Sumitomo Chemical  
0 1.92 5 5.27 0 0.34 -0.54 -0.03 -0.23 Syntro 
0 2.43 3 6.16 3 1.07 -0.61 -0.37 0.75 Takara Shuzo  

0 2.11 2 5.39 0 0.88 -0.57 -0.43 -0.37 Thermo Trilogy/ Thermo Ecotek/ 
AgriDyne/ biosys/ Crop Genetics 

1 3.46 6 12.06 2 2.00 -0.52 -0.51 0.00 Unilever (Conopco/ Van den Bergh) 
0 2.29 2 5.87 0 1.05 -0.59 -0.47 -0.41 Union Camp 
3 2.69 0 6.89 0 0.61 0.07 -0.77 -0.31 Upjohn  
0 2.35 0 6.01 0 0.91 -0.60 -0.72 -0.38 W R Grace 
6 2.47 0 6.41 0 1.14 0.87 -0.74 -0.42 Westvaco 
6 2.48 0 6.82 0 1.31 0.87 -0.76 -0.46 Weyerhaeuser 

10 4.75 49 13.92 22 4.04 0.94 2.75 3.56 Zeneca/ ICI/ Garst/ Mogen 
# Monsanto holdings in Delta & Pine were later divested. This occurred however after the time scope of this study. See 
discussion of Monsanto’s acquisitions in Section 5. 
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Table 5. Agricultural biotechnology patent holdings of top seven corporate groups as of January 1999 
 
FIRM(S) TRANS 

patents 
GENE 
patents 

GERM 
patents 

Monsanto/ Agracetus/ Asgrow/ Calgene/ DeKalb/ Delta & Pine/ Holden's Foundation Seed 64 100 130 
Du Pont/ Optimum Quality Grains/ Pioneer 22 80 177 
Zeneca/ ICI/ Garst/ Mogen 10 49 22 
Novartis (Ciba/ Sandoz)/ Northrup King 18 47 21 
Dow/ Mycogen/ Agrigenetics/ Phytogen 26 88 3 
Savia (ELM)/ DNA Plant Technology/ PetoSeed/ Savia 20 14 4 
Aventis (Hoechst/ Rhone-Poulenc) Plant Genetic Systems 
 

11 67 1 

TOP SEVEN’S TOTAL PATENT HOLDINGS: 171 445 358 

INDUSTRY’S TOTAL PATENT HOLDINGS: 229 582 377 

TOP SEVEN’S HOLDINGS AS PERCENT OF INDUSTRY TOTAL: 74.5 75.5 95.0 

 



27 

ENDNOTES 

 
1 The USPTO did not award utility patents on plants or plant parts before 1985. Thus, most of 

these patents accrued in the latter years. 

2 For detailed specifications of the following technology categories, an appendix is available from 

the corresponding author. 

3 In practice firms often file APHIS notices while they are in the application process for patents 

on a given technology. While this raises the concern of possibly simultaneity between NOTICES 

and the patent counts, all of the key results are found to be robust to the exclusion of the 

NOTICES variable.  

4 A handful of smaller private seed firms filed APHIS notices but had no patents. These firms are 

left out of this sample because their financial data are proprietary and thus unavailable. 

5 Four major corporations merged into two. (Ciba-Geigy and Sandoz merged to form Novartis; 

Rhone-Poulenc and Hoechst merged to form Aventis). Most of the leading independent plant 

biotech firms were acquired by larger corporations (Calgene by Monsanto, DNA Plant 

Technology by Savia, Mycogen by Dow, Mogen by Zeneca, and Plant Genetic Systems by 

Aventis). Likewise, most of the top US crop seed companies were acquired by those same 

corporations (Pioneer by DuPont and Asgrow, DeKalb, Delta & Pine Land, and Holden’s all by 

Monsanto; however, Monsanto later divested Delta & Pine Land in 2000). 

6 The resulting individual observations are constructed as the smallest group of business units or 

firms among whom the coordination of assets could be considered an internal decision. A single 

independent firm’s data is counted alone as in individual observation, while a parent and 

subsidiary firms’ data is summed and the sum is treated as a single observation. Partial equity 

acquisitions and ‘strong’ alliances (meaning ones that soon led to equity acquisitions) are treated 

as internalizing solutions. 
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7 For example, Monsanto, Holdens, DeKalb, Delta & Pine Land, Agracetus and Calgene are 

treated as six separate observations in the 1994 sample.  Their data are summed into one 

observation in the 1999 sample, reflecting Monsanto’s alliance with or effective acquisition of the 

other five firms. 

8 Since the first two moments of the Poisson distribution are E(y) = λ and Var(y) = λ , the 

model imposes the restriction E(y) = Var(y).  For all three the patent count variables the sample 

variance is significantly greater than the sample mean; these data exhibit over-dispersion. 

9 The independent variables are transformed by a constant before being entered into the log-

likelihood function in order to yield conveniently scaled parameter estimates.  

10 R&D expenditures, considered as inputs in the innovation process, typically have a positive, 

quantifiable effect on the number of patents produced as outputs. 

11 This transaction included the infamously broad cotton transformation patents mentioned above. 
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	Figure 3.  Quantile-quantile plots comparing distributions of the correlation coefficient estimates between consolidated and unconsolidated industry samples.
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