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Abstract Accurate quantification of total body and the distribution of regional 
adipose tissue using manual segmentation is a challenging problem due to the high 
variation between manual delineations. Manual segmentation also requires highly 
trained experts with knowledge of anatomy. We present a hybrid segmentation 
method that provides robust delineation results for adipose tissue from whole body 
MRI scans. A formal evaluation of accuracy of the segmentation method is 
performed. This semi-automatic segmentation algorithm reduces significantly the 
time required for quantification of adipose tissue, and the accuracy measurements 
show that the results are close to the ground truth obtained from manual 
segmentations.  

1    Introduction 

Adipose tissue quantification plays a central role in studying obesity in children and adults. 
The statistics show that 60% of American adults are either overweight or obese, and the 
rates are skyrocketing in children and adolescents [1]. Obesity is strongly linked to 
morbidity and mortality rate [2, 3]. The recent report of a striking prevalence of metabolic 
syndrome is directly related to excess visceral adiposity [4]. There is great interest in 
studying regional adipose tissue. At present, CT cans provide the best imaging for visceral 
adipose tissue (VAT), but radiation exposure is prohibitive, especially in children and 
young women. Therefore multiple CT scans are not admissible. The availability of MRI 
technology for whole body scans made it an attractive imaging modality for quantification 
of adipose tissue. At present, most investigators quantify VAT from a single CT or MRI 
slice.  
   The current proprietary software tools for segmentation of adipose tissue from whole 
body MRI scans is very laborious and time consuming and requires highly trained 
experts/technicians [5, 6]. The methods rely heavily on manual delineation and/or low 
level semi-manual segmentation, (e.g. thresholding and histogram-based region growing) 
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that are generally successful with high-contrast images [7]. Since most MRI scanners are 
not free of magnetic field inhomogeneities and chemical shift artifacts, segmentation of 
MRI images requires substantial operator involvement. This approach is very time 
consuming, since it takes 5-6 hours per subject to separate subcutaneous adipose and 
visceral adipose tissue, skeletal muscle and lungs from the remaining organs. Regional 
adipose tissue has a high coefficient of variation (CV), a study shows that the CV of 
visceral and adipose tissue is 9.4-17.6%  and 2.1-4.9 %, respectively [8]. No sufficient 
data on the evaluation of intermuscular adipose tissue quantification is published. There 
are problems related to image quality and artifacts: non-uniform RF coil response, 
Figure.1(a,c,d); poor contrast, Figure.1(b); chemical shift, Figure.1(c); that pose challenge 
for automated, accurate and efficient image segmentation [9]. Finally, while image 
segmentation remains a very challenging problem, evaluation of segmentation methods 
generally lacks a consensus within the medical image processing community.  
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Figure 1: (a) Non-uniform RF coil response and black boundary artifacts. (b) Poor contrast and 
non-uniform RF coil response. (c) Chemical Shift artifacts. (d) Blood flow artifacts, non-uniform 
RF coil response and poor signal-to-noise ratio. 

2    Methods and Materials. 
We use a hybrid segmentation method for processing both radiological and the Visible 
Human data [10, 11]. We follow the evaluation framework, as reported in [12], to assess 
accuracy of the segmentation of adipose tissue. There is no single segmentation method 
that can yield acceptable results for every application domain (i.e. an Application, a Body 
region and an imaging Protocol <A,B,P>). Therefore, we can only evaluate performance 
of a segmentation method in the context of a specific <A,B,P> [12]. 



2.1 Hybrid Image Segmentation Methodology 

Hybrid segmentation integrates boundary-based and region-based algorithms that amplify 
the strength and reduce the weakness of both approaches, and can yield high precision, 
accuracy and efficiency [10, 11, 13, 14]. We have built and tested, as a part of a large 
effort to provide an open source Segmentation and Registration Toolkit (ITK, 
http://www.itk.org) funded by the National Library of Medicine, a hybrid segmentation 
method [11] that combines fuzzy connectedness segmentation [15], Voronoi Diagram  
classification [16] and a deformable model based smoothing algorithms [18].   

2.1.1 Fuzzy Connectedness Segmentation 

Fuzzy connectedness was introduced by Udupa [15] and has been successfully used for 
segmentation of multi-channel images in several applications. This method uses the fact 
that medical images are inherently inhomogeneous. Object segmentation is achieved by 
defining a group of pixels that show a certain level of global hanging togetherness (fuzzy 
connectedness). We define affinity between two elements in an image (e.g. pixels, voxels) 
via a degree of adjacency and the similarity of their intensity values. A global fuzzy 
relation, called fuzzy connectedness, is defined in the image by assigning to every pair of 
elements a strength measurement of global hanging togetherness. The strength of a path 
connecting two elements is defined as the �weakest� link, e.g. the lowest affinity value 
along the path. The strength of fuzzy connectedness between two pixels is defined as the 
strongest path among all paths connecting them. A fuzzy scene map representing fuzzy 
connectedness value between each pixel in the image and a seed pixel is computed using 
dynamic programming [15]. A user-defined threshold applied to the fuzzy scene map 
results in a segmented object with the selected level of fuzzy connectedness (See Figure 2). 
 

                   
                        (a)                                          (b)                                        (c)                    
Figure 2: Fuzzy Connectedness Segmentation.  (a) Input image. (b) Fuzzy Scene Map. (c) Result: 
segmented object with fuzzy connectedness level value (a user-defined threshold) of 0.025. 

2.1.2 Voronoi Diagram Based Classification and Segmentation 

This algorithm, described in detail in [16], is based on repeatedly dividing an image into 
regions using Voronoi diagram [17] and classifying the Voronoi regions based on an 
homogeneity classifier for the segmented organ/tissue. The region-based homogeneity 
operator determines the performance of the segmentation. The simplest homogeneity test 



can be achieved by measuring the mean and standard deviation of the target object [16]. 
More accurate object description and homogeneity operator has been tested to provide 
more accurate segmentation [10]. In Figure 3, we show an example of segmentation of 
visceral adipose tissue in a single slice of color Visible Human data. 
 

 
         (a)              (b)                            (c)                     (d)              (e)                         

Figure 3: Voronoi Diagram classification. (a) Input image. (b)(c): Voronoi regions after 2 and 8 
iterations, respectively. (d) The final boundary. (e) The final segmented region: a binary object. 

2.1.3 Hybrid Segmentation: Integration of Fuzzy Connectedness and Voronoi 
Diagram Classification Methods 

    
                   (a)            (b)                                    (c)                                   (d)  

Figure 4: Hybrid segmentation. (a) Input image (MRI T1). (b) Fuzzy connectedness segmentation. 
(c) Voronoi diagram segmentation using (b) as a prior. (d) A volume-preserved smoothing on (c). 

In our hybrid segmentation, we integrate the fuzzy connectedness algorithm with the 
Voronoi Diagram classification. We aim to improve the robustness and performance of 
the segmentation, and to reduce the need for user interactions. First, a human operator 
manually picks few pixels inside the object, and small regions, e.g. 5 by 5 pixels centered 
at the pixels are collected to compute an estimation of the mean and variance of the pixel 
intensity for adipose tissue. Such a procedure needs to be done once for one whole body 
MRI scan. With the estimated mean and variance, we invoke the fuzzy connectedness 
algorithm and generate a fairly reasonable segmentation for a sample connected adipose 
tissue in the image, a prior. From the segmented sample tissue, a more accurate 
homogeneity operator is derived to classify regions in the Voronoi diagram segmentation 
[11]. We generate Voronoi diagram from randomly distributed seed points over the image. 
The Voronoi regions are classified as interior, exterior and boundary regions. The 



boundary regions are subdivided by adding seed points to their edges and re-compute the 
Voronoi. Then, the Voronoi regions are classified again. We iterate the algorithm until the 
boundary regions converge to the final segmentation and each boundary region reaches an 
area less than a selected threshold [11]. The Voronoi diagram classification yields a 
boundary with a �noisy� appearance. Finally, a level-set based volume-preserved 
smoothing algorithm [18] is applied to smooth final result. In Figure 4 we show an 
example of segmentation of adipose tissue of a single MRI T1 weighted image. 

2.2 Evaluation of Segmentation Algorithms  

    
               (a)                                     (b)                                    (c)                                 (d) 

    
           (e)                                    (f)                                     (g)                                  (h) 

    
            (i)                                     (j)                                     (k)                                  (l)  
Figure 5: Results depicting hybrid and manual segmentation: (a)(e)(i) input images (MRI T1); 
(b)(f)(j): ground truth images; (c)(g)(k): hybrid segmentation; (d)(h)(l): manual segmentation. 

We have recently developed a comprehensive segmentation evaluation methodology [12] 
in a joint effort between UPenn and Columbia based on our previous experience with 
related applications in medicine and segmentation methods. Any method of evaluation of 
segmentation should specify the application domain under consideration that is 



determined by three entities: (A) an application (e.g. quantification of adipose tissue), (B) 
a body part (e.g. visceral adipose tissue), and imaging protocol (MRI T1 weighted image). 
A segmentation method in an application domain <A,B,P> should be evaluated in terms 
of three factors: Precision which represents repeatability of segmentation taking into 
account all subjective actions required in producing the result; Accuracy, which denotes 
the degree to which the segmentation agrees with the ground truth; Efficiency, which 
describes the practical viability of the segmentation method. In this paper, we limit 
evaluation of our segmentation method to evaluation of delineation accuracy (where 
delineation is the low-level process of determining the precise spatial extent of the object 
in the scene), due to fact that we are using data from another clinical study. The following 
measures are defined to characterize the delineation accuracy of a segmentation method: 
False Negative Volume Fraction (FNVF, fraction of tissue that was missed), False 
Positive Volume Fraction (FPVF, the amount of tissue falsely identified) and True 
Positive Volume Fraction (TPVF, fraction of the total amount of tissue in the ground truth 
with which the delineation obtained by the method overlaps), for mathematical details, see 
[12]. Those measurements require carefully generated ground truth [12].  

2.3   Data Description and the Generation of Ground Truth  

In our study, we use the data acquired at the Obesity Research Center, St. Luke�s 
Roosevelt Hospital in New York, under different clinical study of hand-segmentations of 
hundreds of whole body MRI T1 weighted scans. From the multiple, human subject 
datasets, two abdomens (reference datasets) were selected and segmented repeatedly by 
all experts involved in the study. Each such reference dataset consists of six slices, with 
slice thickness of 10mm and inter-slice separation of 40 mm. The reference datasets were 
segmented (semi)-manually by six experts under a rigorous protocol. Each set was 
segmented three times, by each expert, with three month intervals between segmentations. 
All the manual segmentations were aided with an interactive segmentation tool utilizing 
simple histogram-based thresholding operator and paintbrush. We found the resulting 
manual segmentation to be suitable for defining a surrogate for true delineation (ground 
truth). For our study, we used 16 manual delineations (binary masks) of the two abdomens 
(2 segmentations out of 18 were disqualified due to mislabeling problem), and the ground 
truth was established by simple averaging of the corresponding binary images into a fuzzy 
object (with pixel value between 0 and1).  Then, we segmented the data with our semi-
automatic hybrid method and compared the results to the ground truth. We also selected 
three manual segmentations, averaged them to provide another segmentation result, that 
we call manual segmentation. Then, the three factors (FNVP, FPVF, TPVF) for measuring 
the segmentation accuracy were computed for both segmentations, and for individual 
slices in the data (the inter-slice distance in the dataset was too large to treat as a 
contiguous volume). 



3    Experimental Results 
The results of hybrid and manual segmentations for one of the reference datasets, are 
presented in Figure 5. It shows three slices from the reference dataset (a)(e)(i), and 
corresponding slices of: ground truth (b)(f)(j), hybrid segmentation (c)(g)(k), and manual 
segmentation (d)(h)(l).  

Table 1: Accuracy measurements of the hybrid segmentation shown in FFiigguurree  55  ((cc)),,  ((gg))  aanndd  ((kk))..  

Ground Truth AArreeaa  ddiiffffeerreennccee  ((%%)) FFNNVVFF  ((%%)) FFPPVVFF  ((%%)) TTPPVVFF((%%)) 
Figure   ((bb)) 11..33 88..22 99..44 9911..88 
Figure   ((ff)) 00..22 77..77 77..99 9922..33 
Figure   ((jj))  33..99  88..11  1111..99  9911..99  

Table 2: Accuracy measurements of the manual segmentation shown in Figure 5 (d), (h) and (l)..  

Ground Truth AArreeaa  ddiiffffeerreennccee  ((%%)) FFNNVVFF  ((%%)) FFPPVVFF  ((%%)) TTPPVVFF((%%)) 
Figure   ((bb)) 22..44 55..33 77..44 9944..77 
Figure   ((ff)) 22..00 66..33 55..99 9933..77 
Figure   ((jj))  44..11  44..11  88..22  9955..99  

 

Table 1 and Table 2 give the accuracy measurements for the hybrid and manual 
segmentations compared with the ground truth, respectively. Since the ground truth was 
built upon the manual delineations, these �self� consistency measurements in Table 2 
should be the best accuracy measurement one can expect from any segmentation results. 
As we can see in Table 1 and Table 2, the simple measurement of area difference does not 
provide accurate evaluation in terms of overall performance. The three factors: FNVP, 
FPVF, TPVF give better evaluation of the accuracy measurement. Our hybrid 
segmentation provides about 8~9% accuracy, while the best accuracy result for the 
manual segmentation is 5~7%. To assess efficiency of segmentation, an experienced 
human operator delineates adipose tissue of a 6-slice MRI T1 dataset in about 15~20 
minutes. While using our hybrid segmentation, only a few mouse-clicks are needed, and 
adipose tissue in a 2D image is delineated in real time (less than 1 second).  

4    Discussion 
We have built and tested a hybrid segmentation tailored to delineate adipose tissue from 
whole body MRI T1 scans. This approach requires significantly less human involvement 
than any existing conventional interactive tools. We have evaluated delineation accuracy 
using three factors: FNVP, FPVF, TPVF. Under the framework, we�ve demonstrated that 
the results from hybrid segmentation are close to those obtained from manual delineation. 



The ground truth generated for this study is not ideal, therefore it is recommended to 
acquire, in the future, new data that will allow a complete evaluation under all three 
factors: precision, accuracy and efficiency. The same evaluation framework can also be 
used for testing the variability (CV index) of the hand segmentations, among controlled 
group of human operators.  
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