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Image enhancement in mammography is typically concerned with either general visibility

of all features or conspicuity of a speci�c sign of malignancy. We describe a synthesis of

the two approaches through fusion of locally enhanced microcalci�cations, circumscribed

masses, and stellate lesions. Both local processing and image fusion are performed within

a single wavelet transform framework which contributes to the computational eÆciency

of the method. The algorithm not only allows for eÆcient combination of speci�c fea-

tures of importance, but also provides a exible framework for incorporation of distinct

enhancement methods and their independent optimization.

Mammography, contrast enhancement, image fusion, wavelet transform.

1. INTRODUCTION

In general, mammographic image enhancement methods target either visualization of

all features in an image [1, 2, 3, 4] or visibility of speci�c features of importance such as

microcalci�cations [5].

Methods from the �rst category are not optimized for a speci�c type of cancer, and

are often developed for a framework more general than mammography alone. The second

category approaches can be quite successful in their area of specialization; however, in

order to process mammograms for presence of distinct features, independent application

of di�erent algorithms could result in both larger number of images to be interpreted by

a radiologist and increased computational complexity.

Here, we present an approach which overcomes these shortcomings and problematic

limitations via synthesis of the two paradigms by means of image fusion. The algorithm

consists of two major steps: (1) wavelet coeÆcients are modi�ed distinctly for each type

of malignancy; (2) the obtained multiple sets of wavelet coeÆcients are fused into a single

This work was supported by the U.S. Army Medical Research and Materiel Command under

DAMD17-96-1-6093 and DAMD17-93-J-3003, and by the Whitaker Foundation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


set from which a reconstruction is computed. The scheme allows eÆcient deployment of

an enhancement strategy appropriate for clinical screening protocols: an enhancement

algorithm is �rst developed for each speci�c type of feature independently, and the results

are then combined using an appropriate fusion strategy.

2. WAVELET TRANSFORM

Wavelet based methods are particularly well suited for processing of mammograms since

mammographic features greatly vary in shape and size. Commonly used orthogonal and

biorthogonal wavelet transforms, however, may not be the best tool for mammographic

image enhancement because their lack of translation invariance can lead to artifacts possi-

bly a�ecting a radiologist's interpretation. Translation-invariant but overcomplete wavelet

representations avoid artifacts and have been successfully used for processing of mammo-

grams [1, 2, 5].

Rotation invariance is another desirable property of wavelet decompositions. The

concept of steerability [6] has been utilized for construction of wavelet transforms enabling

rotation-invariant processing of mammograms [3]. Our scheme is built around a multiscale

spline derivative-based transform which, in addition to being translation-invariant and

approximately steerable, is also suitable for non-linear methods of enhancement.

We use x-y separable wavelets

 (x; y) =
dd�p+d(x)

dxd
�p+d(y); (1)

where �p(x) denotes a central B-spline of order p, and limit ourselves to �rst and second

derivatives d 2 f1; 2g. Figure 1 shows wavelets with p=3.

A rotation of wavelet  (x; y) by angle � can be expressed as

 �(x; y) '
dX

i=0
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dd�i�p+d(x)

dxd�i
di�p+d(y)

dyi
;

where ~n = (cos �; sin �) = (nx; ny). The terms
dd�i�p+d(x)

dxd�i
di�p+d(y)

dyi
represent basis functions

needed to approximately steer wavelet  (x; y). A dyadic wavelet transform using these

basis functions can be implemented as a �lter bank consisting of one-dimensional �lters

only [7].

3. ENHANCEMENT OF MAMMOGRAPHIC FEATURES

3.1. Microcalci�cations

Microcalci�cations appear on mammograms in approximately half of breast cancer

cases. The assessment of shape, number, and distribution of microcalci�cations is impor-

tant for a radiologist to reach diagnosis. Microcalci�cations are smaller than 1 mm in size

and can be diÆcult to locate when they are superimposed on dense breast tissue.

Several techniques have been developed to improve the visibility of microcalci�cations

[5, 8, 9]. The approach devised by Strickland and Hahn [5] is particularly well suited
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Figure 1. Spline derivatives in the x-axis direction. (a) Wavelet equal to the �rst

derivative of a quartic spline. (b) Wavelet equal to the second derivative of a quintic

spline.

for our framework: they used an undecimated wavelet transform to approximate second

derivatives of a Gaussian probability density function for a multiscale matched �ltering

for presence of microcalci�cations.

Strickland and Hahn based their method on the observation that the average mi-

crocalci�cation can be modeled by a circularly symmetric Gaussian function. We take

advantage of this fact to model microcalci�cations by central B-splines. Using B-spline

approximations of a Gaussian function, the assumption that a Gaussian object is visible

approximately over �� pixels [5], and the fact that mammograms in the University of

Florida database were digitized at 116�m resolution, four levels of the transform described

in Section 2 with, for example, p=3 are needed to encompass di�erent sizes of microcal-

ci�cations. The wavelet decomposition including voices at scales 3 and 6 (corresponding

to Strickland and Hahn's octaves \2.5" and \3.5") was obtained from relations between

central B-splines at integer scales [10].

The wavelet decomposition enables approximations both to the second derivatives of

Gaussian along x and y directions and to Laplacian of Gaussian across distinct scales

employed by Strickland and Hahn. We proceed in a similar fashion: the two outputs

per scale are thresholded independently, all binary results are then combined, a circular

region centered at detected pixel locations is next multiplied by a gain, and, �nally, the

modi�ed transform coeÆcients are used for image fusion.

3.2. Circumscribed Masses

Almost half of missed cancers appear on mammograms as masses. Perception is a problem

particularly for patients with dense �broglandular patterns. The detection of masses can

be especially diÆcult because of their small size and subtle contrast compared with normal

breast structures.



Fan and Laine [2] developed a discrete dyadic wavelet transform based algorithm

suitable for enhancement of masses. They constructed an approximation to Laplacian of

Gaussian across dyadic scales for an isotropic input to a piecewise linear enhancement

function.

An approximation to a Laplacian of Gaussian across dyadic scales is easy to obtain

using multiscale spline derivatives from Section 2: basis functions
dd�i�p+d(x)

dxd�i
di�p+d(y)

dyi
with

d = 2 and i 2 f1; 2g approximate the second derivative of a Gaussian function along

directions of x and y axis. The appropriate transform coeÆcient at each dyadic scales are

then added and their sum input to the piecewise linear function [2]

C(x) =

8><
>:
x � (K � 1)T if x < �T

Kx if jxj � T

x + (K � 1)T if x > T

used at each level m+1 of the transform separately. Due to the expected size of masses,

levels greater than 4 are enhanced more aggressively.

The multiplicative factor obtained as the ratio between the output and input of the

enhancement function is next applied to the original wavelet coeÆcients before fusion and

the associated inverse wavelet transform are carried out.

3.3. Stellate Lesions

It is important for radiologists to identify stellate lesions since their presence is a serious

indicator of malignancy. Stellate lesions vary in size and subtlety and, in addition, do not

have a clear boundary, making them diÆcult to detect.

In the development of our algorithm, we utilized an observation made by Kegelmeyer

et al. about the distortion of edge orientation distribution induced by a stellate lesion [11].

Normal mammograms show a roughly radial pattern with structure radiating from the

nipple to the chest wall. A stellate lesion not only changes this pattern, but also creates

another center from which rays radiate.

The wavelet transform from Section 2 allows directional analysis using approximations

to both �rst and second steerable derivatives of a Gaussian. A multiscale derivative-pair

quadratic feature detector was computed by �nding the maximum of the local oriented

energy with respect to angle �,

E�
2m
(x; y) =

q
(W1�2ms(x; y))

2 + (W2�2ms(x; y))
2; (2)

where W1�2ms(x; y) and W2�2ms(x; y) denote wavelet decompositions using �rst (Equation

(1) with d = 1) and second (Equation (1) with d = 2) derivative wavelet, respectively,

steered to angle �. The angle that maximizes the local oriented energy (2) represents

orientation at pixel location (x; y).

Similar to the method from Section 3.1, processing is carried out within windows of

scale dependent size: 1-norm of di�erences between the local and average orientations

was computed in the window and used as a measure of orientation nonuniformity. Soft

thresholding as a function of the orientation nonuniformity measure was next applied to

the transform coeÆcients at each dyadic scale independently. The altered coeÆcients are

then included for fusion and reconstruction.
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Figure 2. (a) The cranio-caudal view of the left breast. (b) Enhanced image improves

visualization of the borders of the mass.

4. FUSION OF ENHANCED FEATURES

After coeÆcients are processed for enhancement of distinct mammographic features, the

corresponding coeÆcients are combined according to a fusion rule into a new set of trans-

form coeÆcients from which the fused result is reconstructed. As a fusion rule, the max-

imum oriented energy criterion was chosen: at each position and scale of the transform,

the coeÆcient with greatest local energy was selected [12].

It is also possible to put distinct weights on selected features, and exclude other

features from the �nal result.

Figure 2 shows the original mammogram and the processed image with improved con-

trast between the fat and glandular tissue.



5. CONCLUSION

The presented method incorporates a variety of properties of mammographic image en-

hancement techniques tailored to speci�c signs of malignancy into a uni�ed computa-

tional framework. A multiscale spline derivative-based transform proved exible enough

for implicit enhancement of individual types of mammographic features and thus enabled

processing within a single wavelet transform decomposition. In addition to its eÆciency,

the algorithm is well suited for further re�nements; optimizations can be performed for

each type of malignancy alone, and separately for the fusion strategy.

Our preliminary experiments imply that an enhancement via fusion approach can pro-

vide more obvious clues for radiologists. Further clinical tests are planned to verify that

the versatility of this paradigm can provide a better viewing environment for a more re-

liable interpretation in screening mammography.
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