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Abstract| Feature extraction remains an important part

of low-level vision. Traditional oriented �lters have been

e�ective tools to identify features, such as lines and edges.

Steerable �lters, which can be adjusted at arbitrary ori-

entation, have made decisions of feature orientations more

precise. Combined with a pyramid structure of a multiscale

representation, these �lters can provide a reliable and e�-

cient tool for image analysis.

This paper takes advantage of multiscale steerable �lters

in the context of de-noising. First a set of novel �lters are

designed, that decompose the frequency plane into distinct

directional bands. Next, we identify the dominant direction

and strength at each point of an image from quadrature

pairs of steerable �lters. A nonlinear threshold function is

then applied to the �ltered coe�cients to suppress noise.

The denoised image is restored from coe�cients modi�ed

at each level of transform space. We demonstrate the ben-

e�ts of multiscale steerable �lters for de-noising and show

that it can greatly reduce noise while preserving image fea-

tures. Two examples are presented to verify the e�cacy of

the technique.

Keywords| Multiscale steerable �lters, de-noising, basis

functions, oriented energy, nonlinear thresholding.

I. Introduction

By de�nition, \noise" is any unwanted disturbance in a

signal. When we obtain an image, it may be contaminated

by noise from various sources. Some important features of

an image will be degraded by noise, and we may hardly rec-

ognize edge locations, orientations or textures in an image.

Because of such local ambiguities, a noisy image may re-

duce the quality of any subsequent processing. Therefore,

de-noising is an essential component of an early visual pro-

cessing system.

There have been many noise reduction methods dis-

cussed in the literature. The simplest noise reduction

technique is equal-weighted averaging over a neighborhood

(mean �ltering). Averaging produces an e�ect similar to

that produced by low-pass �ltering. Therefore, reducing

the e�ects of random noise results in blurring an image.

The method of median �ltering is similar to mean �ltering

in that it uses the local median instead of a local mean,

and exhibits better performance for edge-perservation and

noise reduction for speckle noise.

More recently, de-noising based on wavelet transforma-

tions have been proposed. Mallat et al. [9], [10] used the

local maxima of the wavelet transform modulus to analyze

image singularities. The algorithm removed all maxima

whose amplitude increased on average when the scale de-

creased, or which did not propagate to larger scales. A

\denoised" signal was then reconstructed with an alter-

native projection algorithm. Donoho and Johnstone [3],

[4] proposed a three{step method for recovery of a signal.

Their method is based on a theoretically motivated nonlin-

ear shrinkage of wavelet coe�cients. Mallat and Zhang [11]

introduce a matching pursuit algorithm that decomposed a

signal into a linear expansion of waveforms that belong to

a redundant dictionary of functions. With a dictionary of

Gabor functions, a matching pursuit de�ned an adaptive

time-frequency transform.

Freeman and Adelson [6] proposed the concept of steer-

able �lters and applied it to several problems. With a set

of \basis �lters", one can adaptively steer a �lter along

any orientation. Hilbert transform pairs were constructed

to �nd a local \oriented energy" measure. Noise was then

reduced by performing a soft threshold function [14] on the

pyramid of multiscale coe�cients.

Each visual neuron can be characterized psychophysi-

cally by its receptive �eld (RF). Much psychophysical ev-

idence [2], [7] shows that the RF cell is sentive to multi-

ple, parallel bandpass neural images. Therefore, it is use-

ful to decompose an image into a number of lowpass and

bandpass subimages. Oriented linear or piecewise linear

patterns are commom phenomena in nature and contain

rich sources of image information. In order to detect these

features, we applied the same �lter to calculate �lter re-

sponses at various orientations. Multiscale steerable �lters

were designed in quadrature pairs at several scales to al-

low adaptive capture of magnitudes as well as directions of

features embedded in an image.

II. Background

a. Problem formulation

Let a noisy image be given by

f(x; y) = i(x; y) + n(x; y); (1)

where i(x; y) is an original image and n(x; y) is noise com-

ponent. It is assumed that the noise is additive, stationary,

and has zero mean. We chose white Gaussian noise in our

model. The purpose of de-noising is to restore an image
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that di�ers as little as posible from its original. Thus, we

hope to preserve the features of an image while smoothing

noise.

b. A theorem for steerable �lters

A function f(x; y) is called \steerable" if it can be ex-

pressed as a linear combination of rotated versions of itself.

The fundamental idea of steerable �lters is to apply \basis

�lters" which correspond to a �xed set of orientations and

interpolate between each discrete response. Thus, one must

decide the number of \basis �lters" and the corresponding

interpolation functions. As de�ned in [6] the steering con-

straint is formulated as

f�(x; y) =

MX
i=1

ki(�)f
�i (x; y); (2)

where M is the number of basis functions required to steer

a function f�i (x; y).

Hereafter, it will be more convenient to work in polar

coordinates r =
p
x2 + y2 and � = arg(x; y). Let f be any

function that can be expressed as a Fourier series in polar

angle �:

f(r; �) =

NX
n=�N

an(r)e
jn�; (3)

where j =
p
�1.

The theorem below was posed by [6] and is included for

clarity of discussion.

Theorem 1: The steering condition (2) holds for function

f expanded in the form of (3) if and only if the interpola-

tions ki(�) are solutions of
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Then f�(r; �) may be expressed as

f�(r; �) =

MX
i=1

ki(�)gi(r; �); (5)

where gi(r; �) can be any set of functions.

III. Design of Steerable Filters

In this section we describe the procedures we employed

to design our steerable �lters. A function is steerable if

it is bandlimited in angular frequency and there are su�-

cient basis functions, where each basis function is generated

from dilations and rotations of a single kernel. In order to

steer the �lters, we generate �rst the basis �lters. Each

of these �lters were designed using a polar separable fre-

quency strategy, by separating the radial and angular parts

of the bandpass �lters

G(�; �) = G(�)G(�); (6)

where � is the radial frequency and � the angular frequency.

The frequency plane was decomposed into three parts:

lowpass, bandpass, and highpass partitions. Then we sub-

sample and decompose the lowpass portions into bandpass

and lowpass subportions recursively. The �lters are chosen

such that each single stage system (including lowpass and

bandpass parts) behaves like an identity operation, and its

response is lowpass (equal to L0(!)). In addition, Simon-

celli et al. [14] described constraints for the design of the

radial �lters:

1. Lowpass �lter L1.

Since there is a subsampling operation after L1, in

order to avoid aliasing, the lowpass �lter L1 should

have strictly zero response above ! = �
2
.

2. Lowpass �lter L0.

It should cover the frequency bound of L1. We let the

response equal 1 for ! between 0 and �
2
and zero at

! = �.

3. Bandpass �lter B.

The constraint for the design of bandpass �lter B(!)

was

jL0(!)j2 = jB(!)j2 + jL1(!)j2jL0(2!)j2: (7)

4. Highpass �lter H.

This is obtained simply by substracting the response

of L0 from unity.

It is easier to �rst design the �lters in one-dimension

in the frequency domain and then convert them to two-

dimensions. We used a seven-tap lowpass �lter as L1(!)

and generate L0(!) using the Park-McClellan algorithm

[8]. Both meet constraints 1 and 2. Filter B(!) was ob-

tained from Equation (6). Next, each one-dimensional

�lter was converted into a nearly circularly symmetric

two-dimensional �lter, using the frequency transformation

method described in [8]. The bandpass �lter is shown in

Fig. 1(a).

Having selected a radial frequency band, we divided the

band into several oriented subbands by multiplying an an-

gular frequency component. As in [14], G(�) = jcos3(�)

was used as the angular frequency response, expressed as

cos3(�) =
1

4
cos(3�) +

3

4
cos(�): (8)

From (4) the minimum number of basis functions required

to steer a �lter is exactly four. The bandpass �lter was

multiplied by angular frequency cos3(� � �i) to obtain the

basis functions. Four basis functions are shown in Fig.

1(b), (c), (d), and (e). The interpolation functions were

determined by solving (4), yielding

ki(�) =
1

4
[2cos(� � �i) + 2cos(3(� � �i))]; (9)

where �i = (i� 1)�=4; i 2 f1; : : : ; 4g:
In order to compute the local energy function, we need to

�nd the basis functions of the quadrature pair of G(�) (i.e.

they are the Hilbert transforms of each other). The Hilbert

transform is related to the Fourier expansion of the image
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in that it has the same amplitude spectrum and a phase

shift of �
2
. The Hilbert transformGH(�) ofG(�) = jcos3(�)

is jcos3(�)j. Following [14], this was approximated by the

�rst three terms of the Fourier expansion of GH(�):

jcos3(�)j � 0:4244 + 0:5093cos(2�) + 0:0727cos(4�): (10)

This needs �ve basis functions. The interpolation functions

were

kl(�) =
1

5
[1 + 2cos(2(� � �l)) + 2cos(4(� � �l))]; (11)

where �l = (l � 1)�=5; l 2 f1; : : : ; 5g:

(a)

(b) (c)

(d) (e)

Fig. 1. (a) Two-dimensional frequency response of bandpass �lter.
(b)-(e) Frequency responses of four basis functions for G.

Having computed the basis functions, we construct the

steerable functions for G(�), as shown in Fig. 2, and its

quadrature pair GH(�). In order to �nd its local percep-

tual signi�cance, we used an \oriented energy" measure.

Local \oriented energy" E(�) [12] was de�ned as the sum

of the squared responses of quadrature pair �lters. Let the

outputs of G(�) and GH(�) be IG(�) and IGH(�), respec-

tively. Thus,

E(�) = [IG(�)]2 + [IGH (�)]2

= [k1(�)g1 + k2(�)g2 + k3(�)g3 + k4(�)g4]
2

+ [kH1 (�)g
H
1 + kH2 (�)g

H
2 + kH3 (�)g

H
3

+ kH4 (�)g
H
4 + kH5 (�)g

H
5 ]2; (12)

where ki and gi(i = 1; : : : ; 4) are interpolation functions

and the outputs of the basis functions of G(�), respectively,

and kHl and gHl (l = 1; : : : ; 5) are interpolation functions

and the outputs of the basis functions of GH(�), respec-

tively.

Following [14], equation (12) is simpli�ed to a Fourier se-

ries in angular form using the substitutions of the trigono-

metric identity:

E(�) = a0+a1cos(2�)+a2sin(2�)+[ higher order terms � � �]:
(13)

The lowest frequency terms were used to approximate the

dominant directions A and their associated magnitudes M.

A = arctan[a1; a2]=2:

M =

q
a21 + a22:

A and M were then used to modify the pyramid coe�cients

of outputs of basis functions, by a nonlinear threshold func-

tion,

cMOD
ij = 0:9

cij

1 + e�(
p
mij�T )=32)

, if
p
mij � T � 0:

= 1:1
cij

1 + e�(
p
mij�T )

, if
p
mij � T < 0:

such that a coe�cient was retained if its local energy was

larger and attenuated if smaller, where cij is the coe�cient

at the dominant orientation, mij is the magnitude along

that orientation, and threshold T can be adjusted for dis-

tinct subbands. Thus we may reconstruct an image using

the modi�ed coe�cients cMOD
ij .
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Fig. 2. Block diagram of steerable �lter.

IV. Experimental Results

Next, we shall provide two examples to demonstrate the

de-noising performance using multiscale steerable �lters.

The image is of size (256 � 256). The �rst example was

the familiar \Lena" test image. The original noise-free im-

age is shown in Fig. 4(b). We added white gaussian noise

and obtained a noisy image shown in Fig. 4(c). Then we

decomposed the image using multiscale steerable �lters (up

to three scales). The pyramidal representations of coe�-

cients are shown in Fig. 3. Fig. 4(a) shows its lowpass

result at scale = 3. The reconstructed image is shown in

Fig. 4(d). Compared with the original noise-free image in

Fig. 4(b), we preserved the features while eliminating the

noise! The SNR of the original image is 12.6 dB. The de-

noised one is 20.8 dB!
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The second example is a frame from a functional MRI

sequence. Fig. 5(a) shows the original image. Noise ex-

isted throughout the image and artifacts appeared on the

surface of the object. After de-noising, the surrounding

noise disappeared and the borders of cranial tissues ap-

peared smoother.

V. Conclusions and Discussions

In this paper we applied the properties of steerable �l-

ters [6] and their design for the application of de-noising.

Using oriented information to detect the features of an im-

age appears to be a promising approach. Steerable �lters

which can be rotated at arbitrary orientations can more

reliably �nd visual cues in an image. \Oriented energy"

clearly helped us to discriminate features from noise. The

pyramid structure of multiscale steerable �lters made the

computation e�cient and the algorithm easy to implement.

Experimental results were shown demonstrating the e�-

cacy of de-noising.

The �lters used in this paper were based on a design pro-

posed by Freeman and Adelson [6]. However, we remove

noise by employing a nonlinear thresholding operation to

the transform coe�cients. In addition, we used an inter-

polation approach for the �lter design that enabled us to

avoid search in the multi-dimensional space (scale space)

of �lter coe�cients. Since the �lters were non-separable,

we implemented them in the frequency domain to avoid

discrete two-dimensional convolution operations.

These techniques may also be applied in other applica-

tions such as stereo matching, texture analysis, motion per-

ception, shape-from-shading analysis, etc. [1], [6], [14]. In

addition, the method is extendable to three-dimensional

analysis for volumetric spatial data and temporal image

sequences.
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Fig. 3. Steerable bandpass coe�cients of \Lena" (3 levels).

(a) (b)

(c) (d)

Fig. 4. Steerable image transform of \Lena". (a) Lowpass �ltered
and downsampled image. (b) Original image. (c) Noisy image.
(d) Restored image.

(a) (b)

Fig. 5. Steerable image transform of MRI image. (a) Noisy image.
(b) Restored image.


