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Abstract— Real-time three-dimensional (RT3D) 
ultrasound technique based on matrix phased array 
transducers is likely to become predominant for dynamic 
screening in cardiac and obstetric practice. With these 
transducers large data volumes are acquired in spherical 
coordinates and require resampling to be visualized in 
Cartesian coordinates. A fast 3D resampling method was 
implemented and five interpolation kernels tested on cardiac 
RT3D data. Downsizing and smoothing of sampling artifacts 
were integrated in the resampling process for improvement 
of the reconstructed data visual quality.  

Figure 1: 2D data resampling with backward mapping from radial grid 
coordinates (r,θ) to Cartesian grid coordinates (x,y).   

 Keywords— Data resampling, RT3D ultrasound, 
echocardiography, interpolation kernel.  

(3) Data sampling assigns values at Cartesian grid point 
locations. 

I. INTRODUCTION II. METHODOLOGY 
Ultrasound is a fast and safe imaging modality 
particularly convenient for cardiac imaging. In order to 
accurately visualize the beating heart, true real-time 3D 
ultrasound systems can capture the 3D heart anatomy at 
several time frames over the cardiac cycle without time 
averaging or EKG gating [1]. In this work, we focused on 
interpolation of real-time 3D ultrasound data acquired 
with a 2.5 MHz RT3D Volumetrics transducer [2] that 
uses a matrix phased array of elements with beam steering 
controlled along both elevation and azimuth angles. The 
system transmits 16 lines for each spanning direction and 
receives 16 lines per transmit direction. Acquisition is 
performed at regular depths leading to a final pyramidal 
geometry with 63°×63° angular width and up to 16cm in 
height. 

A. Data Acquisition 

For each time frame, RT3D ultrasound data is stored 
in 8-bits integer matrices of size (64×64×N), where N in 
the number of slices acquired along the axial dimension of 
the transducer and has a maximum value of 512. Each 
volume is acquired in 70ms, which gives an average of 14 
frames per cardiac cycle at a depth setting of 12cm. In 
terms of data size, each time frame represents about 2Mb 
and an entire exam for one cardiac cycle represents 29Mb. 

B. Coordinate Transformation 

When processing large data volumes, forward 
mapping that maps all input coordinate points on the 
output grid prior to interpolation is quite inefficient and 
leads to high computational times. Backward mapping 
that maps the output grid points back inside the input grid 
and performs interpolation inside the input grid greatly 
reduces the computational cost associated with the 
interpolation and was selected for our implementation. 
Indeed, after mapping Cartesian to spherical coordinates, 
the input points sit on an integer grid points which 
simplifies the coordinate transformation problem into a 
pure interpolation.  

Resampling is required for visualization of the RT3D 
data in Cartesian coordinates. The resampling process is 
comprised of three steps: (1) coordinate transformation, (2) 
data interpolation on continuous values, (3) data 
resampling on new grid as illustrated in Figure 1 for 
backward mapping.  
(1) For output grid points, coordinate transformation is 

performed with standard formula to convert Cartesian 
to spherical coordinates.  

(2) Data interpolation extrapolates the ultrasound values 
at continuous point locations via convolution with 
and an interpolation kernel of finite support. 
Theoretically, a band-limited signal sampled at a rate 
higher than the Nyquist frequency can be 
reconstructed perfectly via convolution with the sinc 
function. In digital signal processing, only 
approximations of this function can be implemented 
for interpolation.  

C. Data Interpolation 

Given an interpolation kernel h of support size K, 
data value at any Cartesian grid points is computed based 
on its nearest K3 neighbor points on the spherical grid. 
Interpolation of a signal f at location x from known values 
at K neighboring locations{ } 0,1,...,k k

x
= K

 is computed via 
convolution with the interpolation kernel as:  

 
0-7803-7789-3/03/$17.00 ©2003 IEEE 1192 EMBC 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 . (1) seconda
1

0

( ) ( ) ( )
K

k
k

f x f x h x x
−

=

=∑ k−

5

<

| |

<
<

The parameter a controls the width of the main and 
ry lobes and is equal to the slope of the shape at 

x=1. The kernels therefore control the accuracy and 
computational cost of the interpolation algorithm and 
condition the efficiency of the method.  

C.4 Hamming windowed sinc kernel 

The windowed sinc kernel is defined as:  
From a theoretical point of view, the kernel should 

approximate the sinc function. From a physics point of 
view, the kernel should approximate the point-spread 
function (PSF) of the acquisition system to be able to 
mimic the data generation process. Simulation and 
measurements of the PSF for the RT3D Volumetrics© 
transducer have been studied in [2]. The PSF shape is 
characterized by a main center lobe and side lobes with 
high attenuation (15dB to 20dB) and no grating lobe 
effects. We tested in this work five interpolation kernels 
of different orders, shapes and complexity including: (1) 
Nearest neighbor, (2) Linear, (3) Cubic, (4) Hamming 
windowed sinc function, (5) Gaussian function.  

 , (5) ( ) ( ) ( )sinch x w x x= ×
The Hamming window is defined as: 
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, (6) 

where K is the size of the kernel support (i.e. the number 
of samples in the windowing function) and α=0.54. 
C.5 Gaussian Kernel 

The Gaussian kernel is defined as: 
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The five kernels are described in the following sections 
and their 1D profile are plotted in Figure 2. 
C.1 Nearest Neighbor Kernel 

This zero-order kernel provides the simplest and fastest 
interpolation method. Each output pixel is assigned the 
value of the nearest sample point in the input data. The 
nearest neighbor kernel is defined as: 

 . (2) 
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where σ is the standard variation of the kernel that 
controls the width of its support. This kernel will apply 
some smoothing to the data and does not perform flat area 
perfect reconstruction due to the absence of negative side 

Figure 2: 1

The frequency response of this kernel is the sinc function 
which has a poor localization and passband selectivity. 
This property typically leads to low-quality interpolated 
data with blocking effects for images with high frequency 
contents such as edges or high noise level. 
C.2 Linear Kernel 

This first-order kernel performs linear interpolation 
between adjacent points of the input data along each 
dimension and is defined as: 
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lobes.  

D profiles of interpolation kernels on interval [-2 2]. (a) 

D. Optimization of Computation Speed 
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nearest neighbor, (b) linear, (c) cubic (a=-0.5), (d) Hamming windowed 
sinc, (e) Gaussian (σ = 0.5) (f) theoretically optimal sinc kernel. 

achi  fast computation speed, we perfor
convolution with separable symmetric 1D 

interpolation kernels [3]. Interpolation with true 3D 
kernels has a complexity of K3×(M×N×P) while 
implementation with 1D kernels reduces the complexity 
to (K2+K+1)×(M×N×P) for an output grid of size [M N P].  

Further speed improvement was achieved via 

Linear kernels are popular for reconstruction as they offer 
a good tradeoff between image quality and computational 
cost. 
C.3 Cubic Kernel 

The single-parameter cubic kernel is a third-order 
polynomial function that provides an efficient 
approximation of the theoretically optimal sinc function. 
The kernel is composed of cubic piecewise polynomials 
defined as: 
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tization of the normalized distance values (x-xk) in 
Equation (1) into 1024 equidistant bins in the interval [0 
1]. Values of the 1D kernels were pre-computed at these 
quantized bins and stored into lookup tables of size (K-
1)/2×1024 which were then accessed during the 
interpolation process.  
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III. RESULTS  

Our interpolation method was applied on one 
ultrasound volume acquired with a RT3D Volumetrics© 
transducer. The original spherical volume size was 
(64×64×438). The highest resolution of the spherical 
data is in the axial direction with a slice separation of 
0.308mm. Reconstruction on a Cartesian grid was 
therefore initially performed for voxels of sizes 0.308 
mm3 producing Cartesian volumes of size 
(455×455×442). These volumes represent a data size of 
90Mb for a 8-bits integers encoding which requires 1.3Gb 
of storage size for the set of 14 volumes recorded for one 
cardiac cycle! In this situation, it is desirable to downsize 
the data volumes prior to processing with complex 
algorithms such as denoising and segmentation when 
performed in 3D or 4D (3D+Time). Downsizing can be 
performed at the same time than reconstruction by 
defining a coarser Cartesian grid. We investigated the 
performance of each kernel for interpolation with 
downsizing by a factor of 2 and 4, generating volumes of 
size (228×228×221) and (114×114×111). 

The interpolation kernel support size K was set to 3 
for the nearest neighbor and linear case and to 5 for the 
other cases. The parameter of the cubic interpolation 
kernel was set to a=-0.5, which is the optimal value for 
minimization of the mean square radiometric error for 
band limited images with low frequency information [4]. 
Even though such conditions are not verified for RT3D 
ultrasound data due to the presence of speckle noise, this 
value offers a good tradeoff for visual quality between 
image undersampling and over smoothing. The sigma for 
the Gaussian kernel was set to σ=1. Results for the five 
interpolation kernels are displayed in Figure 3 on 
orthogonal short and long axis views 
The reconstructed results showed overall similarities in 
terms of visual data quality. A fine inspection through the 
volumes led to the identification of the following 
limitations or advantages for each of the kernels:  
a) Block artifacts with the nearest neighbor kernel. 
b) Deterioration of contrast and blurring of endocardial 

borders with linear interpolation. 
c) Deterioration of contrast as scale increases with cubic 

interpolation.  
d) Stable behavior of the Hamming windowed sinc 

function with beneficial smoothing of the data while 
preserving the localization of spatial features. 

e) Smoothing of the data with Gaussian kernel at higher 
scales. The smoothing capabilities of the kernel could 
nevertheless be suitable to assist segmentation or 3D 
volume rendering while eliminating the need for prior 
denoising of the data. 

A rigorous evaluation of the interpolation kernels was 
performed with the following clinical objectives in mind: 

(1) overall image quality and integrity with respect to the 
ultrasound ’standard’ appearance. (2) spatial resolution at 
the apex with good contrast for endocardial localization. 
(3) contrast of myocardial tissue versus blood pool and 
homogeneity of the myocardium tissue appearance, (4) 
preservation of image quality with downsizing, (5) 
attenuation of block artifacts in the azimuth direction due 
to the design of the receive mode array transducer limited 
with linear geometry [5]. Based on these criteria, the 
Hamming windowed sinc kernel appeared superior. Point 
number 5 is related to the block artifacts, inherent to the 
design of the phased-array transducer, that corrupt the 
long-axis slices in the azimuth planes (displayed in the top 
row of each quadrant in Figure 3) for scale 1 and 2. The 
ability of the Gaussian kernel to reconstruct smoothed 
data with good preservation of the anatomical features 
suggested the combination of this kernel with the 
Hamming windowed sinc function to remove the azimuth 
block artifacts. We tested this approach by pre-filtering 
the spherical data with a 1D Gaussian kernel along the 
azimuth dimension and then reconstructing the Cartesian 
volume with the Hamming windowed sinc function. 
Results are displayed in Figure 3 for two long-axis slices 
reconstructed at scale 1 and 2. We observed a great 
improvement in the quality of the reconstructed data with 
the pre-filtering with an efficient removal of the blocky 
artifacts and an enhancement of the myocardium tissue 
appearance that enables clearer localization of anatomical 
structures such as the apex location and the mitral valves 
contours.  

IV. CONCLUSION 

This paper presented results on the performance of 
five interpolation kernels for fast volume resampling of 
RT3D ultrasound data acquired with a Volumetrics© 
transducer. The use of look up tables and 1D interpolation 
kernels enabled fast reconstruction of Cartesian volumes 
from the spherical data recorded by the transducer. The 
performance of the kernels was tested for reconstruction 
of a cardiac data set on different Cartesian grid sizes to 
handle downsizing of the data. The Hamming windowed 
sinc function was identified as the best interpolation 
kernel with respect to specific visual quality criteria.  

We also tested resampling of the data with pre-
filtering of the spherical data in the azimuth dimension to 
remove block artifacts inherent to the transducer design. 
Results with this pre-filtering provided higher quality 
reconstruction with efficient removal of the artifacts and 
better contrast of the myocardium tissue. The great 
improvement in the quality of the reconstructed data when 
applying pre-filtering suggests that fast an efficient 
denoising of RT3D ultrasound can be performed in the 
spherical domain. This approach was applied to RT3D 
ultrasound in [6] and is also investigated by other groups 
on 3D ultrasound [7]. 
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Figure 3: Interpolation of RT3D data with: (a) nearest neighbor, (b) linear, (c) cubic (σ=-.0.5), (d) Hamming windowed sinc function, (e) Gaussian (σ=0.5) 
for scale 1,2, and 4. Lower right quadrant displays results for interpolation with Hamming windowed sinc kernel on original spherical data (d-1)~(d-2) and 
spherical data smoothed with a Gaussian kernel (σ=2, K=3) in the azimuth direction (ds-1)~(ds-2).  

 
Its main advantage is the use of smaller size of the 
spherical data sets when compared to their Cartesian 
representation allowing fast computation speed critical for 
real-time display. Future work will investigate potential 
benefits in adapting the interpolation kernel size to the 
spatial density of the spherical data that varies along the 
axial dimension. We are also interested in extending our 
resampling method to perform gradient computation in 
the spherical domain as studied in [8]. Finally, we would 
also like to test the algorithm on new real-time 3D 
ultrasound machines, pending that we can have access to 
the spherical data.  
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