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Abstract 

 
This paper presents the implementation and validation 
of a new 3D deformable model method, based on the 
Mumford-Shah functional for segmentation of three-
dimensional real-time ultrasound. An experiment on 10 
patients with primary hypertension was carried out to 
compare three segmentation methods for quantification 
of right and left ventricular ejection fraction: (1) 
manual tracing by an expert cardiologist, (2) 2D 
parametric deformable model, and (3) 3D implicit 
deformable model implemented with a level set 
framework. Deformable model segmentations were 
performed on denoised data using a (3D+Time) 
brushlet expansion. The clinical study showed superior 
performance of the deformable model in assessing 
ejection fraction when compared to MRI measures. It 
also showed that the three-dimensional deformable 
model improved EF measures, which is explained by a 
more accurate segmentation of small and convoluted 
ventricular shapes when integrating the third spatial 
dimension.  

 

1. Introduction 
The challenge of developing a segmentation tool for 
quantification of cardiac function from three-
dimensional ultrasound lies in the wealth of dynamic 
information that can be extracted despite its relatively 
low spatial resolution and high level of speckle noise. 
We have been specifically interested in the use of real-
time three-dimensional ultrasound data acquired with 
matrix-phased array transducers [1]. The poor quality of 
the ultrasound signal has limited the acceptance of this 
ultrasound technology in clinical practice, despite the 
wealth of information acquired by this system, far 
greater than with any other existing echocardiography 
screening modality. The work presented in this paper 
aimed to improve the better acceptance of this new 
technology by addressing the problem of automatic 
quantification of ventricular function.  
Implicit deformable models, based on level set 
numerical methods [2] have been applied to a wide 
range of medical screening modalities for anatomical 
volume segmentation, shape representation and 
deformation  modelization as reviewed in [3-5]. These 
deformable models rely on external forces derived from 
gradient information to stop the curve evolution at edge 
boundaries. A different approach was recently proposed 

by Chan and Vese [6] using a stopping term based on 
Mumford-Shah segmentation technique [7] rather than 
a traditional gradient functional. Such a deformable 
model might be best suited for 3D ultrasound images 
where the myocardium wall is depicted as a bright 
textured object without well defined borders. In 
addition, this segmentation method combines the 
following advantages: (1) Arbitrary initialization of the 
object anywhere in the image, (2) Topology adaptation 
for multi-object segmentation, (3) No constraints on 
curve smoothness, (4) Self-adaptation for inward and 
outward flows. 

2. Method 
2.1. Energy Functional 
Given an image I  and a curve C , Chan and Vese 
introduced the following energy functional as a 
modification of the Mumford-Shah minimal partition 
problem [7]: 
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are real scalar positive parameters.  
2.2. Level set Implementation 
Energy minimization of Equation (1) was performed 
with the level set framework introduced by Osher and 
Sethian [8]. Applying the level set framework to the 
problem of minimization of the energy in Equation (1), 
the curve C  is embedded in a Lipschitz scalar function 
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The level set implementation of the energy functional 
replaces the n-D curve C  by an n+1-D function  and 
solves the minimization problem so that the curve  
that minimizes the energy functional corresponds to the 
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zero-level of the final solution  of the level set 
framework. To rewrite the functional of Equation (1) as 
a function of φ , two mathematical functions are used 
to define the interior and the contour of the curve C : 

0φ
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The regularization terms ( )L C  and ( )A C  can then be 
expressed in terms of  and the energy functional of 
Equation (1) is rewritten as: 
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2.3. Dynamic Implementation 
Computation of the Euler-Lagrange equation associated 
with the minimization of Equation (5) requires 
regularization of the Heaviside and Dirac functions [6, 
9]. In our implementation, we have chosen the 
regularization functions  and ( )ε φH ( )εδ φ  proposed 
by Chan et al. in [6].  
The Euler-Lagrange equation, as derived in [6], is 
expressed as: 
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 defines the partial derivative along the 

normal to the zero-level curve ofφ . We observe here 
the introduction of the curvature of the zero-level 
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algorithm for segmentation via motion under mean 
curvature introduced by Osher and Sethian [8].  
2.4. Discretization and Parameters Values 
Implementation was performed with a finite difference 
scheme for spatial derivatives and the introduction of an 
artificial time component to model the descent iteration.  
Using an explicit scheme for the time derivative, the 
iterative process is written as:  
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withλ λ . We point out here 
that the signs were modified from the original 
implementation of Chan et al. [6], as we considered 

 inside the object to be consistent with the 
standard level set implementation in [10]. We also 
modified the terms associated with the average values 
to better control their effect on the deformation process 
through parameters λ  and λ  .The curvature term was 
computed with the mean curvature model, following the 
initial approach of Malladi, Sethian and Vemuri [10] 
for motion under mean curvature. The spatial 
derivatives were approximated with centered 
differences. We point out here that Chan et al. [6] used 
a different curvature model initially proposed by Rudin, 
Osher and Fatemi in [11], which combined both 
centered and one-sided spatial derivatives but did not 
explicitly include cross derivatives. They also used an 
implicit scheme for the curvature term to constrain 
bounds on  and  to be similar [12] and make 
the numerical scheme unconditionally stable. 
Unconditional stability allows for arbitrary time step 
values to speed up the iteration process. On the other 
hand, the semi-implicit scheme requires two updates of 
the function φ  at each iteration, which can become 
problematic when manipulating large volumetric data 
sets. In our implementation we sacrificed some stability 
but gained implementation simplicity and computation 
speed, while using small time steps to keep the iterative 
process stable. 
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Parameters were set to the following values. We set 
 to eliminate the constant term in Equation (6), 

which was derived from the area term in Equation (1). 
This parameter can be seen as an advection term that 
should be turned on only if we want to push the model 
in a constant direction (outward or inward). Here, we 
wanted the model to be able to move in any direction, 
allowing more arbitrary position in the initialization. 
We also set λ  so that we are not looking for a 
dual segmentation of the myocardium and the 
ventricular cavity as two homogeneous areas but rather 
for a single segmentation of the cavity. The 
myocardium tissue is rather inhomogeneous and the 
average intensity term  associated to this 
parameter led to unstable behavior of the model when 
not set to zero. The other parameters were set 
experimentally to λ and . 
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Spacing steps were set to . The 

time step was set to 
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ensure stability of the numerical scheme via CFL 
condition. 

1.1.1 Reinitialization 

When working with level sets and Dirac functions, it is 
necessary to reinitialize the function  as the signed 
distance function to its zero-level. This procedure 
prevents the function  from becoming too flat and 
ensures that the iterative process will converge to a 
minimum. This reinitialization is problematic in 
standard level set implementations where the zero-level 
is generally explicitly computed [10] and distance is 
computed for each point on the grid to the set of zero-
level points. This procedure is computationally 
expensive and very inefficient. A fast marching method 
has been proposed by Sethian [13] to reduce the 
computation time. An alternative to this approach was 
proposed by Osher in [14] via solving an iterative 
process to “straighten out” the function on either side of 
the zero level.  

nφ

nφ

2.5. Principle Steps of the Algorithm 
The sequence of function  for  is constructed 
as follows: 

nφ 0n ≥

1. Start with . Initialize with a set of points a 
curve in the image domain. Define as the 
distance function with zero-level defined at the 
location of the curve .  
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3. Compute the curvature term for .  nφ
4. Solve Equation (7) to obtain . 1nφ +

5. Reinitialize as the signed distance function. 1nφ +

6. Check whether the solution is stationary. Iterate for 
if not.  1n n= +

3. Experiments 
We present in this section the methods and results for 
an in-vivo study performed to validate our segmentation 
method for quantification of left and right ventricular 
function in patients diagnosed with pulmonary 
hypertension (PH) [15]. This condition results in an 
increase in RV volume affecting the pumping function 
on the right side.  
Quantification of ventricular volume from standard 
two-dimensional echocardiography is commonly 
performed via planar measurements and use of a 
geometric model for volume estimation. The left 
ventricle has an ellipsoidal shape with strong symmetry 
along a central axis, which allows volume estimation 
from 2D echocardiographic images using geometrical 

models. On the other hand, the right ventricle is 
crescent shaped and does not follow and axis of 
symmetry. For this reason, right ventricular volume 
cannot be estimated from planar views and its function 
is not well quantified during an echocardiographic 
examination.  In such situations, RT3D ultrasound 
appears to be a very well suited screening tool as it can 
acquire the entire RV cavity in real-time to visually 
depict anatomical changes and quantify LV and RV 
cardiac function for early diagnosis and accurate 
assessment of the severity of the pathology.  
3.1. Study Protocol 
To test this hypothesis we compared LV and RV 
volume and ejection fraction measures with RT3D 
ultrasound and MRI for a set of 10 volunteering 
patients with pulmonary hypertension. Typical RT3D 
volumes acquire (64×64) pixels in short axis and 
contained 300 slices in the long axis dimension with a 
slice thickness of 0.308 mm. Between 10 and 17 frames 
were acquired per cardiac cycle. 
3.1.1. Denoising with Brushlet Expansion 
Denoising was performed with a spatio-temporal 
brushlet expansion as described in [16, 17]. Brushlet 
analysis was performed in 3D for spatial denoising, 
followed by temporal denoising in 1D and (2D+Time) 
for enhancement of cardiac structures. Tiling of the 
Fourier domain was limited to four sub-intervals in 
each direction due to the low frequency harmonics of 
cardiac wall motion.  
3.1.2. Manual tracing on RT3D data  
An expert cardiologist manually traced endocardial 
contours on selected slices and computed ventricular 
volumes via sector plane-disks summation using the 
same dedicated software package from 3Dechotech©. 
Manual tracing was performed on the original data. 
3.1.3. Manual tracing on MRI data  
The MRI data was acquired with a 1.5T clinical scanner 
using a standard cardiac MR protocol. The slice 
thickness was 8 mm, with no gap in between. 
Acquisition was performed at a rate of 40-50 
milliseconds per frame. An expert radiologist manually 
segmented the entire set of 10-15 two-chamber views 
acquired for each patient using a dedicated software 
display package installed in the department of 
Radiology at Columbia-Presbyterian Medical Center.  
For the two modalities, trabeculations and papillary 
muscles were excluded while moderator bands were 
included inside the cavity.  
3.1.4. Two-Dimensional Deformable Model 

Segmentation 
A two-dimensional parametric deformable-model 
segmentation was performed on the denoised data 
following the method described in [16]. The model was 
initialized with a 5 pixel-radius circle inside the cavity 
to segment. Next, the user manually selected the centers 
of the circle for every 10 slices. Center locations for in-



 

between slices were determined via linear best fit. By 
identifying the best linear fit to the center points 
detected inside the LV cavity we defined an 
approximation of the LV medial axis.  
3.1.5. Three-Dimensional Deformable Model 

Segmentation 
Three-dimensional deformable-model segmentation 
was performed on the denoised data. The model was 
initialized similarly to the two-dimensional case, by 
manually selecting a center position inside the cavity to 
segment. But, contrary to the two-dimensional case, we 
did not need to define the model as entirely inside the 
cavity nor did we have to initialize it on every slice to 
segment. On the other hand, the Mumford-Shah 
functional was less stable than the two-dimensional 
balloon model as it converged towards the myocardium 
wall borders. We decided to initialize the model as a 
cylinder with ellipsoidal cross-section. The center and 
dimension of the ellipse were set up manually for each 
volume within the middle slice between the base and 
the apex of the ventricle. The ellipse dimensions were 
defined to reflect the ratio of dimensions of the 
ventricle, but the ellipse itself did not need to be close 
to the borders of the ventricle. We observed that using 
an ellipsoidal cross-section instead of a circle as for the 
two-dimensional model improved the stability and 
convergence of the iterative process. The cylinder 
height was defined from the base through 20 slices 
before the apex. By not including the apex we let the 
model deform in the third dimension from slices above 
that have better resolution and we were able to avoid 
problems of instability and over segmentation as 
encountered in the two-dimensional case.  
3.1.6. Study results 
The set of ten patients used in this study presented great 
diversity in the quality of the data as well as the shapes 
and sizes of the ventricles. Volume ranges for this study 
were the following: RV-ESV 71.5-269 ml, RV-EDV 
123.03-311.5 ml, LV-ESV 19.0-82.2 ml, LV-EDV 
41.5-144.8 ml, RV EF 9.1-51.6 % and LV EF 30.4-74.5 
% as obtained with manual tracing on MRI and RV-
ESV 49.2-191.3 ml, RV-EDV 96.5-250.6 ml, LV-ESV 
11.8-50.8 ml, LV-EDV 35.8-78 ml, RV-EF 44.2-68.1 
% and LV-EF 40.8-68.1% as obtained with manual 
tracing on RT3D ultrasound.  
Absolute errors of measures were computed for RV and 
LV ejection-fraction. We evaluated mean-error values 
and standard deviation over the ten cases for the two 
ventricles. These error measures are reported in Table 1 
and Table 2. Maximum and minimum error values are 
provided to better assess the range of variability 
achieved by the different segmentation methods.  
For both ventricles, ejection fraction estimation was 
better estimated with the deformable model. For each 
segmentation method, measurement accuracy was lower 
for the right ventricle. This result could be explained by 
the fact the right ventricular volumes were significantly 
bigger than the left ventricular volumes as higher 

quantification errors for bigger volumes was also 
reported in similar study using RT3D ultrasound [18].  

Error 
(EF %) 

Manual 
vs. MRI 

2D 
Deformable 

model vs. 
MRI 

3D 
Deformable 

model vs. 
MRI 

Mean 8.6 4.9 4.6 
Std 5.7 4.1 4.2 

Max 
Min 

17.8 
0.3 

12.21 
0.2 

13.9 
0.8 

Table 1: Absolute errors in quantification of RV 
ejection fraction for ten clinical patient studies. 

Error 
(EF %) 

Manual 
vs. MRI 

2D 
Deformable 

model vs. 
MRI 

3D 
Deformable 

model vs. 
MRI 

Mean 10.8 7.1 4.4 
Std 5.3 4.5 5.1 

Max 
Min 

18.4 
3.2 

16.1 
0.3 

18.2 
0.1 

Table 2: Absolute errors in quantification of LV 
ejection fraction for ten clinical patient studies. 

To assess the agreement between the different methods, 
we first performed a linear regression to evaluate the 
correlation between the segmentation methods and to 
determine the statistical significance of our 
measurements. Regression plots for RV and LV EF 
measurements are displayed in Figure 1. Regression 
statistics with p-values for [LV ; RV] ejection fraction 
were: p=[0.23; 0.062] when evaluated with manual 
tracing on RT3D ultrasound, p=[0.0009; 0.0008] when 
evaluated with 2D deformable model on RT3D 
ultrasound and p=[0.0008; 0.0006] when evaluated with 
3D deformable model on RT3D ultrasound.  
We observed again an improvement in correlation with 
the deformable model when compared to manual 
tracing. In the case of manual tracing, the weak 
correlation could be explained by the abnormal LV 
shapes, due to the enlargement of the RV cavity in PH 
patients. Volume measurement with manual tracing on 
RT3D relies on geometrical models that assume a 
particular smoothness of its contours. This assumption 
is generally true in normal patients, but will introduce 
measurement errors in cases of disease such as PH 
where abnormal irregular shapes are encountered due to 
high pressure in the RV cavity, compressing the LV and 
introducing deformation on the septal side. On the other 
hand, the high pressure in the RV induces a change in 
the ventricular shape, becoming rounder as it grows in 
size, and correlations for this ventricle were similar to 
values obtained for the LV in prior clinical studies [16].  
Measures for the RV were more significant than for the 
LV with both segmentation methods, as the p-value for 
this ventricle were lower. Overall, deformable model 
correlation coefficients were similar for both studies but 
p-values with the deformable model were greatly 
improved when compared to the first study. This better 



 

agreement via linear regression reflects the superior 
performance of the deformable model to accurately 
segment the ventricular volumes on denoised RT3D 
data. Finally, the 3D deformable model improved 
segmentation accuracy for both correlation and p-value 
when comparing to 2D implementation. This result is in 
accordance with our expectations that 3D deformable 
models should perform better than their 2D counterpart 
by integrating spatial continuity in all three spatial 
dimensions. 
Similar clinical studies have been reported recently in 
the clinical literature. Corsi et al. [18] performed a 
study for LV EF measurement with MRI and 3D level 
set segmentation on RT3D data. They reported a 
correlation coefficient of r=0.98 (MRI vs. level set) and 
r=0.99 (MRI vs. manual tracing). The study included 21 
patients and no significance levels were reported.  
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Figure 1: Linear regression for RV and LV ejection 
fraction measures estimated with manual tracing on 
MRI, manual tracing versus RT3D ultrasound and 
deformable models on RT3D ultrasound. 
Correlation coefficients are reported for each case. 

For further evaluation, we performed a Bland-Altman 
statistical analysis [19]. We considered measures from 
MRI data as the reference (ground truth) and computed 
errors of RT3D measures vs. MRI [20, 21] with either 
manual tracing or deformable model. Results of the 
Bland-Altman analysis are displayed in Figure 2. 
The 95% confidence interval is defined with a center 
value equal to the mean error and width equal to two 
standard deviations of the error. Intervals with one 
standard deviation were equal to: 

- 2D DM: for RV EF, and 
 for LV EF. 

[0.31% ± 6.60%]
[5.6% ± 6.42%]

- 3D DM: for RV EF, and 
 for LV EF. 

[1.31% ± 6.27%]
[2.93% ± 6.13%]

- Manual tracing: for RV EF, 
and [  for LV EF. 

[1.20% ± 10.09%]
3.93% ± 11.80%]

Analysis of the errors showed that both 2D and 3D 
deformable models applied to denoised RT3D 
ultrasound performed similarly and as accurately as 
manual tracing while reducing the mean error and the 
confidence interval by up to 37% for RV EF and 48% 
for LV EF.  
Takuma et al. [22] reported standard error of estimate 
of 4% for LV EF measures, when comparing to 
MUGA. They also reported inter-observer variability of 
2.4% - 3.7% and intra-observer variability of 3.9% - 
8.3% for two different manual tracing methods.  

 

MRI vs. Manual Tracing 

-20

0

20

-20 

0 

20 

LV 

-20 

0 

20 

MRI vs. 2D Deformable Model 

E
F 

D
iff

er
en

ce
 (%

) 

Mean EF (%) Mean EF (%) 

E
F 

D
iff

er
en

ce
 (%

) 

-20

0

20

MRI vs. 3D Deformable Model 

E
F 

D
iff

er
en

ce
 (%

) 

E
F 

D
iff

er
en

ce
 (%

) 

-20 

0 

20 

-20

0

20 RV LV

RV 

 

5 40 75 20 45 75

Mean EF (%) Mean EF (%) 

Mean EF (%) Mean EF (%) 

5 40 75 20 45 75

5 40 80 20 50 80
E

F 
D

iff
er

en
ce

 (%
) 

E
F 

D
iff

er
en

ce
 (%

) 

 
Figure 2: Bland-Altman statistical analysis for LV 
and RV EF measures with manual tracing and 2D 
and 3D deformable model on RT3D ultrasound vs. 
manual tracing on MRI. Average EF difference and 
95% confidence interval are displayed on each plot. 

Our study showed that 2D and 3D deformable model 
could achieve 6% accuracy for RV and LV ejection 
fraction with average errors below inter and intra 
observer variability reported by similar studies. We 
demonstrated that three-dimensional deformable model 
improved LV EF measures, which can be explained by 
a more accurate segmentation of small and distorted 
ventricular shapes when integrating the third spatial 
dimension. We can conclude that quantification of 
cardiac function with RT3D ultrasound, via deformable 
model segmentation on denoised data, is feasible and 
provides accurate volume and ejection fraction 
measures, compared to MRI. Manual tracing measures 
were significantly less reliable with large standard 



 

deviation of errors and yielded significantly lower 
correlation coefficients.  

4. Conclusion 
We have implemented deformable model segmentation 
algorithms in 2D and 3D for quantification of 
ventricular function using RT3D ultrasound. The 2D 
deformable model was derived from the balloon method 
while the 3D method was derived from the Mumford-
Shah minimization method, deforming a surface to 
achieve an optimal partitioning of the data into smooth 
regions. These deformable models proved to be very 
well suited for the segmentation of RT3D cardiac 
ultrasound as they extracted highly curved volumes 
while ensuring smoothness to handle missing 
myocardium signals and inside localized echos from 
trabeculations.  
A complete and rigorous validation of the segmentation 
methods was carried out for quantification of left and 
right ventricular ejection fraction including comparison 
of measurements with cardiac MRI as the reference. 
Errors of measurement for both ventricles were within 
the range of inter- and intra- observer variability and 
compared favorably to similar studies performed by 
other groups using RT3D ultrasound for quantification 
of cardiac function. Manual tracing measures were 
significantly less reliable with large standard deviation 
of errors and low correlation coefficients. Finally, the 
3D deformable model achieved the highest degree of 
accuracy, which can be explained by a more accurate 
segmentation of small and distorted ventricular shapes 
when integrating the third spatial dimension.  
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