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INTRODUCTION

B This project is part of the Northeast Structural Genomics
Consortium (NESG). The goal of this consortium is to
develop efficient and integrated technologies for high-
throughput (HTP) protein production and 3D structure
determination.

B This project focuses on the design of an image analysis
system to classify protein crystal structures in a production
oriented environment.

B The method performs classification of microscopic images
as clear droplets versus non-clear droplets (precipitates
and crystals).

B Using expert classification for ground truth, current results
show high classification accuracy with a large image
datasets.

METHODOLOGY

1. Preprocessing of Microscopic Images
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(a) Ellipsoidal Hough transform [1] to
detect the three most probable
ellipses, plotted over the edge map of
the pre-filtered image. (b) Pre-
processed image cropped with the
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(a) Original image with an oil droplet
containing precipitates. (b) Cropped image
with Radon transform. (c) Background
image acquired without drops. (d) Pre-
processed image with Ellipsoidal Hough
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transform. encompassing the three ellipses.
2. Feature Extraction 3. Classification with a

with Laplacian Feed-Forward Neural
Pyramidal Expansion [2] Network
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4. We used the quantitative shape descriptions of a
first-order histogram combined with the power
spectrum and autocorrelation information:
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5. Remote Application Server
Web page interface managed by a Matlab© Server.

Remote user #1

- Input

datasets. Internet
- Parameters connection
selection

Remote user #2
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Remote user #4

- Image processing.
- NN training.
- Image classification.

DATA

1. Microscopic images were acquired with a CCD camera under
robotic control.

2. Gray scale 8-bits images saved in tiff format.

3. Image Database of 5,000 manually classified images:
m 2500 drops containing precipitates and/or crystals.
m 2500 clear drops (clear, skin, etc)

Database

DISCUSSION

B Introduction of robotic manipulation of the crystals for HTP
protein production requires the automation of image analysis of
crystallization experiments for classification of solution content.

B The proposed feed forward neural network showed promising
results in classifying microscopic images.

B Most features of representation were computed from Laplacian
pyramid expansion histograms. The histogram made the features
invariant to orientation which was a desirable feature in order to
be able to characterize the diversity and complexity of precipitate
appearances.

B The Laplacian expansion provided a representation of the image
edge and texture patterns at different scales with extremely fast
implementation. 5
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