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7.1 Introduction

Image enhancement techniques have been widely used in �elds such as ra-

diology, where the subjective quality of images is important for human

interpretation (diagnosis). Contrast is an important factor in any subjec-

tive evaluation of image quality. Many algorithms for accomplishing con-

trast enhancement have been developed and applied to problems in medical

imaging. A comprehensive survey of existing methods can be found in [1].

Among them, histogram modi�cation and edge enhancement techniques

have been most commonly used along with traditional methods of image

processing.

Histogram modi�cation techniques [2, 3] are attractive due to their

simplicity and speed, and have achieved acceptable results for some ap-

plications. In general, a transformation function is derived from a desired

histogram and the histogram of an input image. In general, the transfor-

mation function is almost always nonlinear. For continuous functions, a
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lossless transformation may be achieved. However, for digital images with

some �nite number of gray levels, such a transformation results in infor-

mation loss, due to quatization errors. For example, a subtle edge may be

merged with its neighboring pixels and disappear. Attempts to incorporate

local context into the transformation process have achieved limited success.

For example, simple adaptive histogram equalization [4] supported by �xed

contextual regions cannot adapt to features of distinct sizes.

Most edge enhancement algorithms share a common strategy implicitely:

detection followed by local \edge sharpening". Unsharp masking is rare in

that it has become a popular enhancement algorithm to assist radiologist

in diagnosis [5, 6]. \Unsharp masking" sharpens edges by substracting a

portion of a Laplacian �tered component from an original image. Theo-

retically, this technique was justi�ed as an approximation of a deblurring

process in [7]. Loo et al. [8] studied an extension of this technique in

the context of radiographs. Another extension based on Laplacian �tering

was proposed in [9]. However, these techniques of unsharp masking remain

limited by their linear and single scale properties, and less e�ective for im-

ages containing a wide range of salient features typically found in digital

mammography. In an attempt to overcome these limitations, a local con-

trast measure and nonlinear transform functions were introduced in [10],

and subsequently re�ned in [11]. Unfortunately, limitations remained in

these nonlinear methods as well: (1) They operated on a single scale, (2)

No explicit noise suppression stage was included (in fact noise could be

ampli�ed), and (3) Ad-hoc nonlinear transform functions were introduced

without a rigorous mathematical analysis of their enhancement mechanisms

or the possible introduction of artifacts.

Recent advancement of wavelet theory has sparked researchers' interest

in the application of image contrast enhancement [12, 13, 14, 15, 16, 17, 18].

These early studies showed promise, but were carried out at an experimental

level. In this chapter, we give a detailed mathematical analysis of a dyadic

wavelet transform, and reveal its connection to traditional techniques of

unsharp masking. In addition, we propose a simple nonlinear enhancement

function and analyze the problem of introducing artifacts, as a result of

wavelet processing. Moreover, we describe an explict denoising stage that

preserves edges using wavelet shrinkage [23] and adaptive thresholding.

These techniques are discussed in the following sections of this chapter:
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Figure 7.1: Computational structure for a one dimensional discrete dyadic

wavelet transform (three levels shown).

Section 7.2 presents a one dimensional dyadic wavelet transform. Section

7.3 analyzes linear enhancement and its mathematical connection to tradi-

tional unsharp masking. Section 7.4 analyzes simple nonlinear enhancement

by point-wise functional mapping. Section 7.5 introduces denoising with

wavelet shrinkage along with an adaptive approach for �nding threshold

values. Section 7.6 presents a two-dimensional extension for digital mam-

mography and special procedures developed for denoising and enhancement

that avoid orientation distortions. Section 7.7 presents some sample exper-

imental results and comparisons with existing techniques. Finally, Section

7.8 concludes our discussion and proposes possible future directions of re-

search.

7.2 One-dimensional discrete dyadic

wavelet transform

7.2.1 General structure and channel characteristics

A fast algorithm [20] for computing a 1-D redundant discrete dyadic wavelet

transform (RDWT) is shown in Figure 7.1. The left side shows its decompo-

sition structure, and the right, reconstruction. For an N-channel structure,
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Figure 7.2: An equivalent multi-channel structure for a three-level RDWT.

there are N � 1 high-pass or band-pass channels and a low-pass channel.

Thus, the decomposition of a signal, produces N � 1 sets of wavelet coe�-

cients and a coarse signal.

Since there is no down-sampling and up-sampling shown in Figure 7.1,

our redundant discrete dyadic wavelet transform does not correspond to an

orthogonal wavelet basis (see Chapter 1, Section 1.3.2).

For simplicity of analysis, an equivalent multi-channel structure is shown

in Figure 7.2. This computational structure also makes obvious the poten-

tial for high-speed execution by parallel processing.

We shall refer to �lters bfm(!) and bim(!) in Figure 7.2 as forward �lters

and inverse �lters, respectively. Their relationship to �lters bg(!), bk(!) andbh(!) are explicitly given by

bf0(!) = bg(!); bfN (!) = N�1Y
l=0

bh(2l!);
bfm(!) =

"
m�1Y
l=0

bh(2l!)# bg(2m!); 1 � m � N � 1:

and

bi0(!) = bk(!); biN (!) = N�1Y
l=0

bh(2l!);
bim(!) =

"
m�1Y
l=0

bh(2l!)#bk(2m!); 1 � m � N � 1:
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Since �lters bh(!), bg(!) and bk(!) satisfy the condition���bh(!)���2 + bg(!)bk(!) = 1; (7.1)

�lters bfm(!) and bim(!) completely cover the frequency domain,X
l

bfl(!)bil(!) = 1:

Channel frequency responses bcm(!) can be written as

bcm(!) = bfm(!)bim(!) =
8>>>>>><>>>>>>:

1�
���bh(!)���2 ; m = 0;Qm�1

l=0

���bh(2l!)���2 �1� ���bh(2m!)���2�
; 1 � m � (N � 1);QN�1

l=0

���bh(2l!)���2 ; m = N:

As an example, we consider an extension of the class of �lters proposed

by Mallat et al in [20]

bh(!) = eip
!

2

h
cos

�!
2

�i2n+p
; (7.2)

where p = 0, or 1. Let

b�m;q(!) =

"
m�1Y
l=0

cos(2l�1!)

#q
;

then we can show that

b�m;q(!) =

�
sin(2m�1!)

2m sin(!2 )

�q
; (7.3)

and therefore

bcm(!) =
8<:
b�m;4n+2p(!)� b�m+1;4n+2p(!) ; 0 � m � (N � 1);

b�N;4n+2p(!) ; m = N:

(7.4)

Note that b�0;n(!) = 1, and for 0 < m < N ,

bcm(!) = b�m;4n+2p(!) � b�m+1;4n+2p(!) (7.5)

= sin2
�!
2

�
4mb�m;4n+2p+2(!)

2n+p�1X
l=0

�
cos

�
2m�1!

��2l
;
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Figure 7.3: Channel frequency responses for N = 6; n = 1 and (a) p = 0

and (b) p = 1.

and sin2
�
!
2

�
is the frequency response of the discrete Laplacian operator

of impulse response f1;�2; 1g.b�m;q(!) with even exponential q is an approximate Gaussian function,

while the frequency responses of channels, 0 < m < N , are approximately

a Laplacian of Gaussian. Figure 7.3 shows each distinct channel frequency

response, and Figure 7.4 compares b�2;4(!) and b�2;6(!) with related Gaus-

sians.

7.2.2 Two possible �lters

In this framework, the possible choices of �lters are constrained by Equation

(7.1). For the class of �lters de�ned by Equation (7.2), we can derive

bg(!)bk(!) = sin2
�!
2

� 2n+p�1X
l=0

h
cos

�!
2

�i2l
:

Under the constraint of both bg(!) and bk(!) being FIR's, there are two

possible choices distinguished by the order of zero's in their frequency re-

sponses.

1. Laplacian �lter. In this case, bg(!) = �4
�
sin
�
!
2

��2
or g(l) = f1;�2; 1g,

which de�nes a discrete Laplacian operator, such that

(g � s)(l) = s(l + 1) � 2s(l) + s(l � 1). Accordingly, we can chose both
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Figure 7.4: (a) b�2;4(!) compared with the Gaussian function e�2:8!
2

.

(b) b�2;6(!) compared with the Gaussian function e�3:8!
2

.

�lters bh(!) and bk(!) to be symmetric,

bh(!) = hcos �!
2

�i2n
and

bk(!) = 1�
���bh(!)���2bg(!) = �

1

4

2n�1X
l=0

h
cos

�!
2

�i2l
:

Both forward and inverse �lters, 0 � m � N � 1, can be derived bybfm(!) = �4
�
sin(2m�1!)

�2 b�m;2n(!) (7.6)

= �4 sin2
�!
2

�
4mb�m;2n+2(!) = bg(!)b�m(!)

and

bim(!) = �b�m;2n(!)
1

4

2n�1X
l=0

�
cos

�
2m�1!

��2l
= �bm(!):

Note that the forward �lters bfm(!), 0 < m < N , can be interpreted

as two cascaded operations, a Gaussian averaging of b�m;2n+2(!) and

the Laplacian �4
�
sin(!2 )

�2
, while the set of inverse �lters bim(!) are

low-pass �lters. For an input signal s(l), wavelet coe�cients at the

points \E" (as shown in Figures 7.1 and 7.2) may be written as

wm(l) = �(s � �m)(l)
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where � is the discrete Laplacian operator, and �m(l) is approxi-

mately a Gaussian �lter. This means that each wavelet coe�cient

wm(l) is dependent on the local contrast of the original signal at each

position l.

2. Gradient �lter. In this case, bg(!) = 2ie�i
!

2 sin
�
!
2

�
, or g(0) = 1,

and g(1) = �1, such that (g � s)(l) = s(l) � s(l � 1). Thus we select

the �lters bh(!) = ei
!

2

h
cos

�!
2

�i2n+1
and bk(!) = �ei!bg(!) 1

4

2nX
l=0

h
cos

�!
2

�i2l
:

We then derived the forward �lters

bfm(!) = bg(!)2mb�m;2n+2(!) = bg(!)b�m(!)
and inverse �lters

bim(!) = �ei!bg(!)bm(!);
where

bm(!) = 2mb�m;2n+2(!)
1

4

2nX
l=0

�
cos

�
2m�1!

��2l
is a low-pass �lter.

In this case, the associated wavelet coe�cients may be written as

wm(l) = r(s � �m)(l)

where r is a discrete gradient operator characterized by

rs(l) = s(l) � s(l � 1).
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7.3 Linear enhancement and unsharp

masking

7.3.1 Review of unsharp masking

An early prototype of unsharp masking [7] was

su(x; y) = s(x; y) � k�s(x; y); (7.7)

where � = @2

@x2
+ @2

@y2
is the Laplacian operator. However, this original

formulaworked only at the level of �nest resolution. More versatile formulas

were later developed in two distinct ways.

One way to extend this original formula was based on exploiting the

averaging concept behind the Laplacian operator. The discrete form of the

Laplacian operator may be written as

�s(i; j) = [s(i + 1; j)� 2s(i; j) + s(i � 1; j)] + [s(i; j + 1)� 2s(i; j) + s(i; j � 1)]

= �5
�
s(i; j) �

1

5
[s(i + 1; j) + s(i � 1; j) + s(i; j) + s(i; j + 1) + s(i; j � 1)]

�
This formula shows that the discrete Laplacian operator can be imple-

mented by substracting from the value of a central point its average neigh-

borhood. Thus, an extended formula [8] can be written as

su(i; j) = s(i; j) + k [s(i; j) � (s � h)(i; j)] ; (7.8)

where h(i; j) is a discrete averaging �lter, and � denotes convolution. In

[8], an equal-weighted averaging mask was used:

h(x; y) =

�
1=N2; jxj < N=2; jyj < N=2

0; otherwise:

Another way to extend the prototype formula [9] came from the idea of

a Laplacian-of-Gaussian �lter, which expands Equation (7.7) into

su(x; y) = s(x; y) � k�(s � g)(x; y) = s(x; y) � k(s ��g)(x; y); (7.9)

where g(x; y) is an Gaussian function, and �g(x; y) is a Laplacian-of-

Gaussian �lter.
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We mention for future reference, that both extensions shown in Equa-

tions (7.8) and (7.9) are limited to a single scale.

7.3.2 Inclusion of unsharp masking within RDWT

framework

Next, we shall prove that unsharp masking with a Gaussian lowpass �lter

is included in a dyadic wavelet framework for enhancement by considering

two special cases of linear enhancement .

In the �rst case, transform coe�cients of channels 0 � m � N � 1

are enhanced (multiplied) by the same gain G0 > 1, or Gm = G0 > 1,

0 � m � N � 1. The system frequency response is thus

bv(!) =

N�1X
m=0

Gmbcm(!) + bcN (!) = G0

NX
m=0

bcm(!) � (G0 � 1)bcN (!)
= G0 � (G0 � 1)bcN (!) = 1 + (G0 � 1) [1� bcN (!)] :

This makes the input-output relationship of the system simply

se(l) = s(l) + (G0 � 1) [s(l) � (s � cN )(l)] : (7.10)

Since bcN (!) is approximately a Gaussian lowpass �lter, Equation (7.10)

may be seen as the 1-D counterpart of Equation (7.8).

In the second case, transform coe�cients of a single channel p, 0 � p < N

are enhanced by a gain Gp > 1, thus

bv(!) =
X
m6=p

bcm(!) +Gpbcp(!) (7.11)

=

NX
m=0

bcm(!) + (Gp � 1)bcp(!) = 1 + (Gp � 1)bcp(!):
Recall channel frequency response bcm(!) derived previously in 7.5, the

input-output relationship of the system (7.11) can be written as

se(l) = s(l) � (Gp � 1) ��(s � �)(l); (7.12)

where �(l) is the impulse response of an approximate Gaussian �lter. Sim-

ilarily, Equation (7.12) may be seen as the 1-D counterpart of Equation

(7.9).

The inclusion of these two forms of unsharp masking demonstrates the

exibility and versatility of a dyadic wavelet framework.
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7.4 Nonlinear enhancement by functional

mapping

Linear enhancement can be seen as a mapping of wavelet coe�cients by

a linear function Em(x) = Gmx. Therefore, a direct extension of this is

a nonlinear mapping function Em(x) . The main challenges here are how

to design a nonlinear function and how to best utilize multichannel infor-

mation extracted from a dyadic wavelet framework to accomplish contrast

enhancement.

7.4.1 Minimum constraint for an enhancement

function

A major concern for our enhancement scheme was to introduce no artifacts

during processing and reconstruction. For the dyadic wavelet framework

adopted, this meant that we could not create new extrema in the channel

outputs. This de�ned a minimumconstraint on any enhancement function,

that is, such a function must be continuous and monotonically increasing.

7.4.2 Filter selection

For linear enhancement, selection of �lters bg(!) (and thus bk(!)) made no

di�erence. However, this was not true for the nonlinear case. For this

particular nonlinear approach, our analysis showed that a Laplacian �lter

should be favored.

By selecting a Laplacian �lter, we can be assured that positions of ex-

trema will be unchanged and that no new extrema will be created within

each channel. This is possible because:

1. Laplacian �lters are zero-phase. No spatial shifting exists in the trans-

form space.

2. A monotonically increasing function E(x) will not produce new ex-

trema. (At some point x0, E [f(x0)] is an extrema if and only if f(x0)

was an extrema).
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Figure 7.5: (a) E(x) and (b) �(x), both with T = 0:5 and K = 20.

3. The reconstruction �lters are simply zero-phase smoothing �lters which

will not create extrema.

The major di�culty for using a gradient �lter is that reconstruction

includes another gradient operator. As a result, a monotonically increas-

ing function E(x) alone will no longer guarantee new extrema will not be

introduced in each output channel. Moreover, it is not di�cult to show

that any nonlinear mapping will change the positions of original extrema.

Therefore, we shall assume the choice of Laplacian �lters in the remainder

of this section.

7.4.3 A nonlinear enhancement function

Designing a nonlinear enhancement scheme is made di�cult due to two

reasons: (1) the problem of de�ning a criteria of optimality for contrast

enhancement. (2) complexity of analyzing nonlinear systems. We adopted

the following guidelines in designing our nonlinear enhancement functions:

(1) An area of low contrast should be enhanced more than an area of high

contrast. This is equivalent to saying that small values of wm[l] should

have larger gains.

(2) A sharp edge should not be blurred.
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Figure 7.6: 1-D contrast enhancement of a synthetic signal (a) by four-level

dyadic wavelet analysis with (b) a linear operator with K0 = 2:3, and (c)

a nonlinear operator with t = 0:1 and K0 = 7.

Experimentally, we found the following simple function advantageous:

E(x) =

8<:
x� (K � 1)T ; if x < �T
Kx ; if jxj � T

x+ (K � 1)T ; if x > T

9=; = x+ �(x) (7.13)

where K > 1 and

�(x) =

8<:
�(K � 1)T; if x < �T ,
(K � 1)x; if jxj � T ,

(K � 1)T; if x > T .

The enhancement operator �m has two free parameters: threshold Tm

and gain Km. In our experimental studies, Km = K0; 0 � m � N �1, and

Tm = t � maxfjwm[n]jg, where 0 < t � 1 was user speci�ed. For t = 1:0,

wavelet coe�cients at levels 0 � m � N � 1 were multiplied by a gain of

K0, shown previously to be mathematically equivalent to unsharp mask-

ing . Thus our nonlinear algorithm includes unsharp masking as a subset.

Figure 7.6 shows a numerical example, comparing linear and nonlinear en-

hancement. Note the lack of enhancement for the leftmost edge, in the case

of the linear operator.

Speci�cally, an enhanced signal se(l) can be written as

se(l) =

N�1X
m=0

(Em [(s � fm)] � im)(l) + (s � fN � iN )(l)

=

NX
m=0

(s � fm � im)(l) +
N�1X
m=0

(�m [�(s � �m)] � im)(l)
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or,

se(l) = s(l) �
N�1X
m=0

(�m [�(s � �m)] � m)(l): (7.14)

For completeness, we mention that the formula of Equation (7.14) can be

seen as a multiscale and nonlinear extension of the original unsharp masking

de�ned by Equation (7.9). We argue that multiscale unsharp masking as

de�ned by Equation (7.14) makes a marked improvement over traditional

techniques in two respects:

1. The fast multiscale (or multimask) decomposition e�ciently identi�es

features existing within distinct levels of scale, eliminating the need

for search.

2. The nonlinear algorithm enhances small features within each scale

without blurring the edges of larger features, making possible the

simultaneous enhancement of features of all sizes.

7.5 A methodology for combined denoising

and enhancement

The nonlinear enhancement methods proposed previously [11] did not take

into account the presence of noise. In general, noise exists in a digitized

image, due to the imaging device (acquisition) and quantization. As a

result of nonlinear processing, noise may be ampli�ed and may diminish

any bene�t of enhancement.

Unfortunately, denoising a radiograph (or any medical image) is a very

di�cult problem for two reasons. Fundamentally, there is no absolute

boundary to distinguish a feature from noise. Even if there are known

characteristics of a certain type of noise, it may be theoretically impossible

to completely seperate the noise from features of interest. Therefore, most

denoising methods may be seen as ways to suppress very high frequency

and incoherent components of an input signal.
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Figure 7.7: (a) Signal with two edges. (b) 1st derivative (gradient).

(c) 2nd derivative (Laplacian). (d) Shrunken 2nd derivative.

A naive method of denoising that is equivalent to low-pass �ltering

is naturally included in any dyadic wavelet framework. That is, simply

discard several channels of highest resolution, and enhance channels con-

�ned to lower frequency. The problem associated with this linear denoising

approach is that edges are blurred signi�cantly. This aw makes linear

denoising unsuitable within a contrast enhancement scheme targeted for

medical imaging. Figure 7.9 (c) shows an example of this approach. In or-

der to achieve edge-preserved denoising, more sophisticated methods based

on wavelet analysis were proposed in the literature. Mallat and Hwang

[22] connected noise behavior to singularities. Their algorithm relied on

a multiscale edge representation. The algorithm traced modulus wavelet

maxima to evaluate local Lipschitz exponents and deleted maxima points

with negative Lipschitz exponents. Donoho [23] proposed nonlinear wavelet

shrinkage. This algorithm reduced wavelet coe�cients towards zero based

on a level-dependent threshold.
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7.5.1 incorporating wavelet shrinkage into

enhancement

The method of wavelet shrinkage can be incorporated trivially into our

nonlinear enhancement framework by simply adding an extra segment to

the enhancement function E(x), de�ned earlier in Equation (7.13).

E(x) =

8>>>><>>>>:
x� (K � 1)Te +KTn ; if x � �Te
K(x+ Tn) ; if � Te � x � �Tn
0 ; if jxj � Tn
K(x� Tn) ; if Tn � x � Te
x+ (K � 1)Te �KTn ; if x � Te

(7.15)

However, there are two arguments which favor shrinking gradient coe�-

cients instead of Laplacian coe�cients.

First, gradient coe�cients exhibit a higher signal to noise ratio (SNR).

For any shrinkage scheme to be e�ective, an essential property is that the

magnitude of a signal's components be larger than that of existing noise

(at least most of the time). It is thus sensible to de�ne the SNR as the

maximum magnitude of a signal over the maximum magnitude of noise.

For example, consider a soft edge model f(x) = A=(1 + e�2�x); A > 0. Its

�rst and second derivatives are f 0(x) = A�=
�
2 cosh2(�x)

�
and f 00(x) =

�A�2 sinh(�x)= cosh3(�x), with magnitude of local extrema jf 0(x0)j =

A j�j =3 and jf 00(x0)j = 2A�2=3
p
3, respectively. In this simple model,

we can assume that noise is characterized by a relatively small A value and

large � value. Clearly, gradient coe�cients have a higher SNR than that of

Laplacian coe�cients since � contributes less. Figures 7.7 (b) and (c) show

�rst and second derivatives, respectively, for an input signal (a) with two

distinct edges.

In addition, boundary contrast is not a�ected by shrinking gradient

coe�cients. As shown in Figure 7.7, coe�cients aligned to the boundary

of an edge are local extrema in the case of a �rst derivative (gradient), and

zero crossings in the case of a second derivative (Laplacian). For a simple

point-wise shrinking operator, there is no way to distinguish the points

marked \B" from the points marked \A". As a result, regions around each

\A" and \B" point are diminished, while the discontinuity in \B" (Fig.

7.7) sacri�ces boundary contrast.

In the previous section, we argued that nonlinear enhancement is best
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- bgm;1(!) -
C(x)

�
� - bgm;2(!) - E(X) -

Figure 7.8: Incorporating wavelet shrinkage into an enhancement frame-

work (one level shown).

performed on Laplacian coe�cients. Therefore, in order to incorporate

denoising into our enhancement algorithm, we split the Laplacian operator

into two cascaded gradient operators. Note that

bgm(!) = �4
�
sin
�
2m�1!

��2
= bgm;1(!)bgm;2(!)

where� bgm;1(!) = e�i!=22i sin
�
!
2

�
; bgm;2(!) = ei!=22i sin

�
!
2

�
; if m = 0;bgm;1(!) = bgm;2(!) = 2i sin

�
2m�1!

�
; otherwise.

Denoising by wavelet shrinkage [23] can then be incorporated into this

computational structure as illustrated in Figure 7.8, where the shrinking

operator can be written as

C(x) = sign(x) �
�

jxj � Tn ; if jxj > Tn;

0 ; otherwise:

Note that the shrinking operator is a piece-wise linear and monotonically

non-decreasing function. Thus in practice, the shrinking operator will not

introduce artifacts.

7.5.2 Threshold estimation for denoising

The threshold Tn is a critical parameter in the shrinking operation. For a

white noise model and orthogonal wavelet, Donoho [23] suggested a formula

of Tn =
p
2 log(N )�=

p
N , where N is the length of a input signal and

� is the standard deviation of wavelet coe�cients. However, the dyadic

wavelet we applied is not an orthogonal wavelet. Moreover, in our 2-D

applications, a shrinking operation is applied to magnitudes of gradient

coe�cients instead of wavelet coe�cients themselves. Therefore, a method

of threshold estimation method proposed in [24] for edge detection may be

more suitable.
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In our \shrinking" operation, only the magnitudes of the gradient of a

Gaussian low-passed signal are modi�ed. As pointed out in [24], for white

Gaussian noise, the probability distribution function of the magnitudes of

gradient is characterized by the Rayleigh distribution:

Prk�fk(m) =

8<:
m
�2
e�(m=�)2=2 ;m � 0;

0 ;m < 0:

To estimate �, a histogram (probability) of k�fk was computed, and then

iterative curve �tting was applied. Under this model, the probability p of

noise removal for a particular threshold � can be calculated by

p =

R �
0 Prk�fk(m)dmR
1

0 Prk�fk(m)dm
;

and thus � =
p
�2 ln(1� p) �. For p = 0:999, � = 3:7�.

Figure 7.9 compares the performance of existing approaches. In (b),

we observed that enhancement without any denoising results in distracting

background noise. In (c), edges were smeared and broadened by low-pass

enhancement. Only in (d), with wavelet shrinkage, enabled were we were

to achieve the remarkable result of denoising and contrast enhancement

simultaneously.

To demonstrate the denoising process, Figure 7.10 (a) and (b) shows

both nonlinear enhancement of wavelet coe�cients without and with de-

noising, respectively, for the original input signal shown in Figure 7.9 (a).

Figure 7.10 (c) shows the associated curve-�tting for threshold estimation.

7.6 Two dimensional extension

For image processing applications, the one dimensional structures discussed

previously were simply extended to two dimensions. In our investigation,

we �rst adopted the method proposed by Mallat [20], shown in Figure 7.11,
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Figure 7.9: (a) Noisy input signal (contaminated by white Gaussian noise).

(b) Nonlinear enhancement without denoising, Gm = 10, N = 4, t = 0:1.

(c) Nonlinear enhancement of levels 2-3, Gm = 10, t = 0:1; levels 0-1 zeroed

out; (d) Nonlinear enhancement with adaptive wavelet shrinkage denoising,

Gm = 10, N = 4, t = 0:1.
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Figure 7.10: Column (a), Enhanced wavelet coe�cients without denoising.

Column (b), Enhanced wavelet coe�cients with adaptive thresholding Tn =

4:5�. Column (c), The magnitude distribution and curve-�tting. (Rows 1

through 4 corresponds to levels 1 to 4.)
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Figure 7.11: Two dimensional dyadic wavelet transform (two levels shown).

where �lter bl(!) = �
1 +

���bh(!)���2�=2, and bh(!), bk(!) and bg(!) were the

same �lters constructed for the 1-D case.

However, experimentally we observed that if we simply modi�ed the two

oriented wavelet coe�cients independently, orientation distortions were in-

troduced. One way to avoid this disastrous artifact is �rst to apply denois-

ing to the magnitude of gradient coe�cients, and then nonlinear enhance-

ment to the sum of the Laplacian coe�cients, as shown below in Figure

7.12. For the two oriented gradient coe�cients gx and gy, the magnitude

M and phase P were computed as M =
q
g2x + g2y and P = arctan(gy=gx),

respectively. The denoising operation was then applied toM , obtainingM 0.

The denoised coe�cients were then simply restored as g0x = M 0�cos(P ) and
g0y = M 0 � sin(P ), respectively. For the enhancement operation, notice that

the sum of two Laplacian components is isotropic. Therefore, we may com-

pute the sum of the two Laplacian components L = lx + ly and F = lx=L.

A nonlinear enhancement operator was then applied to only L, producing

L0. Thus, the restored components were l0x = L0 � F and l0y = L0 � (1� F ).
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Figure 7.12: Denoising and enhancement for the 2-D case (level one shown).

7.7 Experimental results and comparisons

In this section, we present samples of experimental results and compare

them with existing state-of-the-art techniques. Figure 7.13 (a) shows a

synthetic image with three circular \bumps" and added white noise. The

enhancement results shown in (b) and (c) demonstrate ampli�cation of

unwanted noise. Moreover, note that histogram equalization processing

alters the object's boundary. However, the result shown in (d) accomplished

by dyadic wavelet analysis produced a clearer image without orientation

distortion.

Figure 7.14 (a) shows an original dense mammogram image with an

obvious mass. The boundary of the mass in the enhanced image is more

de�ned and the penetration of spicules into the mass is well delineated.

To study the e�cacy of our algorithm, we blended mathematical phan-

tom features into clinically proved cancer free mammograms. Figures 7.15

(a) and (b) show mathematical phantom features blended into each image

M48 and M56 (resulting in Figure 7.16 (a) and Figure 7.17 (a)), respec-

tively.

Figure 7.16 (a) shows a dense mammogram with blended phantom fea-

tures, and (b) shows an image processed by our nonlinear method. The

enhanced image makes more visible the boundary (uncompressed areas) of

the breast and its structure. In addition, the phantom features were also

well enhanced. Figure 7.17 (a) shows a dense mammogram with blended
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(a) (b)

(c) (d)

Figure 7.13: (a) Noisy image (white Gaussian noise contaminated). (b) His-

togram equalized. (c) Nonlinear enhancement by Beghdadi and Negrate's

algorithm. (d) Nonlinear enhancement with adaptive wavelet shrinkage

denoising, Gm = 20, N = 4, t = 0:1.
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(a) (b)

Figure 7.14: (a) Oringinal mammogram image M73. (b) Nonlinear en-

hancement with adaptive wavelet shrinkage denoising, Gm = 20, N = 5,

t = 0:1.

(a) (b)

Figure 7.15: (a) Five phantom features blended intoM48. (b) Five phantom

features blended into M56.
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(a) (b)

Figure 7.16: (a) Mammogram image M48 with blended phantom features.

(b) Nonlinear enhancement with adaptive wavelet shrinkage denoising,

Gm = 20, N = 5, t = 0:1.

(a) (b)

Figure 7.17: (a) Mammogram image M56 with blended phantom features.

(b) Nonlinear enhancement with adaptive wavelet shrinkage denoising,

Gm = 20, N = 5, t = 0:1.
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phantom features, and (b) shows the associated image enhanced.

7.8 Conclusion

We established connections between dyadic wavelet enhancement algorithms

and traditional unsharp masking. We proved that two cases of linear en-

hancement were mathematically equivalent to traditional unsharp masking

with Gaussian low-pass �ltering. We designed a methodology for accom-

plishing nonlinear enhancement with a simple nonlinear function to over-

come the wide dynamic range usually required for contrast enhancement of

digital radiographs. By careful selection of wavelet �lters and enhancement

functions, we showed that artifacts could be minimized. An additional ad-

vantage of our simple enhancement function is that it includes traditional

unsharp masking as a subset.

We then showed how an edge-preserved denoising stage (wavelet shrink-

age) can be appropriately incorporated into our contrast enhancement frame-

work, and introduced a method for adaptive threshold estimation. Finally,

we showed how denoising and enhancement operations should be carried

out for two dimensional images to avoid distortions due to �lter orientation.

Our future research plan shall include the systematic study of gain and

threshold parameters for nonlinear enhancement. In addition, in the next

year we plan to develop localized and complex nonlinear methods to im-

prove the performance of our existing algorithm.
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