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ABSTRACT

An image fusion algorithm based on multiscale anal-
ysis along arbitrary orientations is presented. After
a steerable dyadic wavelet transform decomposition of
multi-sensor images is carried out, the maximum local
oriented energy is determined at each level of scale and
spatial position. Maximum local oriented energy and
local dominant orientation are used to combine trans-
form coe�cients obtained from the analysis of each in-
put image. Reconstruction is accomplished from the
modi�ed coe�cients, resulting in a fused image. Ex-
amples of multi-sensor fusion and fusion using di�erent
settings of a single sensor are demonstrated.

1. INTRODUCTION

Image fusion combines di�erent aspects of information
from the same imagingmodality or from distinct imag-
ing modalities [1] and can be used to improve the reli-
ability of a particular computational vision task or to
provide a human observer with a deeper insight about
the nature of observed data.

The simplest method of fusing images is accom-
plished by computing their average. Features from each
original image are present in a fused image, however,
the contrast of the original features can be signi�cantly
reduced. More sophisicated techniques rely on mul-
tiscale representations, such as pyramids [12, 2] and
wavelet analysis [10, 6]: transform coe�cients are fused
rather than spatial image pixels, and reconstruction
from fused transform coe�cients is then computed.

We present a method which executes low-level fu-
sion on registered images by the use of a steerable
dyadic wavelet transform. A steerable dyadic wavelet
transform incorporates analysis along an arbitrary ori-
entation into a multiscale framework. Steerable �lters
in the �lter bank implementation of a steerable dyadic
wavelet transform are employed in quadrature pairs,
so that the fusion is based on local oriented energy. It
has been shown that the human visual system detects
features at the points where local energy, de�ned as

the sum of the squared responses of a quadrature pair
of odd-symmetric and even-symmetric �lters, is max-
imum [8]. Local energy reaches its maximum at both
lines and edges. It has also been shown that peaks of
local energy accurately localize composite edges which
are more common in real world images than ideal step
edges, whereas linear �lters exhibit localization errors
[9]. Since features can occur along any orientation we
use the local oriented energy to fuse perceptually signif-
icant features in corresponding locations of previously
registered images across di�erent scales.

This paper is organized as follows. Section 2 for-
mulates a steerable dyadic wavelet transform. Next,
the image fusion algorithm is described in Section 3.
Results are then shown in Section 4. Finally, Section 5
presents a brief summary.

2. A STEERABLE DYADIC WAVELET

TRANSFORM

Steerable �lters are �lters whose arbitrary rotation can
be synthesized from a linear combination of basis �l-
ters. The �lter is steerable if it has a �nite number of
terms in its Fourier series expansion of its polar angle
[3].

A steerable dyadic wavelet transform [5] combines
the properties of a discrete dyadic wavelet transform
[7] with the analysis along arbitrary orientations. The
transform is implemented as a �lter bank consisting of
polar separable �lters. Similar to a steerable pyramid
described in [11] the radial portion of the �lter bank is
designed �rst and any desired angular variation applied
later.

The radial part of the �lter bank was derived from
the �lter bank implementation of a one-dimensional
discrete dyadic wavelet transform [7] with the family
of �lters proposed in [4]:
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whereH(!), G(!), andK(!) are digital �lter frequency
responses and m 2N .

The frequency responses are related by

jH(!)j2 +G(!)K(!) = 1:

Figure 1 shows a �lter bank implementation of a
one-dimensional discrete dyadic wavelet transform us-
ing the family of �lters from Equation 1.
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Figure 1: Filter bank implementation of a one-dimensional
discrete dyadic wavelet transform decomposition (left) and
reconstruction (right) for three levels of analysis.

The wavelets associated with the �lter bank using
�lters from Equation 1 are equal to the second deriva-
tive of a spline of degree 2m + 1, whose Fourier trans-

form is equal to
�
4

!
sin(!

4
)
�2m+2

.

Let !r =
q
!2
x
+ !2

y
, !� = arg(!x; !y), and let

F (!r; !�) = FR(!r)F�(!�) be a �lter in the �lter bank
implementation of a steerable dyadic wavelet trans-
form. The radial part of the �lter bank implementation
of a steerable dyadic wavelet transform is then com-
prised of �lters HR(!x; !y), GR(!x; !y), and KR(!x;
!y). The �lters' frequency responses satisfy

FR(!x; !y) =

�
F (!r) if !r < �

F (�) otherwise,

where FR(!x; !y) is equal to HR(!x; !y), GR(!x; !y),
or KR(!x; !y), and F (!) is one of the �lters de�ned
previously in Equation 1.

The angular portion of the frequency responses of
�lters in the �lter bank is constant for all �lters ex-
cept G(!x; !y). The frequency response G�(!x; !y)
was chosen to be

G�(!x; !y) = cos2n(!�); (2)

where n 2 N .
This frequency response can be steered with 2n+1

basis �lters (the minimum number of basis �lters re-
quired to steer a steerable �lter is equal to the number

of nonzero coe�cients in a Fourier series expansion of
the �lter along its polar angle [3]).

The �lters in the �lter bank implementation of the
steerable dyadic wavelet transform were therefore
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Figure 2 shows the magnitude frequency responses
of �lters H(!x; !y), K(!x; !y), and Gk(!x; !y) with
n = 1 in Equations 2 and 3.
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Figure 2: The magnitude frequency responses of: (a) Filter
H(!x; !y). (b) Filter K(!x; !y). (c)-(e) Filters Gk(!x; !y).

A steerable dyadic wavelet transform decomposi-
tion can be viewed as circularly symmetric smoothing



at di�erent scales, followed by an arbitrarily steered
oriented second derivative.

Reconstruction from outputs of �lters G�k

�
(!x; !y)

is based upon the fact that the sum of �k rotated �lters
G�(!x; !y) is equal to a constant C2n:
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3. IMAGE FUSION

For image fusion, steerable �lters from the �lter bank
implementation of a steerable dyadic wavelet transform
were used in quadrature pairs (i.e., with their Hilbert
transform counterparts). The Hilbert transform of �l-
ter frequency responses G�(!x; !y) (Equation 2) is

G�H (!x; !y) = �j sgn(cos(!�)) cos
2n(!�); (5)

where n is the same as in Equation 2 and

sgn(x) =

�
1 if x � 0
�1 if x < 0.

Filters G�H (!x; !y) are not steerable. They were
approximated with truncated Fourier series expansion
by saving only a few maximummagnitude coe�cients.
Basis �lters needed to steer an approximation to the
�lter frequency response G�H (!x; !y) were then added
to the �lter bank implementing a steerable wavelet
transform, so that the output of �lters GR(2

p!x; 2
p!y)

were not multiplied by G�

�(!x; !y) alone, but also with
approximation to G�

�H
(!x; !y), where � denotes some

arbitrary rotation. Thus, quadrature pairs of �lters
steered to some arbitrary angle � were used to deter-
mine the local oriented energy, which was de�ned as
the sum of the squared output from each �lter of the
quadrature pair.

For images to be fused, a steerable dyadic wavelet
transform was �rst carried out. Next, local oriented
energy obtained from the quadrature pair of steerable
�lters was computed and the local dominant orienta-
tion (i.e., the angle that maximized the local oriented
energy) was determined at each level and position [3].
Filters were then steered to the local dominant orien-
tation, and local oriented energies were compared. The
coe�cients corresponding to the greater local oriented
energy were included for reconstruction. The �nal re-
construction was accomplished with �lters G�(!x; !y)
(Equation 4), while �lters G�H (!x; !y) were used only
for computation of local oriented energy.

4. RESULTS

For the results presented in this section our fusion al-
gorithm was executed with m = 1 in Equation 1 and

n = 1 in Equations 2, 3, and 5 (the sum of rotated �l-
ters G�(!x; !y) in Equation 4 was equal to C2 = 1:5).

A simple example of image fusion for extending the
depth of focus of a camera is demonstrated in Figure 3.
A pair of images with distinct areas in focus was �rst
fused manually (cut and paste), and then by our fusion
algorithm. As in [6] we compared the ideal (manually
fused) result with the output of our algorithm. The
mean-square error (MSE) for the output of our algo-
rithm was 12.88 and the MSE when the fused image
was simply the average of the two images was 113.51.

A sample of multisensor data is shown next. Figure
4 shows Channels 1 and 5 of Landsat TM images of
Sunbury, and the image fused with our algorithm.

5. CONCLUSION

The described algorithm performed image fusion across
multiple scales and along arbitrary orientations. Over-
completeness of a steerable dyadic wavelet transform
demonstrated advantages: the transform was shift-in-
variant and there allowed no aliasing in the �lter bank
implementation, both properties are highly desirable
for image fusion applications.

Steerable �lters in the �lter bank implementation
of a steerable dyadic wavelet transform were designed
in quadrature pairs to compute the maximumlocal ori-
ented energy and the local dominant orientation at each
level and position. In addition to perceptual signif-
icance of the maximum local energy, computing the
maximum local oriented energy introduced no local-
ization error and enabled comparison of corresponding
features within distinct input images.
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Figure 3: (a) An image with lower part blurred. (b) An image with upper part blurred. (c) Fused image obtained by
combining images from (a) and (b) manually. (d) Fused image resulting from our fusion algorithm.
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Figure 4: (a) TM-1 image. (b) TM-5 image. (c) Fused image using our fusion algorithm.
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