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Abstract

Mammographic image enhancement methods are

typically aimed at either improvement of the overall

visibility of features or enhancement of a speci�c sign

of malignancy. In this paper, we present a synthesis

of the two paradigms by means of image fusion. After

a redundant B-spline wavelet transform decomposition

is carried out, the transform coeÆcients are processed

for enhancement of microcalci�cations, circumscribed

masses, and stellate lesions. The modi�ed coeÆcients

are then fused for reconstruction of an enhanced image

with improved visualization of malignancies. Both pro-

cessing for enhancement of selected features and fusion

of the resultant images are accomplished within a single

wavelet transform framework which contributes to the

computational eÆciency of the described method. The

devised algorithm not only allows for eÆcient combina-

tion of speci�c features of importance in the contrast

enhanced images, but also provides a 
exible frame-

work for incorporation of di�erent enhancement meth-

ods and their independent optimization.

1 Introduction

Mammography is the best method for early detec-

tion of breast cancer at a time when approximately 80

percent of women diagnosed with breast cancer have

no identi�able risk factors for this disease. The early

detection of breast cancer is essential since therapeu-

tic actions are more likely to be successful in the early

stages. Finding small malignancies and subtle lesions

is often diÆcult with false-negative rate being due both

to diÆculty with discerning subtle features on the com-

plex normal anatomy background and oversight of ab-

normalities.

Contrast enhancement can make more obvious un-

seen or barely seen features of a mammogram with-

out requiring additional radiation. Better visibility of

suspicious structures can increase e�ectiveness and ef-

�ciency, and thus improve the diagnostic performance

of mammography.

Existing methods of mammographic image enhance-

ment can be divided roughly into two categories: (1)

methods aimed at better visualization of all features

present in an image [1, 2, 10, 12], and (2) methods

that target speci�c features of importance (e.g., mi-

crocalci�cations [13, 14, 16], stellate lesions [8]).

Methods from the �rst category are not optimized

for a speci�c type of cancer and sometimes not even

for mammography. Rather, they try to improve the

perceptual quality of the entire image and are often

developed with a framework more general than mam-

mography alone in mind.

The second category methods concentrate on reve-

lation of particular signs of malignancy. They can be

very successful in their area of specialization; however,

in order to process mammogram for presence of various

features, one would need to apply di�erent algorithms

independently resulting in both larger number of im-

ages to be interpreted by a radiologist and increased

computational complexity of such a procedure.

In this paper, we present an approach which over-

comes these shortcomings and problematic limitations

via synthesis of the two paradigms by means of image

fusion.

2 Methodology

The goal of our method is to adapt speci�c enhance-

ment schemes for distinct mammographic features, and

then combine the set of processed images into an en-

hanced image. The mammographic image is �rst pro-

cessed for enhancement of microcalci�cations, masses,

and stellate lesions. From the resulting enhanced im-

ages, the �nal enhanced image is synthesized by means

of image fusion [7]. Wavelet based image enhancement

and fusion are merged into a uni�ed framework, so

that there is no need for carrying out the two oper-

ations independently (i.e., computing wavelet decom-

positions, modifying wavelet coeÆcients for enhance-

ment of speci�c features, reconstructing the enhanced

images, performing wavelet transforms of the enhanced

images, fusing transform coeÆcients, and obtaining the

�nal result by reconstruction from fused wavelet coef-

�cients). Both enhancement and fusion are therefore

implicit (i.e., performed in the wavelet domain only).
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Figure 1: Overview of the algorithm.

Figure 1 presents a block scheme of the overall algo-

rithm.

The algorithm consists of two major steps: (1)

wavelet coeÆcients are modi�ed distinctly for each

type of malignancy; (2) the obtained multiple sets of

wavelet coeÆcients are fused into a single set from

which the reconstruction is computed. The devised

scheme allows eÆcient deployment of an enhancement

strategy appropriate for clinical screening protocols:

enhancement algorithm is �rst developed for each spe-

ci�c type of feature independently, and the results are

then combined using an appropriate fusion strategy.

The structure of the algorithm also enables inde-

pendent development and optimization of enhance-

ment strategies for individual mammographic features

as well as the fusion module.

2.1 B-Spline Wavelet Transform

Since diagnostic features in mammograms appear

in a variety of shapes and sizes, traditional image en-

hancement techniques such as histogram equalization

and unsharp masking seldom produce satisfactory re-

sults and are clearly outperformed by more sophisti-

cated methods [10, 12]. Recognizing the bene�t of

mammographic image processing across di�erent scales

have resulted in a variety of wavelet-based techniques;

however, the choice of an appropriate wavelet trans-

form is of crucial importance. In enhancement of mam-

mograms, for example, it is essential to improve the vis-

ibility of features without distorting their appearance

and shape. Algorithm introduced artifacts are danger-

ous since they can lead to misdiagnosis, and lack of

translation invariance of the transform has been iden-

ti�ed as a possible source of artifacts. In the light of

this major shortcoming of orthogonal and biorthogonal

wavelet transforms, translation-invariant overcomplete

wavelet representations of signals have become popular

[2, 10, 13, 14].

In two dimensions, the lack of rotation invariance

a�ects the processing results as well, and several steer-

able [3] wavelet transforms have been devised to ad-

dress this problem [1, 8, 9]. Translation and rotation

invariance are equally important for image fusion ap-

plications, and our experiments have shown elimina-

tion of orthogonal and biorthogonal wavelet transform

caused artifacts when the steerable dyadic wavelet

transform based fusion method [7] has been used.

Here, we employ a generalization of the discrete

dyadic wavelet transform [11] with wavelets being

equal to the second derivative of a central B-spline.

This multiscale spline derivative-based transform [5]

has several nice properties: (1) it is translation-

invariant and approximately steerable, (2) it is well

suited for incorporating 
exibility from a variety of

methods [1, 2, 4, 8, 10, 13, 14], and (3) it can be imple-

mented as a �lter bank consisting of one-dimensional

�lters only.

The wavelets can be expressed as
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Figure 2 shows the building blocks of a �lter bank

implementation of the transform which uses the set of
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Figure 2: Filter bank implementation of a multiscale

spline derivative-based transform with a second deriva-

tive wavelet. Basic processing modules for (a) decom-

position and (b) reconstruction at a scale 2m.

basis functions needed to approximately steer  (x; y).

The �lters were speci�ed as
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All the �lters are either symmetric or antisymmet-

ric, a property which enables an additional speedup

when a symmetric (e.g., mirror extended) input signal

is used [6].

B-spline approximations are also well suited for car-

rying out the proper initialization of the wavelet trans-

form by means of simple pre�ltering. Such a spline

based initialization can signi�cantly improve the accu-

racy of processing at �ner scales.

2.2 Enhancement and Fusion

After the wavelet decomposition, the obtained coef-

�cients are modi�ed for improved visualization of fea-

tures of diagnostic importance. Local enhancement of

microcalci�cations, circumscribed masses, and stellate

lesions has been developed for each type of malignancy

separately. An advantage of the method represented

by Figure 1 is the fact that the entire processing al-

gorithm can be split into subproblems which can be

tackled independently.

For enhancement of microcalci�cations, second de-

rivatives along directions of x and y-axis are added

to form an approximation to a Laplacian of Gaussian.

The obtained coeÆcients are thresholded, and the orig-

inal coeÆcients at the corresponding locations multi-

plied by a gain factor. Similar enhancement through

detection was used by Strickland and Hahn [13, 14]. To

reduce the number of false-positive elongated samples,

the strength of local orientation was computed by em-

ploying second derivative wavelets in conjunction with

their Hilbert transform pairs for multiscale orientation

analysis. Note that, although not implemented for the

purpose of this paper, it is possible to obtain voices

of the transform as well (e.g., octaves \2.5" and \3.5"

[13, 14]); central B-spline properties enable computa-

tion of the transform at any integer scale [15].

Enhancement of circumscribed masses is carried out

by applying a piecewise linear enhancement function

[2] to wavelet coeÆcients at scales 23 through 25. The

selection of the scale range was based upon the pixel

resolution (116�m) of digitized mammograms in the

University of Florida database.

Stellate lesions are contrast enhanced according to

the observation that they introduce a distortion into a

radial orientation pattern from the nipple to the chest

wall [4]. The 1-norm of di�erences between local orien-

tation and average orientation within a sliding window

is used as an input to a soft thresholding function at

each dyadic scale independently [8].

The choice of enhancement parameters controls the

aggressiveness/subtleness of each resultant enhance-

ment (i.e., prominence of the targeted feature with re-

spect to the surrounding tissue).

Note also that it is possible to put di�erent weights

on features, and exclude certain features from the �nal

result.

3 Experimental Results

Our method was applied to digitized mammograms

from the University of Florida database, and showed

promising results in terms of improved visibility and

detection of subtle features.

Figure 3 demonstrates the results of processing us-

ing the multiscale analysis contrast enhancement al-

gorithm [10], and using the proposed fusion of en-

hanced features method. In this example, the fusion

of enhanced features emphasizes the appearance of a

mass which is surrounded by dense parenchyma of

the breast. Our preliminary results suggest that this

type of image is more easily interpreted by radiolo-

gists compared to images produced via global enhance-

ment techniques; however, the multiscale analysis con-

trast enhancement algorithm [10] is being re�ned as

well. A powerful aspect of the enhancement via fusion

scheme lies in its 
exibility: the multiscale analysis

based global contrast enhancement algorithm [10] can

be readily incorporated into the scheme as one of the

branches before the fusion module.



4 Conclusion
The described method incorporates a variety of

properties of mammographic image enhancement

methods tailored to speci�c signs of malignancy into

a uni�ed computational framework. Multiscale spline

derivative-based transform has proved 
exible enough

for implicit enhancement of individual types of mam-

mographic features and thus enabled processing within

a single wavelet transform decomposition. In addition

to its eÆciency, the algorithm is also well suited for fur-

ther re�nements; optimizations can be performed for

each type of malignancy alone, and separately for the

fusion strategy.

Our preliminary experiments imply that the en-

hancement via fusion approach can provide more ob-

vious clues for radiologists. Further clinical tests are

planned to verify that the versatility of this paradigm

can provide a better viewing environment for an easier

and a more reliable interpretation of mammograms.
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Figure 3: (a) Original mammogram. (b) Contrast enhancement by multiscale analysis [10]. (c) Enhancement

obtained by fusion of enhanced features.


