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Abstract 

Kernel density estimation (KDE) has been prominently used to measure poverty from 
grouped data (representing mean incomes of a small number of population quantiles). In 
this paper I analyze the performance of this method. Using Monte Carlo simulations for 
plausible theoretical distributions and unit data from several household surveys, I 
compare KDE-based poverty estimates with their true and survey counterparts. It is 
shown that the technique gives rise to biases in poverty whose sign and magnitude vary 
with the smoothing parameter, the kernel, the number of data-points analyzed, and the 
poverty indicators used. I also demonstrate that KDE-based global poverty rates and 
headcounts are highly sensitive to the choice of smoothing parameter. Depending on the 
parameter, the estimated proportion of ‘$1/day poor’ in 2000 varies by a factor of 1.8, 
while the estimated number of ‘$2/day poor’ in 2000 varies by 287 million people. These 
findings give rise to concern about the validity and robustness of kernel density 
estimation in poverty analysis. However, they provide a framework for interpretation of 
existing results using this technique. 
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| 1 | INTRODUCTION  

everal recent studies have employed nonparametric smoothing techniques, and in 
particular kernel density estimation methods (henceforth, ‘KDE’) on grouped data 
to obtain estimates of national, regional, and global poverty (see Sala-i-Martin 

2002a, 2002b, and 2006; Ackland, Dowrick, and Freyens, 2004; Fuentes, 2005).1 World 
poverty assessments require the use of grouped data (usually expressed as income 
averages for a small number of population quantiles) because unit data from 
representative household surveys is not available, or is difficult to obtain for all countries 
and years of interest (this is the case in particular for large countries such as China and 
India). To assess long-run trends in global poverty and inequality, researchers often rely 
on grouped data since household surveys are unavailable; however, published summary 
statistics exist.2 The accuracy of poverty estimates and the plausibility of visual 
representations of income distributions crucially depend on the statistical method 
employed on this informationally limited data structure.   

 
The goals of this study are twofold. First, I assess the appropriateness of kernel density 
estimation methods on grouped data for poverty analysis. Biases in poverty estimates are 
identified for a wide range of poverty indicators, poverty lines, parameters (e.g., 
bandwidths and kernels) and possible income distributions. In this way, I propose new 
ways of interpreting the national, regional, and global KDE-based poverty estimates that 
have been recently put forth in the literature. Second, I analyze the robustness of the 
procedure with the given choice of parameter (such as the smoothing parameter) in an 
exercise of global poverty estimation. The findings in this study can be used by applied 
researchers who wish to undertake smoothing techniques in order to analyze poverty 
and/or describe salient features of income distributions from grouped data.   
 
The data structure considered represents income averages for a small number of 
population quantiles (usually five). Since analytical derivations of the properties of the 
KDE estimator are impossible in small samples, Monte Carlo simulations are needed. 
The following plausible theoretical income distributions are considered: Log-normal, 
Dagum, Generalized Beta II, and a notional multimodal distribution. Next, I use three 
nationally representative household surveys (Nicaragua, Tanzania and Vietnam) to 
compare KDE-based poverty estimates obtained from grouped data with those obtained 
directly from unit data. Finally, I assess the performance of KDE in global poverty 
analysis, using grouped income data for a large number of developing countries.  

 
There are reasons to believe that the application of KDE to grouped data may give rise to 
biases in poverty estimates. However, the size of those biases (for different poverty 
indicators, plausible income distributions, and distinct poverty lines) is unknown and 

                                                 
1 Other studies (e.g., Berry et al (1983), Grosh and Nafziger (1986), Korzeniewick and Morran (1997), 
Bhalla (2002), Bourguignon and Morrison (2002), Milanovic (2002, 2005)) have also used grouped data 
representing average incomes of population quantiles to estimate national, regional, and world inequality. 
Grouped data has been used to illustrate of the shape of regional and world income distributions, too.  
2 See, for example, the study on the evolution of world inequality since 1820 by Bourguignon and Morrison 
(2002). 
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requires a study of this kind. The data structure analyzed in this study is informationally 
poorer than a large sample drawn from the underlying distribution. This is one reason 
why nonparametric density estimation methods are thought of as inappropriate on 
grouped data. However, a small number of average incomes are a richer source of 
information about the underlying distribution than are a small number of observations 
from that same distribution. I find that poverty is incorrectly estimated in a majority of 
cases, but is occasionally correctly estimated when biases in the density at different 
points along the support cancel out. The order of magnitude of the poverty headcount 
ratio biases identified in this study reaches 6-7 percentage points (for unimodal 
distributions) and 10-11 percentage points (for the multimodal distribution). Furthermore, 
the biases associated with Foster-Green-Thorbecke (FGT) indicators generally increase 
with the degree of distributional sensitivity.  

 
One reason why KDE has been applied to poverty analysis is that, in contrast to 
parametric approaches, it does not require prior beliefs about the nature of the true data 
generating process. Furthermore, it is a convenient procedure because it reproduces the 
entire underlying density function from a small, manageable amount of data. Therefore, it 
is particularly useful for poverty analyses undertaken for multiple countries and years, 
since the analysis of unit data may be prohibitive in terms of time and manpower, and 
since unit data may be unavailable for numerous country-years. As mentioned, unit data 
from nationally representative household surveys for large countries such as China and 
India are not publicly available. The Chinese State Statistical Bureau publishes grouped 
data from underlying rural and urban household surveys in its China Statistical Yearbook. 
Similarly, summary statistics from Indian National Statistical Surveys are available for 
the period 1950-1994 through the World Bank Database on Poverty and Growth in India 
(1994). While China’s survey data has not been made available to outside researchers, 
India’s can be obtained from the National Sample Survey Organization (NSSO) provided 
that the research is relevant to national development and planning.3 It is therefore 
important to know whether the statistical techniques undertaken on grouped data provide 
reliable estimates of the various features of interest of underlying distributions. As Reddy 
and Minoiu (2007) demonstrate, conclusions regarding the world’s progress towards 
achieving the first Millennium Development Goal of halving severe poverty, crucially 
depend on China’s and India’s poverty reduction experiences.  

 
Kernel density estimation is one of two methods that have been used most widely in 
poverty analysis from grouped data. The alternative approach is the parametric estimation 
of Lorenz curve functional forms.4 Many Lorenz parametric forms have been proposed, 
and two can be readily implemented with the poverty calculation tool POVCAL 
developed by the World Bank (see, e.g., Chen and Ravallion (2005) for a poverty 

                                                 
3 For this study, a formal request for unit data on consumption was submitted to the NSSO, but it was 
rejected on the grounds that the project was not relevant to national development and planning.  
4  Maximum entropy density estimation (for densities from the exponential family) has recently been 
proposed by Wu and Perloff (2003) as an alternative technique for poverty analysis on grouped data. In an 
application to Chinese data, the authors found that the technique provided reliable estimates (Wu and 
Perloff, 2005). However, we are unaware of studies which assess the performance of maximum entropy 
density estimation methods on small samples of quantile means derived from a range of plausible income 
distributions.  
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assessment in China from grouped data; Yotopoulos (1989) for an inequality, poverty, 
and affluence assessment exclusively based on grouped data from selected developed and 
developing countries5; and Chen and Ravallion (2002, 2004), Bhalla (2002), Pritchett 
(2006), and Kakwani and Son (2006) for global poverty analyses using POVCAL). 
Although we do not explicitly compare the estimates presented in the study with those 
that would be obtained through Lorenz curve estimation, it is noteworthy that the 
parameterizations embodied in POVCAL perform well in estimating poverty from 
grouped data when the underlying distributions are unimodal, but do less well in 
estimating poverty from distributions that are multimodal (Minoiu and Reddy, 2007).  

 
In poverty analysis, KDE methods have been undertaken on datasets of five quantile 
means (of income) per country and per year.6 For example, Sala-i-Martin (2002a, 2002b, 
2006) uses five quantile means obtained from (actual or fitted) income shares and an 
estimate of each country’s income for 138 countries. The author concludes that there 
have been substantial reductions in world income poverty (according to all indicators 
considered) over the past three decades. In particular, after applying KDE to this grouped 
data, the author arrives at the conclusion that the share of people with an income level 
lower than $1.50 per day in the world's population has fallen from 20.2 percent to 7 
percent between 1970 and 2000. The author proposes two methods for constructing a 
world income distribution from individual country distributions thereby estimating world 
poverty. The first method (described as the “kernel of quintiles” method) consists of 
constructing a dataset in which each person’s income level is taken to be the average 
income of the national population quintile to which that person belongs. Subsequently, 
kernel density estimates are obtained from the data. The second method (described as the 
“kernel of kernels” method) consists of first estimating each country’s income density 
from quintile means, and integrating the individual country densities into a population-
weighted world income density. In both methods, poverty is subsequently estimated from 
the KDE-based world distribution of income, while regional estimates are obtained from 
KDE-based (population-weighted) regional distributions of income. The assessment 
undertaken in the current study of the KDE technique on grouped data is more relevant to 
the “kernel of kernels” method proposed by Sala-i-Martin. 

 
Sala-i-Martin’s use of KDE in poverty analysis has been widely cited and his global 
poverty estimates have been debated.7 A number of academic papers have subsequently 
used his proposed methodology. For example, Ackland et al (2004) use the same 
technique to investigate the sensitivity of regional and global poverty estimates to 

                                                 
5 The Lorenz curve parameterization used by Yotopoulos (1989) is that of Kakwani and Podder (1976) as 
distinguished from those of POVCAL (Villasenor and Arnold, 1989 and Kakwani, 1980).  
6 For example, Chen and Ravallion (2004) use household surveys for some countries and grouped data for 
others (e.g., China) to arrive at the conclusion that the share of the developing world’s population living 
under a consumption level of $1.08 per day has fallen between 1981 and 2001 from 40.4 percent to 21.1 
percent.  When grouped data is available, the authors use parametric Lorenz forms to estimate poverty.  
7 See, for example, articles in The Economist (“More or less equal?”, March 11, 2004 and “Pessimistic on 
poverty?”, April 7, 2004), NBER Digest (“Economic growth is reducing global poverty”, October 2002), 
The Financial Times (“Location, location, location”, September 24, 2002), The National Center for Policy 
Analysis Daily Policy Digest (“World poverty rate has fallen”, June 11, 2002), and The New York Times 
(“Good news about poverty”, November 27, 2004). 
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alternative approaches of constructing purchasing power parity (PPP) conversion factors. 
The authors use five income shares and an estimate of per capita income for 97 countries 
as well as the “kernel of kernels” method to obtain poverty estimates for countries, 
regions and the world. However, their final aim is to show that the choice of index 
number in the estimation of PPPs (in particular, Geary-Khamis versus EKS) greatly 
affects the resulting poverty estimates. In another study, Fuentes (2005) uses grouped 
data (i.e., an unspecified number of income shares for population percentiles) to estimate 
the distribution of income, as well as inequality and poverty incidence in several 
countries.  

 
A series of related studies do not make use of distributional information within 
population groups, but still employ KDE to estimate national and regional income 
distributions.8 For example, Dhongde (2005) uses kernel density estimation methods on 
state-level per capita consumption, with the aim of arriving at a poverty headcount ratio 
in India in 2000. Aziz and Duenwald (2001) obtain smoothed income distributions for 
China using province-level per capita income and find evidence of bimodality. Similarly, 
Milanovic (2002, 2005), Bourguignon and Morrison (2002), Bianchi (1997), Jones 
(2002), and Quah (1996, 1997) use density smoothing techniques to visually represent the 
global income distribution which shows signs of twin-peakedness. Multimodality tests of 
the European income distribution obtained from per capita income estimates of territorial 
units, were undertaken by Pittau (2005) and Pittau and Zelli (2006). Lastly, the KDE 
technique is used to estimate poverty from full household surveys by Deaton (2003a) and 
Deaton and Tarozzi (2000).   

 
The remainder of this paper is organized as follows: in the next two sections, I discuss the 
nature of the data structure and the bias of the kernel density estimator on grouped data. 
Section 4 contains a description of the methods used in this paper. In Section 5, the 
results of the Monte Carlo analysis for plausible income distributions are presented. 
Section 6 shows findings from a comparison of poverty estimates from household 
surveys with those from KDE on grouped data for three countries with varying levels of 
poverty. In Section 7, a sensitivity analysis of KDE-based global poverty estimates is 
discussed. Conclusions are drawn in Section 8. 

 

 

                                                 
8 No ordering of underlying incomes in the larger geographical area of interest is undertaken prior to the 
analysis of the data, but a (population-weighted) kernel density estimator is used. 
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| 2 | THE DATA STRUCTURE  

he situation facing a researcher who seeks to estimate poverty from grouped data 
can be described, in short, as follows. Information on a variable of interest (e.g., 
income, consumption, or total wealth) is collected through a nationally 

representative household survey. The survey however, is not available to the researcher in 
its entirety. Instead, she possesses average incomes of several population quantiles. 
Alternatively, the researcher possesses income shares computed from the survey. An 
estimate of total income9 is then used to scale the income shares and obtain average 
incomes of several population quantiles.  
 
One way of representing the data is as a collection of linear functions of order statistics: 
the order statistics represent the income levels of individuals in the nationally 
representative household survey arranged in ascending order. The averages of incomes of 
population quantiles are linear functions of order statistics. These “systematic statistics” 
(Mosteller, 1946) represent the sole source of information from which the researcher 
aims to recover features of the income distribution.10  

 
The process of grouping the data can be described as follows: income information for a 
large number of individuals is transformed into summary income information for a small 
number of equally-sized groups of individuals after those individuals’ income levels have 
been arranged in ascending order. The unit data from the survey represents 
independently and identically distributed draws from the unknown income distribution. 
The process of ordering the independent and identically distributed draws from the 
underlying distribution generates a complex correlation structure among the order 
statistics. The correlation structure would be inconsequential for the properties of the 
kernel density estimator if all the underlying observations were available to the 
researcher. However, this is not the case. The subsequent operation of averaging the order 
statistics reduces the informational content of the original sample. However, the averages 
retain important information about the underlying distribution due to the prior ordering of 
the original observations.   

 
Each quantile mean available for KDE is a trimmed mean obtained by discarding a 
number of order statistics. Four of the quintile means, for example, are asymmetrically 
trimmed means, whereas the central one (corresponding to the middle twenty percent of 
the population) is a symmetrically trimmed mean. Symmetrically trimmed sums are 

                                                 
9  Estimates of per capita income (or consumption) can be drawn from representative household surveys or 
the national accounts. Large discrepancies have been documented between survey-based and national 
accounts-based estimates of per capita income and consumption. Deaton (2005), for example, concludes 
that choosing the latter estimate over the former in global assessments of economic performance, may lead 
to understating the rate of global poverty reduction, and overstating average growth rates. 
10 Mosteller (1946) coined the term “systematic statistics” to refer to linear functions of order statistics. The 
early literature following his paper focused on robust estimation from systematic statistics of location and 
scale parameters of the underlying distributions. In our context, since kernel density estimation is applied to 
quantile means instead of the actual income realizations used to compute these means, it is important to 
characterize the joint distribution of the quantile means.  

T 
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robust estimators of location (to heavy-tailed distributions and outliers). Furthermore, if 
the data are drawn from a symmetric distribution, they are unbiased estimators for the 
mean of that distribution.11 The limit behavior of trimmed means has been investigated, 
among others, by Stigler (1973, 1974) and Mason (1981). These authors have shown that 
trimmed means are asymptotically normally distributed under mild conditions on the 
weighting function for the ordered observations and an arbitrary data generating process 
for the unordered observations.12 A small number of quantile means are therefore 
informationally richer than a small sample from the underlying distribution (in particular 
because it carries more precise information about the location of underlying order 
statistics along the support), but informationally poorer than a large sample from the 
underlying distribution.  

 
Finally, it should be noted that nonparametric approaches to estimating the density from 
small datasets (comprised of draws from the underlying density or, as is the case here, 
quantile means), may appear inappropriate due to the very nature and purpose of 
nonparametric statistics. The applied economist is encouraged to use nonparametric 
estimators in “exploratory data analysis, as a confirmatory tool, or as a supplement to the 
standard parametric fare” (Yatchew, 1998). The purpose of nonparametric techniques is 
to provide means of uncovering patterns in the data using information from a wealth of 
(nearby) observations. Yatchew (1998) argues that “interpolation is only deemed reliable 
among close neighbour[ing] observations, and extrapolation outside the observed domain 
is considered entirely speculative”. With these considerations in mind, I proceed to 
discuss the bias of the estimator. 

 

 
 

                                                 
11 This is relevant in the context of income distributions, since Log-transformed incomes are distributed 
normally (hence, symmetrically) if incomes are distributed Log-normally.  
12 A necessary and sufficient condition for this result to hold is that the sample is trimmed at sample 
percentiles such that the corresponding population percentiles are uniquely defined (Stigler, 1973). 
Similarly, Moore (1968) and Siddiqui and Butler (1969) have shown that linear functions of order statistics 
are asymptotically normally distributed (under the condition that the weighting function which gives rise to 
the linear functions of order statistics is differentiable, its first derivative is continuous and of bounded 
variation except at finitely many jumps. This condition is trivially fulfilled by the weighting function giving 
rise to the quantile means). 
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| 3 | BIAS OF THE ESTIMATOR  

he bias of the kernel density estimator used on grouped data is derived and 
compared to the survey-based kernel density estimator (which employs all the 
underlying data). Assume that the observed individual income levels are 

realizations of a collection of iid  random variables },...,{ 21 NXXX drawn from the 

unknown density )(xf with positive support ),0[ ∞ . The order statistics of the data are 

given by }
~

...
~~

{ 21 NXXX ≤≤≤  . The sample is divided into J  equal-sized groups, also 

known as population quantiles. Suppose, WLOG, that the number of observations within 

each group is M , such that NJM =  . Averages across incomes within each quantile are 
then computed such that a collection of quantile means representing linear functions of 

order statistics, denoted by{ }Juuu ˆ,..,ˆ,ˆ
21 , is obtained.  

The underlying data are not observed. Instead, the quantile means { }Juuu ˆ,..,ˆ,ˆ
21   are 

available. Each quantile mean denoted by  

u j   is equal to: 
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The kernel density estimator on quantile means is given by: 
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The bias of the kernel density estimator at point of estimation x  is given by: 
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where )(⋅jg   is a density probability function of the thj  quantile mean. Following 

Silverman’s (1986) derivation of the bias of the regular kernel density estimator, a change 

of variable  
x−


u j

h
= t j   is performed. Using the symmetry of the kernel density, equation 

[4] obtains:  
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As in Silverman (1986), h is treated as constant in these derivations.13 For small jt ,   a 

Taylor expansion series approximation of ( )
jj htxg −   around  )(xg j   is undertaken: 
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Note that if the kernel is symmetric about zero, the second term disappears and equation 
[6] becomes:  
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For purposes of comparison, the bias of the ‘standard’, survey-based kernel density 
estimator (Silverman, 1986) is given by: 
 

...)()(''
2

))(ˆ( 2
2

+= ∫ dttktxf
h

xfBias S     [8] 

 

where the higher order terms in h have been suppressed and dttkt )(2

∫  is a constant 

depending on the weighting function. The bias of the standard kernel density estimator 

itself depends on the true unknown density function )(xf (as well as the derivatives of 

this function). Furthermore, the bias is an increasing function of the bandwidth. A larger 
bandwidth leads to a larger bias since the former implies that information about the mass 
at a given point of estimation is collected from observations distant from that point of 
estimation.   

 
As expected, the grouped data-based bias is itself a function of the unknown probability 

density functions associated with the quantile means. If we let  )()(1 xvxg jjJ
=∑  then the 

grouped data-based estimator will have the same bias as the survey-based estimator if 
v(x) = f(x). As the number of observations underlying each trimmed mean increases, it is 

known that )(⋅jg becomes a normal distribution. However, an evaluation of v(x) requires 

                                                 
13 The bandwidth can be chosen according to some optimality criterion (e.g., minimization of the 
approximate mean integrated squared error) and thus be made a function of the size of the underlying data. 
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an analytical expression for the density (and its derivatives) of a summation of J normally 
distributed trimmed means that possess a complex correlation structure. Since the 
analytical derivation is prohibitively difficult, and since it may be unreasonable to invoke 
asymptotic results in the context of grouped data computed from household surveys, I use 
Monte Carlo simulations to determine the size of the bias in the grouped data-based 
estimator when the data represents a small number of trimmed (quantile) means. 

 
A second issue concerns the bounded nature of the support of income distributions.14 If 
kernel density estimation is applied to the raw unit data or the raw quantile means, a 
downward boundary bias may arise at income levels close to or at the boundary. The 
boundary bias may, in turn, affect estimates of poverty and lead to distorted visual 
illustrations of income distributions. This is due to the fact that the mass close to and at 
zero (or, more generally, at the left boundary) is underestimated, in expectation, by as 
much as 50 percent (Marron and Ruppert, 1994). Most studies, however, undertake a log-
transformation of the income averages before estimating the density. This operation shifts 
the mass towards the center of the distribution, partially circumventing the boundary bias 
problem (at the left-hand tail). Following the practice in the literature, quantile means are 
log-transformed in this analysis.  

 

 
 

                                                 
14 Although in household surveys, negative income levels are not uncommon (since individuals can be 
dissaving). 
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| 4 | THE BANDWIDTH AND KERNELS CONSIDERED  

ernel density analysis is undertaken using software developed for this purpose 
entitled the "Kernel Density Estimation and Analysis Tool".15 Quintile, decile, 
and ventile means of per capita income (or consumption) computed from 

representative household surveys are inputted into the software. The data sources for all 
household surveys and descriptions of the income and consumption variables are given in 
Appendix I. A variety of bandwidths and kernels are used. Populations are subsequently 
drawn from the estimated density. Poverty indicators and quantile means are computed 
from those populations.  
 
In the Monte Carlo exercises, I present results based on three different bandwidths.  The 
first three are the “rule-of-thumb” automatic bandwidths which seek to minimize the 
approximate mean integrated squared error as proposed by Silverman (1986, pp. 45-48): 

Bandwidth S1 is given by the formula 5

1

ˆ06.1
−

×× Jσ  where σ̂  denotes the standard 
deviation of the data, J refers to the number of observations analyzed and the constant 

1.06 corresponds to the Gaussian kernel16. Bandwidth S2 is given by 5
1

79.0
−

×× JIQR  

where IQR  is the inter-quartile range of the data and serves as a more robust estimator of 

the spread of the distribution. Finally, Bandwidth S3 is given by 5
1

9.0
−

×× JA  and is the 

third optimal bandwidth (for the Gaussian kernel) where ).ˆ,34.1/min( σIQRA =  

Bandwidths S1 to S3 are derived based on an important assumption that the data are 
generated from the normal distribution. Bandwidth S1 tends to over-smooth the density 
and may lead to important features of the density (such as heavy skewness) to be 
concealed, whereas Bandwidth S2 employs a more robust estimator of the dispersion of 
the underlying distribution and leads to superior density estimates for long-tailed and 
heavily skewed distributions (but not so on heavily bimodal distributions).17 Bandwidth 
S3 attempts to achieve a balanced amount of smoothing that will work reasonably well on 
both skewed and multimodal distributions (Silverman, 1986). Silverman’s optimal 
bandwidths are classified as “first generation” bandwidths by Jones, Marron and Sheather 
(1996). We choose to focus on them because of their widespread use in applied work 
(due to their availability as default in statistical packages). 

 
In the exercises in which unit data from nationally representative household surveys is 
used (Section 6), I also present results based on the Sheather and Jones (1991) bandwidth 

                                                 
15 The software will be made available as freeware. The software has been produced according to our 
specifications and in close collaboration with us by Kruchten Engineering Services Limited. I would like to 
thank Nicolas Kruchten, David Dekoning and Sergey Kivalov for their help with software development. 
The documentation of the software is available online on: www.columbia.edu/~cm2036/kde.html    
16 We use canonical bandwidths for all kernels so that all estimates are comparable across different kernels. 
The canonical bandwidths ensure that each bandwidth-kernel combination leads to the same amount of 
smoothing (or tradeoff between bias and variance) represented by the approximate value of the integrated 
mean squared error (Marron and Nolan, 1988).  
17 Notably, the estimator of dispersion (or more precisely, of the rapidity of fluctuations in the density) 
plays the role of a proxy for the second derivative of the unknown true density f - a quantity which affects 
the size of the kernel density estimator bias (as shown in Section 3). 

K 
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(S-J). This bandwidth is entirely data-driven and has been shown to outperform other 
rule-of-thumb bandwidths both theoretically (by achieving a smaller value of mean 
integrated squared errors) and practically (in simulations for a wide range of density 
shapes). It is considered to be the best “second generation” plug-in estimator and is 
recommended as a benchmark for good performance (Jones, Marron, and Sheather, 
1996).  

 
Finally, in the global poverty exercise (Section 7), I enlarge the set of bandwidths to 
include other rule-of-thumb values proposed in the literature. The aim is to cover as 
broad a range as possible of first and second generation bandwidths in order to determine 
the impact of the bandwidth choice on world poverty estimates. I consider, first, a variant 
of the plug-in estimator (Wand and Jones, 1995), as well as a variant of Silverman’s S3 

bandwidth in which the scale parameter is σ̂ instead of ).ˆ,34.1/min( σIQR  Results are 

also presented for the “oversmoothed bandwidth” (representing the upper bound to the 
integrated mean square error minimizer). It is the highest bandwidth consistent with a 
‘reasonable’ amount of smoothing and is likely to result in even more smoothing than 
Silverman’s S1 bandwidth. However, it is considered to be a good starting point for 
subjective choice of bandwidth (Jann, 2005).  

 
Throughout the study, I also employ a bandwidth (labeled as ‘hybrid’) that corresponds to 

a variation of Silverman’s S3 bandwidth in which the scale parameter is σ̂ instead of 

)ˆ,34.1/min( σIQR , and has additional important features. It is kept constant across 

kernels despite the fact that the amount of smoothing it achieves is different for each 
kernel; hence, the resulting density estimates are not strictly comparable across kernels 
because each kernel-bandwidth pair corresponds to a different amount of smoothing. 
Furthermore, the hybrid bandwidth is kept constant across datasets (corresponding, for 
example, to countries) despite the fact that optimal smoothing parameters defined in the 
literature are data-driven. The main reason why the hybrid bandwidth is considered in 
this study is to be able to assess the claim that despite fixing the bandwidth, different 
kernels produce the same poverty estimates from any given set of quantile means (Sala-i-
Martin, 2006). Additionally, I wish to determine whether bandwidths that may not 
minimize the integrated mean square error (one of the most often used optimality 
criterion for bandwidth choice) and are not data-driven, under- or outperform optimal 
bandwidths when applied to poverty assessment. In the Monte Carlo simulations and for 
the country studies, the value of the hybrid bandwidth is set at 0.39 for quintile data, 0.34 
for decile data, and 0.296 for ventile data. Following Sala-i-Martin (2002a, 2002b, and 
2006), it is computed assuming a standard deviation for the data (regardless of the dataset 
on which it is employed) of 0.6. These set values lead the hybrid bandwidth to generally 
be smaller than the optimal bandwidths (in the datasets used in this study) and will 
naturally lead to under-smoothing.   

 
The following six weighting functions are employed: Gaussian, Epanechnikov, Quartic, 
Triweight, Triangular, and Uniform. It has been shown that the mean integrated squared 
error is minimized for the Epanechnikov kernel, but that asymptotically, the choice of 
kernel is inconsequential for achieving the minimum mean integrated squared error 
(Silverman, 1986). Since this analysis, however, is based on a small number of quantile 
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means, there is no a-priori reason to discard any kernels. Hence, a wide range of 
weighting functions is considered. Furthermore, no restrictions are effectively put on the 
support of the density.18 The density is estimated at 100 equidistant points along the 
support. Samples of 5,000 observations are drawn from the estimated densities using a 
deterministic approach in which the proportion of persons in the drawn sample with a 
specific income is equal to the density estimated at that income (up to rounding). The 
incomes in the sample drawn are linearly interpolated so as to avoid the clumping 
inherent in this deterministic approach.19 

 

                                                 
18 The estimated density support is given by ],[ maxmin hxhx +−   where  minx   and  maxx   are the 

bottom and top quantile means.  
19 There are several approaches that can be used to draw samples from kernel density estimates. The 

simplest is the deterministic approach in which the sample is constructed by requiring that, up to rounding, 
the proportion of persons in the population with a specific income should be equal to the density associated 
with that income. This is the common approach in the literature on world poverty estimation. A second 
approach is the approach described in the text, for which we show results in the paper. A third approach 
involves directly drawing from the density using an algorithm that constructs a random variable whose 
p.d.f. (or alternatively, C.D.F.) is precisely that estimated by KDE from the grouped data. Since the 
methods for generating synthetic populations lead to the same results, we only show findings based on the 
deterministic generator with interpolation. 
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| 5 | MONTE CARLO STUDY  

Theoretical Distributions 

 Monte Carlo analysis of the properties of the kernel density estimator on grouped 
data is undertaken using quantile means computed from four distributions: the 
Log-normal, Dagum, Generalized Beta II, and a notional multimodal 

distribution.20 The parameters chosen for the first three distributions are those resulting 
from a parametric density estimation exercise undertaken by Bandourian, McDonald and 
Turley (2002) on 82 household surveys from 23 countries. The authors show, for 
example, that the Dagum distribution provides the best fit to unit income data in the class 
of three parameter distributions, and the Generalized Beta II distribution is the best 
performing distribution in the class of four parameter distributions. In the family of two-
parameter distributions, the Log-normal distribution is chosen due to its wide usage in the 
literature on income distributions (see, for example, the estimation of country income 
distributions by Babones, 2003).21 
 
I use parameter values for the Log-normal distribution that have been fit to Russian 1995 
income data. The parameter values for the Dagum and Generalized Beta II distributions 
have been fit to Mexican 1996 income data. The multimodal distribution is the 
population-weighted 2004 world distribution of income, in which individuals of each 
country are assigned the per capita GDP of that country. The two modes of this 
distribution are produced by the large mass at the mean incomes of India and China, and 
a third, lower mode corresponds to the high average income of the richest nations. True 
densities of the four (log-income) distributions are shown in Appendix II.   
 

Summary Statistics, Density Estimates and Diagrams 

A first question is whether the kernel density estimator from grouped data performs well 
in describing the underlying distribution through summary statistics (e.g., means, 
medians, standard deviation, and quintile means). The findings are reported in Appendix 
III (Table 1) (for input data representing quintile means, S3 bandwidth, and the Quartic 
kernel22).   
 
Across the four distributions, it is found that the mean is systematically overestimated (by 
at most one fifth), while the median is estimated fairly well for all distributions. The 
standard deviation is substantially underestimated for the Log-normal, Dagum 

                                                 
20 From each distribution, 200 samples with 1000 observations each are drawn. Quantile means are then 
computed from the samples, a (natural) log-transformation is applied to them, and kernel density estimation 
is undertaken. 
21 In the study undertaken by Bandourian, McDonald and Turley (2002) to assess the performance of 
different distributions in estimating real income survey data (using 82 datasets from 23 countries) the best-
fitting two parameter distribution is the Weibull. A Monte Carlo exercise has also been undertaken using 
data from the Weibull distribution, but the results were largely similar to those for the other three 
distributions (log-normal, Dagum and Generalized Beta II) and are therefore not reported. 
22 The results are broadly similar for the other Silverman bandwidths and the other five kernels.  

A 
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distribution and Generalized Beta II distribution (by as much as 65 percent) and is 
overestimated for the multimodal distribution (by as much as 24 percent). Some 
regularities can be observed in the second half of the table. For instance, the ratio of 
estimated quintile means to their true counterparts are always lower than 1 for the bottom 
two quantiles, and always higher than 1 for the upper two quantiles, for every 
distribution. The average income of the poorest 40 percent of the population is 
systematically and substantially understated whereas that of the richest 40 percent of the 
population is systematically and substantially overstated. It is only the average income of 
the middle 20 income quantile that is precisely estimated for all distributions other than 
the multimodal distribution (for which it is understated).  

 
These findings (especially those for the middle of the distribution) are not surprising 
given the robust nature of trimmed means for estimating the location of underlying 
densities. It is observed, however, that using kernel density methods on grouped data 
generates important distortions precisely in the tails of the distributions. The systematic 
misestimation of the (average) incomes of the poorer and of the richer in a country will 
have an important effect on the values of poverty indicators, and will depend on the 
location of the poverty line along the density support. Although the density estimator 
assigns densities to income levels in the tails around the observed quantile means, it does 
so by drawing information primarily from the extreme quantile means. It thus faces a real 
difficulty in estimating the density at income levels far to the left (or right) of the extreme 
quantile means, and therefore the bandwidth plays a crucial role in allowing the 
weighting functions to “stretch” so as to produce nonzero densities at these far-off 
income levels. 

 
In Graphs 1 and 2, the ability of the grouped-data KDE to estimate the quantile means of 
the underlying distribution is analyzed. This is of intrinsic interest because this analysis 
will shed further light on the performance of the technique in estimating the tails and it 
will demonstrate the technique’s sensitivity to the smoothing parameter. Graph 1 shows 
histograms of the estimated quantile means (from the 200 draws) obtained from kernel 
density estimates with the optimal Silverman 3 bandwidth. The figure depicts the 
downward bias in the average income of the poorest population quintile and the upward 
bias in the average income of the richest population quintile.23 Graph 2 repeats the 
exercise for the hybrid bandwidth. As mentioned earlier, the hybrid bandwidth chosen in 
this study is generally smaller than Silverman’s optimal bandwidths.24 Naturally, the 
under-smoothing induced by the small bandwidth value yields a much better 
approximation of the observed quintile means. Graph 2 shows that the histograms of the 
200 fitted quintiles are centered at the observed quintile values for all quintiles. In terms 
of fitting the moments of the data, the hybrid bandwidth chosen in this study outperforms 
the optimal bandwidths. It should be mentioned, however, that this is solely an artifact of 

                                                 
23 It is worthwhile mentioning here that the distributions of the (fitted) quantile means move in the expected 
direction (i.e., towards being centered on the expectation of the quintile) as the number of data points 
available for analysis increases (from quintile means to decile means and ventile means). However, it does 
not do so monotonically.  
24 For example, for the Generalized Beta II distribution, the hybrid bandwidth is approximately 1.5 times 
smaller than the Silverman 3 rule-of-thumb bandwidth in the case of quintile means. 
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the low value of the hybrid bandwidth relative to the optimal bandwidths. If the hybrid 
bandwidth were larger than those, then this conclusion would be reversed since the 
hybrid bandwidth would lead to an even higher degree of smoothing.  

 
Actual versus fitted densities and the size of the density bias along the support (for Log-
normal data) are plotted for various distributions and kernel-bandwidth pairs in Graphs 
4A and 4B25. The first panel overlays the estimated densities fitted from grouped data on 
the true density, while the second panel plots the bias in the density estimate (expressed 
as difference between the average density estimate and its true counterpart). The first 
conclusion from these diagrams is that the choice of kernel does not seem to matter in 
terms of the visual impression created by the density estimate. This is, however, not 
surprising given that canonical bandwidths are used to ensure that each kernel-bandwidth 
combination achieves the same amount of smoothing. The second conclusion is that there 
are distortions in the estimated density at every point along the income support (with the 
exception of two crossing points where the bias is zero). The estimated density is biased 
upwards in the tails of the distribution, and downwards in the middle of the distribution.  

 
It is easiest to see the likely consequences of these density biases on poverty for the 
poverty headcount ratio. Suppose that the poverty line falls below or at the first crossing 
point. Then the poverty headcount ratio will be over-estimated. As the poverty line 
moves rightward on the support, the extent of over-estimation will fall until it becomes 
zero when the poverty line is such that the density over-estimation in the tail is perfectly 
offset by the under-estimation in the middle of the density. As the poverty line moves 
rightward, the headcount ratio will remain under-estimated until further tradeoffs are 
encountered.  

 
In contrast, it is more difficult to foresee the poverty biases associated with this technique 
in the case of the multimodal distribution (Graph 5). The left and right panels shows 
densities estimated from grouped data overlaid with the true density (left), and a plot of 
the difference between the estimated density and the true density (right).  It is observed 
that the extent to which salient features of the underlying density are replicated by KDE 
critically depends on the choice of bandwidth and kernel. The Gaussian kernel in 
conjunction with Silverman’s optimal bandwidth S3 produces a largely over-smoothed 
density that conceals the multiple modes of the distribution. In contrast, the (lower) 
hybrid bandwidth is better able to reveal the modes of the data, although these modes are 
located at the quintile means instead of their true location. It should be noted that visual 
illustrations of multimodal distributions obtained through density smoothing from 
grouped data might be misleading. Distortions should be expected in the resulting density 
estimates in both directions (over- and under-estimation) and along the entire support.   

 

                                                 
25 We choose to do so rather than describe the performance of the estimator with statistics such as the Sum 
of Squared Errors or the Sum of Estimated Errors as these might miss important variation in the biases 
along the support. Furthermore, the points of estimation are kept fixed across draws to enable computation 
of the bias at each income level on the support. At every point of estimation, the densities are averaged 
across the 200 draws (Graphs 4A and 4B). 
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The four panels in Graph 6 reveal the pitfalls of using a non data-driven, fixed bandwidth 
for analysis, as opposed to data-driven bandwidths. In some datasets, the hybrid 
bandwidth might fall close to an optimal bandwidth. The first panel shows that this could 
be the case.26 The two curves, corresponding to the S1 and hybrid bandwidths for 
Dagum, although different, show that the hybrid bandwidth tends to under-smooth. More 
importantly, the size of the bandwidth greatly influences the lowest income level at which 
the estimator can estimate nonzero density. Should a poverty line fall between the 
minimum income levels at which each of the two curves has nonzero density, then the 
hybrid bandwidth will yield zero poverty level (by any indicator), whereas S1 would 
yield positive values for poverty indicators. The second panel (Graph 6) shows the effect 
of changing the kernel and keeping the bandwidth fixed. It reveals the consequences on 
density diagrams of changing the amount of smoothing. The estimated density 
corresponding to the hybrid bandwidth is now concentrated at the quintile means, and is 
zero between the extreme modes and the central mode. Since the hybrid bandwidth is too 
small (and the kernel has finite support), there is no information from adjacent points 
because those points do not fall in the window of neighboring points in which the kernel 
density estimator seeks information. Hence, at those points of estimation, the estimated 
density is zero. The panels in this section lead to the following conclusions regarding the 
hybrid bandwidth: (a) the hybrid bandwidth might lead to the same level of smoothing as 
an optimal bandwidth, but it will do so only by chance; (b) otherwise, the hybrid 
bandwidth may lead to substantial under- or over-smoothing of the estimated curve (in 
conjunction with some kernels), which renders diagrams of that curve difficult to 
interpret; (c) the hybrid bandwidth can be used for some purposes (e.g., fitting the 
observed data well) but doing so might render it less appropriate for other purposes (e.g., 
producing accurate diagrams of the underlying density). 

 

Poverty  

Poverty estimates are reported for two different poverty lines in Appendix IV (Tables 2-
3). The poverty lines are set at the median multiplied by factors equal to 0.25 and 1.75, 
respectively.  From the previous analysis, we anticipate that the share of poor will be 
fairly well estimated for poverty lines located close to the center of the distribution, and 
less well estimated for poverty lines located at income levels at which the biases in the 
estimated density do not cancel out (e.g., in the far left tail). We consider, however, a 
range of poverty indicators, some of which take account of the depth of poverty 
(measured as the distance between the income of the poor and the poverty line) and 
others that examine the level of inequality among the poor. The indicators considered are: 
the poverty headcount ratio, the poverty gap, the squared poverty gap, the income gap 
ratio, the distributionally-sensitive FGT (3) and FGT (4) indices, and the Sen Index. 
 
It is found that the poverty headcount ratio is over-estimated for the lower poverty line, 
and underestimated for the higher poverty line. For input data representing quintile 
means, the poverty headcount ratio is overestimated by a factor of 1.17 of its true 

                                                 
26 In order to avoid the difficulties that arise in keeping the points of estimation fixed, these panels 
superimpose histograms of the true density with kernel density estimates from grouped data computed 
directly from the universes. Therefore, there is no Monte Carlo exercise involved in Graph 6. 
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counterpart (for the Log-normal distribution) corresponding to a bias of 2 percentage 
points (Table 2). For input data representing decile means, the biases rise up to a factor of 
1.28 corresponding to an overestimation of 3.4 percentage points. The biases are slightly 
lower for ventile means. The FGT indicators of the depth of poverty (with parameter 
values between 1 and 4) are more substantially underestimated by quintile data than they 
are for decile and ventile data. The biases appear to rise with the distributional sensitivity 
of the FGT indicator. The situation is reversed for the higher poverty line. In particular, 
the poverty headcount ratio is now underestimated by almost 9 percent (or 7 percentage 
points) in the case of multimodal data. It is underestimated by between 5 and 7 percent 
(or approximately 5 percentage points) when data from the other distributions is utilized.  

 
Table 4 summarizes the results for a wider range of poverty lines using all the 
distributions. This table focuses, however, only on the poverty headcount ratio (as it is 
the poverty indicator with the widest application). As before, it is observed that generally 
the extent of poverty is overestimated for lower poverty lines, is estimated correctly for 
poverty lines that are close to the population median (that is, in regions where the positive 
density biases cancel out with the negative density biases) and is underestimated for 
higher poverty lines. The behavior of biases associated with the multimodal distribution 
is somewhat different, with a pronounced underestimation for poverty lines equal to and 
higher than the median. In particular, at the median, the poverty headcount ratio is 
underestimated by almost 11 percentage points (because the estimated density “misses” 
the first mode of the distribution) whilst at ½ of the median, it is overestimated by almost 
9 percentage points due to positive density biases at the left end of the support. The 
biases (expressed in percentage points) are plotted against the size of the poverty line in 
Graph 7.   

 
The effect of alternative bandwidths and kernels is shown in Tables 5-6, where poverty 
estimates are computed for lower poverty lines. The bandwidth has a substantial effect on 
the estimated poverty headcount ratio in the case of the multimodal distribution: while S1 
leads to an upward bias of 70 percent, the hybrid bandwidth leads to a downward bias of 
50 percent. In Table 5, the degree of distortion inherent in choosing a non data-driven 
bandwidth for a distribution with multiple modes becomes apparent: there are substantial 
downward biases associated with this bandwidth for all of the poverty indicators 
considered. The Silverman bandwidths only occasionally do better, but still the 
magnitude of the biases associated with this technique is very large. In Table 6, we report 
the findings for different kernels (keeping the bandwidth fixed at the hybrid value and 
using quintile means). The effect of the kernel is, in some cases, substantial (again, the 
degree of smoothing achieved with a fixed bandwidth is different across different 
kernels). For example, for the Dagum distribution, the income gap ratio estimates switch 
from being biased downwards by 14 percent (Gaussian kernel) to being biased upwards 
by 8 percent (Triweight kernel), as shown in Table 6.  
 
It is difficult to describe the magnitude and sign of biases in poverty indicators through 
statements applicable across a wide range of possible income distributions and 
parameters of analysis. However, the Monte Carlo simulations demonstrate that the 
biases are often substantial, and that they vary with the nature of the data generating 
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process, (which is unsurprising, given the nonparametric approach involved), as well as 
with the bandwidth, weighting function and number of quantile means available for 
analysis. For a range of unimodal distributions, the poverty headcount ratio is 
overestimated for lower poverty lines, is accurately estimated at poverty lines close to the 
population median, and is underestimated for higher poverty lines. Its biases are harder to 
predict in the case of multimodal distributions, where the positioning of the poverty line 
relative to the modes, and the extent of smoothing, determine the sign and size of the 
bias.   
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| 6 | COUNTRY STUDIES 

n this section, grouped-data KDE-based and survey-based poverty estimates are 
presented using nationally representative household data for three countries with 
varying levels of poverty: Tanzania, Nicaragua, and Vietnam. The $1/day and $2/day 

international poverty lines are used27, along with a capability, nutritionally anchored 
poverty line developed by Reddy, Visaria and Asali, 2006). Results are presented in 
Appendix V (Tables 7-8).    
 
For the $1/day poverty line, it is observed that the headcount ratio is overstated by a 
factor of at most 1.6 and understated by a factor of at most 0.94 regardless of the number 
of quantile means available for analysis (Table 7). For the $2/day poverty line, the 
headcount ratio is, in contrast, understated by at most 8 percent (e.g., the Nicaraguan 
$2/day poverty headcount ratio of 79.03 percent is understated by approximately 6 
percentage points when the input data are quintile means). The degree of over- or under-
statement of the poverty headcount ratio is lower for the higher poverty line. Similarly, 
the poverty gap ratio is overestimated (by a factor of maximum 1.75) for the least poor 
country (Vietnam), is less misestimated for Nicaragua, and is occasionally 
underestimated for the poorest country (Tanzania).  It is noteworthy that the bias of 
poverty estimates does not vary monotonically with the number of quantile means 
analyzed.  
 
Table 8 contains poverty estimates for different bandwidths (using the capability poverty 
line, which falls closer to the median of the surveys than do the $1/day and $2/day 
poverty lines, which explains the higher relative accuracy of the estimator). The choice of 
the bandwidth, however, appears to have a substantial impact on estimated poverty. In 
particular, the poverty headcount ratio is overestimated by 12 percent (S1 bandwidth, 
Nicaragua) or by 5 percent (S3 and hybrid bandwidth, Nicaragua). The distributionally-
sensitive FGT (3) is overestimated by a factor of 2 using S1 and by one fifth using S3 
(Vietnam). It is apparent that the biases for any given bandwidth vary across countries 
and across poverty indicators. In each case considered, we have highlighted in bold face 
the best performing optimal bandwidth, which appears to be S3 in the majority of cases.28 
All the estimates in Table 8 indicate that KDE on quintile means yields poverty estimates 
that are higher than their true counterparts. This can be explained, in light of the Monte 
Carlo evidence, by the relative position of the poverty lines vis-à-vis the survey median.  
 
Diagrams of kernel density estimates from grouped data are presented for varying 
numbers of quantile means, bandwidths, and weighting functions in order to determine 
whether KDE-based visual representations of the underlying log-consumption 
distributions can accurately replicate features of that distribution (Graph 8). The first 

                                                 
27

 We do not here discuss the conceptualization of the poverty lines, as we only use them for expository 

purposes. However, an assessment of the money-metric approach to setting poverty lines can be found in 
Reddy and Pogge (2006). 
28 Biases vary less across kernels (when we use canonical bandwidths) and we do not report the results 
here. 

I 
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panel super-imposes kernel density estimates from grouped data for different bandwidths 
(for a fixed kernel and quintile means). It is apparent, in this example, that the S1 
bandwidth is associated with some degree of over-smoothing of the density. The density 
biases in the left tail of the distribution are also evident. The S3 bandwidth reveals the 
beginning of a mode in the right tail. However, this is entirely the artifact of using 
quintile means as input data. There is no such mode in the underlying survey data, as 
shown by its survey-based kernel density estimate. Panels (2) and (3) for Nicaragua show 
the effect of changing the kernel in two environments: the first uses canonical bandwidths 
and the next keeps the bandwidth fixed across kernels (hybrid case). In the former case, 
the amount of smoothing remains unchanged across density estimates; in the latter, it 
changes. Panel 2 demonstrates that keeping the bandwidth fixed across kernels may lead 
to extremely distorted visual representations of the underlying density. This is naturally 
not the case in Panel 3, where the effect of the kernel is smaller on the estimated density, 
since the canonical Sheather-Jones bandwidth is used. Finally, the last panel proves yet 
again that the density estimator (in this case obtained with the Quartic kernel and the S1 
optimal bandwidth) leads to positive density biases in the left tail of the distribution, 
negative biases in the center of the distribution, and positive biases in the right tail of the 
distribution. As seen previously, these distortions take place at every point along the 
density support and have important consequences for the estimation of poverty using 
alternative indicators. Furthermore, the kernel density estimate on decile means is more 
biased locally in the left tail of the density than the estimate on quintile means. However, 
the estimate on decile means is less biased globally than the estimate on quintile means.  
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| 7 | GLOBAL POVERTY ANALYSIS  

n this section, I assess the sensitivity of world poverty estimates to parameters of the 
kernel density estimation procedure. The focus is on the effect of the smoothing 
parameter on the poverty rates and headcounts of the developing world as a whole. 

Income shares for 94 developing countries covering 94 percent of the world’s population 
in 1990 were obtained from the UNU/WIDER World Inequality database V. 2.0a (2005) 
for the years 1990 and 2000.29 Income averages for (five) population quintiles were 
subsequently obtained for each country using the per capita GDP (at PPP) from the 
World Development Indicators online database (2006). Finally, kernel density estimation 
was undertaken on each country’s five income averages. The resulting density estimates 
were subsequently aggregated in a world KDE-based distribution of income.30   
 
I consider the following data-dependent bandwidths that have been proposed in the 
literature: Silverman’s rule-of-thumb bandwidth (S3) and a variant, the oversmoothed 
bandwidth, the Sheather-Jones plug-in estimator, and the direct plug-in estimator (all of 
which were discussed in Section 4). To compare these results with global poverty rates 
proposed in the literature, I also report the results for the hybrid bandwidth (which is 
equal to 0.39 and happens to be the optimal S3 bandwidth for China, but is kept constant 
across countries). Countries other than China with similar dispersions of their data would 
also have similar S3 values associated with them, but for these other countries the hybrid 
bandwidth is unlikely to satisfy a common optimality criterion (except by chance). The 
results are reported for the Gaussian kernel. 31 

 
In Tables 9-10, the world poverty headcount ratio and the aggregate headcount for five 
international poverty lines, ranging between $1/day and $4/day, are reported.32 The rates 
and headcounts presented in Table 9 demonstrate the lack of robustness of global poverty 
rates to changes in the value of the bandwidth even when the bandwidth is chosen 
according to an optimality criterion. In both years, the $1/day poverty rates are most 
sensitive to changes in the bandwidth (since the $1/day falls in the left tail of the regional 
income distributions, where poverty is likely to be severely overestimated and small 
changes in the bandwidth may significantly alter the estimated density). Furthermore, 
estimated poverty rates vary more across bandwidths for the lowest poverty lines 
considered. For the $1/day poverty line, the poverty headcount ratio varies by a factor of 

                                                 
29 Income shares were selected for the years 1990, 2000 or the closest year in which they were available in 
the database.  
30 To compare our results to Sala-i-Martin’s 2006 study, we also undertook the same analysis for the year 
2000 in 134 developed and developing countries. We obtain similar poverty rates as those reported by the 
author. For example, the world poverty headcount ratio computed in this study for the $1/5/day poverty line 
in the year 2000 (using the Gaussian kernel and a similar value for the bandwidth) is 405 million, while the 
author’s is 398.4 million.  
31 The results were largely similar for the Epanechnikov kernel as long as we used the canonical bandwidth. 
32 Results are shown for poverty lines up to $4/day since the country distributions were scaled using the per 
capita GDP, which might have lead to an overestimation of the quantile means. For more on the use of 
survey versus National-Accounts based estimates of per capita income, see Deaton (2003b, 2005). It is 
important to stress, therefore, that the global rates and headcounts presented here should not be interpreted 
as authoritative. 
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1.8 when the oversmoothed bandwidth is considered and by 1.6 when it is not (given that 
it is likely to result in substantial overestimation of the density in the left tail). The 
headcount ratios vary to a lesser degree as the poverty line increases and they are almost 
equal regardless of the bandwidth for the $3/day and $4/day poverty lines in 1990. 
However, the poverty rates are even more sensitive to the choice of optimal bandwidth in 
the year 2000. For the $1/day, $1.5/day and $2/day poverty lines, they vary by a factor 
between 1.4 and 1.8. In terms of numbers of poor people, this variation translates into a 
range of 162 to 278 million people. To put these numbers in perspective, under- or over-
counting the “$2/day poor” by 278 million individuals (in 2000) would represent an error 
of 10 percent (based on the $2/day global headcount for 2001 of Chen and Ravallion, 
2004). Similarly, under- or over-counting the “1.5/day” poor by 180 million individuals 
(in 1990) would represent an error of 36 percent (based on the $1.5/day global headcount 
in the same year of Sala-i-Martin, 2006). 

 
How does this range of variation inform us on the trend in world poverty between 1990 
and 2000? As reported in Table 11, the fall in the $1.5/day and $2/day poverty rates 
ranges between 7 percent and 18 percent (corresponding to the oversmoothed and S3 
bandwidths). The number of people who were lifted from $1/day poverty between 1990 
and 2000 ranges between 19 million and 38 million (oversmoothed and hybrid 
bandwidth), whereas the reduction in $1.5/day poverty ranges between 45 and 92 million 
(oversmoothed and S3). It should be noted that a reduction in the number of ‘$1.5/day 
poor’ by 45 million is one half of that documented by Sala-i-Martin (2006). Similarly, a 
reduction in the number of ‘$1 /day poor’ of 25 million is only one fifth of Chen and 
Ravallion’s (2004) documented fall of 129.5 million ‘$1 /day poor’ between 1990 and 
2001. It can thus be concluded that the range of variation associated with kernel density 
estimates based on different bandwidths may lead us to reach more pessimistic 
conclusions about the trend in world poverty since 1990. Importantly, all estimates are 
consistent with a reduction in world poverty. While the underlying cause of this finding 
may be kernel density estimation itself, the use of National-Accounts based per capita 
income estimates, or the composition of the sample, it should be stressed that it is at odds 
with the World Bank’s documented increase in the number of ‘$2/day poor’ of 81 million 
over the same period (Chen and Ravallion, 2004).  
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| 8 | CONCLUSIONS 

ecent influential studies of national, regional, and global poverty employ kernel 
density estimation techniques on grouped data to analyze poverty and to describe 
features of the underlying income distributions (e.g., Sala-i-Martin (2002a, 2002b, 

2006), Ackland et al (2004), and Fuentes (2005)). This method is used because of the 
lack of availability or the difficulty in obtaining access to unit data from representative 
household surveys for all countries and years of interest (as is the case with large 
countries such as China and India). Grouped data often takes the form of income 
averages for a small number of population quantiles, but are sometimes derived from 
income shares scaled with an estimate of per capita income. This data, despite its limited 
informational content, is also used to assess long-term trends (in poverty and inequality) 
since household unit data are no longer available, but summary statistics may have been 
published and are therefore accessible to researchers.   
 
In this paper, I analyzed the performance of the kernel density smoothing technique in 
estimating income distributions from grouped data. There are reasons to believe that 
kernel density estimation techniques may be inappropriate for this data structure. Several 
income averages of population groups are less informative than a large sample drawn 
from the underlying distribution. However, they are more informative than a small 
sample drawn from the underlying distribution due to the nature of the grouping process. 
The income averages are a collection of trimmed means that carry useful information 
about the unit data from which they have been computed. Their joint density (of linear 
functions of order statistics) is prohibitively difficult to derive analytically, and the 
properties of the kernel density estimator on grouped data need be assessed through 
Monte Carlo simulations. In this study, I have considered several plausible income 
distributions (Log-normal, Dagum and Generalized Beta II), as well as a distribution with 
multiple modes (corresponding to the 2004 population-weighted world distribution of per 
capita income). Furthermore, unit and grouped data from three household surveys 
(Nicaragua, Tanzania and Vietnam) have been used to compare KDE-based poverty 
estimates from grouped data with their survey counterparts.  
 
The biases resulting from the application of this technique depend on the smoothing 
parameter, the kernel, the number of data-points analyzed and, naturally, the data 
generating process. The average income of the poorer population quantiles is overstated 
by the technique, while the average income of the richer quantiles is understated for the 
range of unimodal distributions considered here. This often leads to overestimation of the 
poverty headcount ratio for lower poverty lines, and underestimation of the poverty 
headcount ratio for higher poverty lines. The biases associated with poverty indicators are 
substantial: for the poverty rate, they can reach 6-7 percentage points in unimodal 
distributions and 10-11 percentage points in the multimodal distribution considered. In 
general, the bandwidth has an important effect on the accuracy of poverty estimates. 
Kernel density estimation on grouped data can also give rise to misleading diagrams of 
the underlying distributions as these too are sensitive to the choice of parameters.   

 
To assess the robustness of kernel density estimation methods in global poverty analysis, 

R 
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KDE-based global poverty rates and headcounts have been computed using income 
shares for 94 developing countries. I show that kernel density-based headcount ratios for 
poverty lines such as $1/day, $1.5/day and $2/day vary by a factor of 1.8 for a range of 
bandwidths that have been recommended and used in the literature. The difference 
between the highest and the lowest estimate of the number of ‘$2/day’ poor is 136 
million in 1990, and 278 million in 2000.  

 
The findings of this study give rise to serious concern about the validity and robustness of 
poverty analysis based on kernel density estimation on grouped data. The magnitude and 
direction of biases identified in this study can, however, serve as a framework of 
interpretation to researchers who wish to employ nonparametric smoothing techniques on 
grouped data (especially if the data can be assumed to be drawn from a unimodal 
distribution). The applied researcher should exercise caution in employing standard 
kernel density estimation methods on grouped data and should as a matter of routine 
assess the robustness of their results to changes in the bandwidth and kernel. Finally, 
given the empirical regularities uncovered in this study for plausible income distributions, 
it is possible that the performance of the standard kernel density estimator on grouped 
data could be improved upon, and these improvements are a subject for future research.  
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APPENDIX I: DATA SOURCES (HOUSEHOLD SURVEYS) 

� Vietnam: The 1998 Vietnam Living Standards Survey (VLSS) contains 
information on per capita expenditure of households at current prices for 22,510 
individuals. The data are weighted. Source: World Bank Living Standards 
Measurement Study (LSMS), Development Economics Research Group 
(DECRG).  

 
� Nicaragua: The 1997-98 Living Standards and Measurement Survey contains 

information on per capita consumption for 18,383 individuals. The data are 
weighted. Source: World Bank Living Standards Measurement Study (LSMS), 
Development Economics Research Group (DECRG). 

 
� Tanzania: The 2000-01 Household Budget Survey contains information on per 

capita consumption for 22,176 households. The data are weighted. Source: 
National Bureau of Statistics, Tanzania, 2002.  

 
 
 

 
 



 32 

APPENDIX II: TRUE (LOG-INCOME) DISTRIBUTIONS USED 

IN THE MONTE CARLO ANALYSIS 
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APPENDIX III: MONTE CARLO FINDINGS (SUMMARY 

STATISTICS) 

Table 1.  Summary statistics. KDE parameters: Quartic kernel, S3 bandwidth, 

Input data: Quintile means. All figures represent the ratio between the estimated 

quantity and its true value. 

 

 Summary statistics Quintile means  

Distribution  Mean Median St. Dev. Bottom Second Third Fourth Top  

         
Log-normal  1.12 1.03 0.89 0.93 0.94 1.03 1.20 1.25 
Dagum  1.11 0.98 0.59 0.98 0.92 1.01 1.17 1.14 
GB 2  1.13 1.02 0.45 0.99 0.92 1.01 1.19 1.12 
Multimodal  1.17 0.91 1.24 0.68 0.87 0.92 1.11 1.04 
         

 
Graph 1. Histograms of 200 quintile means estimated using KDE on quintile means 

(Dagum distribution). KDE parameters: Epanechnikov kernel, Silverman 3 

bandwidth.  
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Graph 2. Histograms of 200 quintile means estimated using KDE on quintile means 

(Generalized Beta II distribution). KDE parameters: Quartic kernel, hybrid 

bandwidth.  
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Graph 4A.  Bias of estimated density at fixed points of estimation. Log-normal 

distribution. Input: Quintile means. (KDE parameters: Gaussian and Epanechnikov 

kernels, Silverman 3 bandwidth) 
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Graph 4B.  Bias of estimated density at fixed points of estimation. Log-normal 

distribution. Input: Quintile means. (KDE parameters: Quartic and Triweight 

kernels, Silverman 3 bandwidth) 
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Graph 5.  Bias of estimated density at fixed points of estimation. Multimodal 

distribution. Input: Quintile means. (KDE parameters: Various kernels, Various 

bandwidths) 
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APPENDIX IV.  POVERTY ESTIMATES [MONTE CARLO 

ANALYSIS]  
 

Table 2. Bias in the estimation of poverty indicators  

Poverty line: 0.25 x median [S3 bandwidth, Epanechnikov kernel] 
 

   Input data:  
Poverty 

indicator: 

Distribution True 

quantity 

 

Quintiles 

 

Deciles 

 

Ventiles 

      
Log-normal 12.10 1.17 1.28 1.23 
Dagum  9.43 1.09 1.26 1.21 
Gen. Beta II 9.45 1.07 1.24 1.18 

Poverty 
headcount 
ratio (%) 

Multimodal  8.14 1.00 1.18 1.15 
      

Log-normal 4.57 1.14 1.40 1.34 
Dagum  3.93 0.77 1.13 1.19 
Gen. Beta II 4.02 0.73 1.10 1.15 

Poverty gap 
ratio 

Multimodal  2.93 0.63 1.04 1.08 
      

Log-normal 2.49 1.02 1.40 1.35 
Dagum  2.30 0.52 0.98 1.12 
Gen. Beta II 2.40 0.48 0.93 1.07 

Squared 
poverty gap 

Multimodal  1.22 0.48 1.09 1.18 
      

Log-normal 1.54 0.92 1.42 1.37 
Dagum  1.56 0.35 0.83 1.03 
Gen. Beta II 1.65 0.31 0.78 0.98 

FGT(3) 

Multimodal  0.56 0.38 1.17 1.34 
      

Log-normal 1.03 0.82 1.41 1.37 
Dagum  1.15 0.23 0.69 0.94 
Gen. Beta II 1.23 0.20 0.64 0.89 

FGT(4) 

Multimodal  0.27 0.30 1.29 1.54 
      

Log-normal 6.20 1.12 1.37 1.32 
Dagum  5.37 0.75 1.11 1.16 
Gen. Beta II 5.49 0.72 1.08 1.13 

Sen index 

Multimodal  3.58 0.70 1.15 1.19 
      

Log-normal 37.75 0.97 1.09 1.09 
Dagum  41.65 0.71 0.90 0.98 
Gen. Beta II 42.56 0.68 0.88 0.97 

Income gap 
ratio 

Multimodal  36.02 0.63 0.87 0.94 
Note: Figures in the last three panels represent the ratio between the estimated quantity and its true counterpart.
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Table 3. Bias in the estimation of poverty indicators  

 
Poverty line: 1.75 x median [S3 bandwidth, Epanechnikov kernel] 
 

   Input data:  
Poverty 

indicator: 

Distribution True 

quantity 

 

Quintiles 

 

Deciles 

 

Ventiles 

      
Log-normal 68.02 0.95 0.96 0.97 
Dagum  73.63 0.93 0.95 0.97 
Gen. Beta II 73.97 0.93 0.95 0.96 

Poverty 
headcount 
ratio (%) 

Multimodal  81.83 0.91 0.91 0.94 
      

Log-normal 40.77 0.99 1.01 1.01 
Dagum  40.71 0.99 1.01 1.01 
Gen. Beta II 40.75 0.99 1.01 1.04 

Poverty gap 
ratio 

Multimodal  45.79 0.96 0.97 0.98 
      

Log-normal 28.95 1.02 1.05 1.04 
Dagum  27.40 1.02 1.05 1.04 
Gen. Beta II 27.35 1.02 1.05 1.04 

Squared 
poverty gap 

Multimodal  30.18 1.00 1.01 1.01 
      

Log-normal 22.16 1.04 1.08 1.07 
Dagum  20.17 1.04 1.08 1.07 
Gen. Beta II 20.11 1.04 1.08 1.06 

FGT(3) 

Multimodal  21.54 1.02 1.05 1.04 
      

Log-normal 17.71 1.06 1.11 1.09 
Dagum  15.68 1.05 1.11 1.09 
Gen. Beta II 15.63 1.04 1.10 1.08 

FGT(4) 

Multimodal  16.19 1.04 1.07 1.07 
      

Log-normal 50.69 0.98 1.00 1.00 
Dagum  51.58 0.97 1.00 1.00 
Gen. Beta II 51.67 0.97 0.99 1.00 

Sen index 

Multimodal  56.59 0.95 0.96 0.97 
      

Log-normal 59.93 1.05 1.05 1.04 
Dagum  55.29 1.07 1.06 1.05 
Gen. Beta II 55.09 1.07 1.06 1.05 

Income gap 
ratio 

Multimodal  55.96 1.06 1.06 1.05 
Note: Figures in the last three panels represent the ratio between the estimated quantity and its true counterpart. 
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Table 4. Summary of results: Bias in the poverty headcount ratio for various distributions 

and kernel-bandwidth pairs. Input data: Quintile means.  

 

Poverty line is equal to 

the median x:   

 

Log-

normal
33

 

 

Dagum
34

 

 

Generalized 

Beta II
35

  

 

Multimodal
36

 

0.25 1.33 1.17 1.49 1.00 
0.50 0.95 1.17 1.28 1.47 
0.75 0.99 1.08 1.10 1.01 
1.00 0.99 1.00 0.99 0.84 
1.25 1.00 0.96 0.93 0.93 
1.50 0.96 0.93 0.90 0.92 
1.75 0.97 0.92  0.88 0.93 

Note: The bias is expressed as the ratio between fitted values and the true headcount ratio. 

 

Graph 7. Summary of results: Bias in the poverty headcount ratio for various distributions 

and kernel-bandwidth pairs. Input data: Quintile means.   
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33 KDE parameters:  Hybrid bandwidth and Triangular kernel.  
34 KDE parameters:  S2 bandwidth and Epanechnikov kernel.  
35 KDE parameters:  S1 bandwidth and Quartic kernel.   
36 KDE parameters:  S3 bandwidth and Triweight kernel.  



 40 

 

Table 5. Bias in the estimation of poverty indicators  

 
Poverty line: 0.25 x median [Triweight kernel, input data: Quintile means]  
 
 

   Bandwidth:  
Poverty 

indicator: 

Distribution True 

quantity 

S1 S2 S3 Hybrid 

       
Log-normal 12.10 1.45 1.24 1.17 1.40 
Dagum  9.43 1.48 1.17 1.10 1.04 
Gen. Beta II 9.45 1.48 1.14 1.08 1.00 

Poverty 
headcount 
ratio (%) 

Multimodal  8.14 1.70 1.10 1.00 0.50 
       

Log-normal 4.57 1.71 1.28 1.12 0.63 
Dagum  3.93 1.37 0.88 0.75 0.26 
Gen. Beta II 4.02 1.34 0.84 0.71 0.24 

Poverty gap 
ratio 

Multimodal  2.93 1.67 0.76 0.62 0.10 
       

Log-normal 2.49 1.82 1.21 1.00 0.25 
Dagum  2.30 1.22 0.65 0.50 0.07 
Gen. Beta II 2.40 1.18 0.60 0.46 0.06 

Squared 
poverty gap 

Multimodal  1.22 1.95 0.65 0.47 0.03 
       

Log-normal 1.54 1.93 1.15 0.90 0.10 
Dagum  1.56 1.06 0.48 0.33 0.02 
Gen. Beta II 1.65 1.02 0.43 0.30 0.02 

FGT(3) 

Multimodal  0.56 2.37 0.58 0.38 0.01 
       

Log-normal 1.03 2.01 1.09 0.80 0.04 
Dagum  1.15 0.92 0.35 0.22 0.00 
Gen. Beta II 1.23 0.88 0.31 0.20 0.00 

FGT(4) 

Multimodal  0.27 2.95 0.54 0.32 0.00 
       

Log-normal 6.20 1.66 1.25 1.11 0.60 
Dagum  5.37 1.34 0.87 0.74 0.26 
Gen. Beta II 5.49 1.32 0.83 0.71 0.24 

Sen index 

Multimodal  3.58 1.85 0.85 0.69 0.11 
       

Log-normal 37.75 1.17 1.02 0.96 0.44 
Dagum  41.65 0.92 0.75 0.68 0.24 
Gen. Beta II 42.56 0.91 0.73 0.66 0.23 

Income gap 
ratio 

Multimodal  36.02 0.98 0.69 0.61 0.17 
Note: Figures in the last four panels represent the ratio between the estimated quantity and its true counterpart. 
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Table 6. Bias in the estimation of poverty indicators  

 
Poverty line: 0.5 x median [hybrid bandwidth, input data: Quintile means] 
 

   Kernel:  
Poverty 

indicator: 

Distribution True 

quantity 

Gaussian Uniform Epan. Quartic Tri-

weight 

Tri-

angular 

         
Log-normal 27.91 0.98 1.01 0.97 0.95 0.93 0.95 
Dagum  23.57 1.04 1.05 0.98 0.93 0.91 0.95 
Gen. Beta II 23.30 1.11 1.05 0.98 0.94 0.91 0.95 

Poverty 
headcount 
ratio (%) 

Multimodal  19.19 1.39 1.43 1.40 1.36 1.33 1.36 
         

Log-normal 12.37 0.91 1.00 0.97 0.96 0.95 0.97 
Dagum  10.15 0.89 1.00 0.98 0.98 0.98 0.98 
Gen. Beta II 10.12 1.04 0.98 0.98 0.97 0.97 0.98 

Poverty 
gap ratio 

Multimodal  8.71 0.99 1.05 1.05 1.04 1.03 1.04 
         

Log-normal 7.39 0.78 0.91 0.89 0.89 0.88 0.89 
Dagum  6.04 0.70 0.83 0.82 0.82 0.82 0.82 
Gen. Beta II 6.09 0.89 0.80 0.81 0.81 0.80 0.81 

Squared 
poverty 

gap 
Multimodal  4.89 0.74 0.79 0.80 0.79 0.78 0.80 

         
Log-normal 4.93 0.65 0.80 0.77 0.77 0.76 0.77 
Dagum  4.14 0.52 0.65 0.63 0.62 0.61 0.62 
Gen. Beta II 4.21 0.73 0.61 0.61 0.60 0.59 0.60 

FGT(3) 

Multimodal  3.05 0.55 0.60 0.60 0.58 0.57 0.59 
         

Log-normal 3.53 0.53 0.67 0.64 0.63 0.62 0.63 
Dagum  3.07 0.38 0.49 0.45 0.44 0.43 0.45 
Gen. Beta II 3.15 0.59 0.45 0.43 0.42 0.41 0.43 

FGT(4) 

Multimodal  2.02 0.42 0.46 0.44 0.42 0.40 0.43 
         

Log-normal 16.43 0.88 0.96 0.92 0.90 0.89 0.91 
Dagum  13.76 0.85 0.93 0.87 0.84 0.81 0.85 
Gen. Beta II 13.73 0.99 0.91 0.86 0.83 0.81 0.84 

Sen index 

Multimodal  11.12 1.02 1.06 1.05 1.03 1.00 1.03 
         

Log-normal 44.31 0.92 1.00 1.00 1.02 1.03 1.02 
Dagum  43.05 0.86 0.95 1.01 1.05 1.08 1.03 
Gen. Beta II 43.45 0.94 0.93 1.00 1.04 1.07 1.02 

 
Income 

gap ratio 
Multimodal  45.37 0.71 0.74 0.75 0.77 0.77 0.77 

Note: Figures in the last six panels represent the ratio between the estimated quantity and its true counterpart. 
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APPENDIX V.  POVERTY ESTIMATES (COUNTRY STUDIES) 
 

 Table 7. Bias in the estimation of poverty indicators (Epanechnikov kernel, Silverman 3 

bandwidth) 

 

  Poverty line: $1/day Poverty line: $2/day 

Indicator   Country Survey 

estimate 

 

Quintiles 

 

Deciles 

 

Ventiles 

Survey 

estimate 

 

Quintiles 

 

Deciles 

 

Ventiles 

          
Vietnam 5.20 1.34 1.59 1.47 35.69 1.04 1.04 1.03 
Nicaragua  44.62 1.02 1.02 1.02 79.03 0.92 0.95 0.96 

Poverty 
headcount 
ratio (%) Tanzania  75.39 0.94 0.96 0.96 94.75 0.97 0.97 0.98 

          
Vietnam 0.89 1.18 1.75 1.64 9.07 1.16 1.23 1.18 
Nicaragua  16.59 1.08 1.12 1.10 40.93 0.98 0.99 1.00 

Poverty 
gap ratio 

Tanzania  34.67 0.99 1.00 1.01 61.40 0.96 0.97 0.98 
          

Vietnam 0.26 0.87 1.65 1.61 3.35 1.21 1.37 1.30 
Nicaragua  8.24 1.11 1.20 1.17 25.27 1.01 1.04 1.03 

Squared 
poverty 

gap Tanzania  19.39 1.03 1.06 1.05 43.47 0.97 0.99 0.99 
          

Vietnam 0.10 0.57 1.43 1.46 1.49 1.22 1.47 1.39 
Nicaragua  4.66 1.13 1.28 1.24 16.96 1.04 1.08 1.07 

 
FGT(3) 

Tanzania  11.94 1.06 1.11 1.09 32.18 0.99 1.01 1.01 
          

Vietnam 0.04 0.36 1.18 1.28 2.49 1.18 1.53 1.45 
Nicaragua  2.85 1.13 1.34 1.30 11.98 1.07 1.12 1.10 

 
FGT(4) 

Tanzania  7.82 1.09 1.16 1.13 24.55 1.00 1.03 1.02 
          

Vietnam 1.30 1.11 1.67 1.58 12.52 1.13 1.20 1.16 
Nicaragua  22.12 1.06 1.11 1.09 51.17 0.96 0.99 1.00 

 
Sen index 

Tanzania  43.91 0.98 1.00 1.01 71.55 0.98 0.98 0.99 
          

Vietnam 17.15 0.88 1.10 1.12 25.42 1.12 1.18 1.15 
Nicaragua  37.19 1.06 1.10 1.08 51.80 1.06 1.05 1.03 

Income 
gap ratio 

Tanzania  45.99 1.05 1.05 1.03 64.80 0.99 1.00 1.00 
Note: Figures in the relevant panels represent the ratio between the estimated quantity and its survey counterpart. 
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Table 8. Bias in the estimation of poverty indicators (Gaussian kernel, Quintile means) 

 
Poverty line: Capability  
 

   Bandwidth: 
Indicator   Country Survey 

estimate 

S1 S2 S3 S-J  Hybrid 

        
Vietnam 41.98 1.00 1.00 1.00 1.00 1.00 

Nicaragua  30.61 1.12 1.06 1.05 1.07 1.05 

Poverty 
headcount 
ratio (%) Tanzania  40.13 1.04 1.03 1.02 1.03 1.03 

        
Vietnam 11.39 1.33 1.17 1.12 1.19 1.22 
Nicaragua  9.69 1.42 1.19 1.13 1.23 1.15 

Poverty gap 
ratio 

Tanzania  12.62 1.29 1.15 1.11 1.18 1.16 
        

Vietnam 4.38 1.65 1.29 1.19 1.34 1.41 
Nicaragua  4.33 1.71 1.26 1.16 1.33 1.18 

Squared 
poverty gap 

Tanzania  5.61 1.50 1.22 1.14 1.26 1.24 
        

Vietnam 2.00 1.98 1.37 1.22 1.45 1.56 
Nicaragua  2.26 1.98 1.30 1.15 1.40 1.18 

 
FGT(3) 

Tanzania  2.91 1.69 1.25 1.14 1.32 1.29 
        

Vietnam 1.02 2.31 1.41 1.21 1.54 1.69 
Nicaragua  1.30 2.25 1.32 1.12 1.46 1.17 

 
FGT(4) 

Tanzania  1.65 1.87 1.26 1.11 1.36 1.31 
        

Vietnam 15.56 1.29 1.14 1.10 1.16 1.19 
Nicaragua  13.25 1.38 1.16 1.10 1.20 1.12 

 
Sen index 

Tanzania  17.25 1.25 1.12 1.08 1.14 1.13 
        

Vietnam 27.13 1.32 1.16 1.12 1.19 1.22 
Nicaragua  31.66 1.28 1.12 1.08 1.14 1.09 

Income gap 
ratio 

Tanzania  31.45 1.24 1.12 1.09 1.14 1.13 
Note: Figures in the last five panels represent the ratio between the estimated quantity and its survey counterpart. 
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Graph 8. Survey-based and grouped data KDE-based density estimates.  
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APPENDIX VI.  SENSITIVITY ANALYSIS OF GLOBAL POVERTY   
 

Table 9. Extent of global poverty. Indicator: the headcount ratio (%)  

 

Bandwidth�  S3 Overs-
smoothed 

Variant of 
S3 

Sheather-
Jones 

Direct 
plug-in 

Hybrid 

       
       

Ratio 
between  
highest and 
lowest 
estimate 

Percentage 
point diff.  
b/w highest 
and lowest 
estimate 

Year: 1990   

$1/day  7.2 9.5 6.4 7.5 8.4 5.3 1.8 4.2 

$1.5/day 13.4 16.2 12.8 13.9 14.9 11.7 1.4 4.5 

$2/day  24.5 26.8 24.2 25.2 25.8 23.4 1.1 3.4 

$3/day  38.1 38.7 37.8 38.0 38.3 37.1 1.0 1.6 

$4/day  49.8 49.4 50.3 49.9 49.6 49.6 1.0 0.9 
         

Year: 2000   

$1/day  5.3 7.5 4.8 5.6 6.2 4.2 1.8 3.3 

$1.5/day 9.4 12.6 8.9 10.0 10.7 6.9 1.8 5.7 

$2/day  17.2 20.7 16.5 17.7 18.7 15.0 1.4 5.7 

$3/day  27.7 30.0 27.4 27.9 28.8 25.7 1.2 4.3 

$4/day  38.1 39.4 38.3 38.8 38.9 37.1 1.1 2.3 

 
Table 10. Extent of global poverty. Indicator: the aggregate poverty headcount (millions)  

 

Bandwidth�  S3 Overs-
smoothed 

Variant of 
S3 

Sheather-
Jones 

Direct 
plug-in 

Hybrid 

       

Difference between 
highest and lowest 
estimate  

Year 1990 (millions) 

$1/day  289 381 257 303 338 213 168 

$1.5/day 540 651 518 559 599 471 180 

$2/day  987 1079 975 1016 1040 943 136 

$3/day  1536 1560 1524 1533 1544 1496 64 

$4/day  2008 1989 2026 2012 1998 2001 37 
        

Year 2000  

$1/day  256 362 232 269 300 200 162 

$1.5/day 452 606 426 481 517 333 273 

$2/day  830 998 796 850 899 720 278 

$3/day  1331 1445 1319 1341 1384 1235 210 

$4/day  1833 1893 1843 1866 1870 1784 109 
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Table 11. Trend of world poverty between 1990 and 2000.  

 

Bandwidth�  S3 Over-
smoothed 

Variant of 
S3 

Sheather-
Jones 

Direct 
plug-in 

Hybrid 

       
% reduction in poverty rate, 1990-2000 
$1/day  -11% -5% -10% -11% -11% -11% 
$1.5/day -16% -7% -18% -14% -14% -16% 
$2/day  -16% -8% -18% -16% -14% -16% 
$3/day  -13% -7% -13% -13% -10% -13% 
$4/day  -9% -5% -9% -7% -6% -9% 
       
No. of people lifted from poverty, 1990-2000 (millions) 
$1/day  33 19 25 34 38 33 
$1.5/day 88 45 92 78 82 88 
$2/day  157 81 179 166 141 157 
$3/day  205 115 205 192 160 205 
$4/day  175 96 183 146 128 175 
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