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ABSTRACT

We present an interactive scheme for processing of digi-
tal mammograms relying upon a steerable dyadic wavelet
transform. Coe�cients of the translation and rotation-
invariant transform are interactively processed before an in-
verse transform is applied. Analysis is carried out at dyadic
scales and along arbitrary orientations. Local orientation is
computed at each level of scale and spatial position and for-
mulated into criteria for including or excluding speci�c ori-
entations for contrast enhancement and enhancing locally
radiating structures. Transform coe�cients that were se-
lected for contrast enhancement are modi�ed by a piece-
wise linear enhancement function. The presented scheme is

exible enough to enable e�cient position, scale, and ori-
entation based interactive processing and analysis.

1. INTRODUCTION

In mammography, early detection of breast cancer relies
upon the ability to distinguish between malignant and be-
nign mammographic features. The complexity of mammo-
graphic images and the subtlety of malignancies can present
a challenge even to expert radiologists. In addition to deal-
ing with barely visible mammographic features, human ob-
servers sometimes simply overlook abnormalities. Such mis-
takes a�ect the number of false-negative cases considerably.
Computer processing of digital mammograms can assist ra-
diologists to reach a correct diagnosis more consistently. A
variety of computer based techniques have been reported
in almost three decades of research [1]. The advent of di-
rect digital mammography devices has made digital image
processing techniques more attractive for screening.
In [2], separable and nonseparable multiscale transforms

were used for adaptive contrast enhancement of mammo-
graphic features and the results were compared with tradi-
tional image enhancement techniques. Measuring the local
contrast of known mammographic features showed a sig-
ni�cant advantage of multiscale techniques over traditional
approaches. In [3], contrast enhancement was achieved
within a discrete dyadic wavelet transform framework. It
was shown that wavelets which are equal to a second deriva-
tive of an odd degree spline do not introduce artifacts when
combined with a piecewise linear enhancement function.
Furthermore, it was demonstrated that traditional unsharp
masking is included in a discrete dyadic wavelet transform
scheme for contrast enhancement.
Here, we build on our previous work by using a discrete

steerable dyadic wavelet transform with a steerable wavelet
equal to a second derivative of a circularly symmetric odd
degree spline. Steerability allows analysis along arbitrary
orientations and in addition to being translation-invariant,
the transform is rotation-invariant. The analysis of ori-
entation was proven successful for the detection of breast
masses. In [4] excellent sensitivity for using an orientation

based spiculated lesion detection algorithm was reported.
Here, we gave the radiologist the freedom to interactively
change the parameters and method of enhancement. A
piecewise linear enhancement function [5] can be used either
to modify the discrete steerable dyadic wavelet transform
coe�cients uniformly, or to modify only those coe�cients
that are oriented within a speci�ed interval of orientations.
Orientation of coe�cients is based on the local oriented en-
ergy determined from the transform coe�cients and their
Hilbert transform counterparts. Local orientation analysis
is also possible: local statistics on the similarity of coe�-
cient orientation was carried out and only those coe�cients
with large di�erences in edge orientation were enhanced.
This paper is organized as follows. Section 2 formulates a

discrete steerable dyadic wavelet transform. Next, interac-
tive wavelet techniques are described in Section 3. Prelim-
inary results are then shown in Section 4. Finally, Section
5 presents a brief summary.

2. A DISCRETE STEERABLE DYADIC
WAVELET TRANSFORM

A discrete steerable dyadic wavelet transform [6] incorpo-
rates the concept of steerability [7] into a discrete dyadic
wavelet transform framework [8].
Steerable functions are functions whose arbitrary rota-

tion can be synthesized from a linear combination of basis
functions. A function is steerable if it has a �nite number
of terms in its Fourier series expansion of its polar angle [7].
Functions that are not steerable can be approximated with
steerable functions [9].
A discrete dyadic wavelet transform is computed at

dyadic scales and integer translations. In [8] they used
a wavelet which was equal to a �rst derivative of an odd
degree spline. A �lter bank implementation associated
with a wavelet being a second derivative of an odd de-
gree spline was reported in [5]. In two dimensions, sepa-
rable wavelets were constructed as tensor products of one-
dimensional wavelets and smoothing functions. Thus the
resulting two-dimensional discrete dyadic wavelet trans-
form is translation, but not rotation-invariant. We con-
struct two-dimensional steerable wavelets and use them in
a translation-invariant and rotation-invariant discrete steer-
able dyadic wavelet transform.
We de�ne a steerable dyadic wavelet transform of a func-

tion f(x;y) 2 L2(R2) at a scale 2m, m 2 Z, as
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dyadic wavelet transform by
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For discrete signal processing we normalize the �nest
scale to 1, set the coarsest scale to 2M [8], and introduce a
smoothing function �(x; y) such that
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Next, we derive a �lter bank implementation of a discrete

steerable dyadic wavelet transform with an analyzing func-
tion equal to a second derivative of an isotropic odd degree

spline. Let us use polar coordinates with !r =
p
!2x + !2y

and !
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). Analogous to [8] we write the Fourier

transform of a real smoothing function as
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Equation (2) implies

�̂(2!r) = H(!r) �̂(!r): (4)

Let us choose
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and
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To obtain a second derivative wavelet we select
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The obtained wavelet is a second derivative of a circularly
symmetric spline of degree 2n+ 1 in the direction of x-axis
and is shown in Figure 1 for n = 2.

Figure 1. A steerable wavelet equal to a second
derivative of a circularly symmetric quintic spline.

Both �lter G(!r; !�) and wavelet  ̂(!r ; !�) are steerable
with three basis functions:

G(!r; !� � �) =

3X
k=1

ak(�)G(!r; !� � �k)

 ̂(!r; !� � �) =

3X
k=1

ak(�) ̂(!r; !� � �k);

where the interpolation functions were ak(�) = 1

3
(1 +

2 cos(2(� � �
k
))) with �

k
= (k � 1)�

3
.

Computing Equation (1) for the �nest two scales shows
that
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Inserting Equations (4), (5), and (6) into Equation (9)

results in a relation between �lter frequency responses
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The remaining �lter frequency response K(!r; !�) can
now be determined by inserting Equations (3) and (7) into
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Filter K(!r; !�) is steerable with the same interpolation

functions ak(�) as G(!r; !�) and  ̂(!r; !�):

K(!r; !� � �) =
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Figure 2 shows basic modules of the �lter bank imple-
mentation of a discrete steerable dyadic wavelet transform.
After the decomposition module with m = 0 is applied to
the original signal, the module is iterated for m 2 [1;M ] at
the output of H(2m!

r
). The structure of the reconstruc-

tion part simply mirrors the one of the decomposition part.
Such an implementation shares some properties with steer-
able pyramids [10, 11, 12], but is more overcomplete.
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Figure 2. Basic decomposition (a) and reconstruc-
tion (b) modules of the �lter bank implementation
of a discrete steerable dyadic wavelet transform.

3. INTERACTIVE PROCESSING
TECHNIQUES

Contrast enhancement within the discrete dyadic wavelet
transform framework was achieved by applying a piece-
wise linear enhancement function to transform coe�cients
[13]. Here, an enhancement function was applied to discrete
steerable dyadic wavelet transform coe�cients. After the
forward transform was performed, normalized coe�cients
were modi�ed by

E(x) =

(
x � (K � 1)T if x < �T
Kx if jxj � T
x + (K � 1)T if x > T .

(11)

at each dyadic scale and orientation �k separately. The
desirable scales and orientations were selected for processing
with function E(x) from Equation (11). Figure 3 shows the
enhancement function for parameter values K = 20 and
T = 1.
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Figure 3. An enhancement function (Equation 11
with K = 20 and T = 1).

Local orientation is de�ned as the angle that maximizes
the local oriented energy, obtained from Hilbert transform
pairs of the discrete steerable dyadic wavelet transform co-
e�cients. The Hilbert transforms of the �lter G(!
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respectively, where

sgn(x) =
n

1 if x � 0
�1 if x < 0.

The transform coe�cients with local orientation within a
chosen interval of orientations can be included or excluded
in processing by the enhancement function. Since in a nor-
mal mammogram the structure radiates from the nipple to
the chest wall, this type of processing can be used to identify
areas with locally radiating structures.
Another technique that we are using is similar to the

one described in [4], but used here in a multiscale steerable
framework. 1-norm of di�erences between local orientation
and average orientation is computed within a sliding win-
dow and used as a measure of orientation nonuniformity
within the window. Soft thresholding as a function of ori-
entation nonuniformity measure is used on the transform
coe�cients at each dyadic scale independently.

4. RESULTS

An original mammographic image containing a spicular
mass is shown in Figure 4. Figure 5 shows the result of
applying the enhancement from Equation (11) with pa-

Figure 4. An original mammographic image con-
taining a spicular mass.

rameters K = 20 and T = 0:1 across �ve dyadic scales
(i.e., M = 4). The result of excluding the discrete steer-
able dyadic wavelet transform coe�cients with orientation
�

3
from processing with the enhancement function is shown

in Figure 6 (the enhancement was performed with the same
set of parameters as shown in Figure 5).



Figure 5. An enhanced image using the enhance-
ment function de�ned by Equation (11) with pa-
rameters K = 20, T = 0:1, and M = 4.

5. CONCLUSION

In this paper we have described a scheme for interactive
processing of digital mammograms. Overcompleteness of a
discrete steerable dyadic wavelet transform was exploited
for an e�cient interactive processing across dyadic scales
and along arbitrary orientations. Translation and rotation-
invariance of the transform are both desirable to prevent
unwanted artifacts. A second derivative wavelet compares
favorably with our previous experimental results using a
discrete dyadic wavelet transform ([5, 13, 3]).
The multiscale nature of the presented scheme makes

dealing with various-sized malignancies possible, while ori-
entation analysis enables better control over \structured
noise" (i.e., normal structures superimposed on features of
interest) which can make the reliable interpretation of mam-
mograms di�cult.
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