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Abstract 

Protein production has experienced great advances in 
recent years. In particular, high throughput protein 
production, coupled with the use of robotics, outputs 
thousands of mixtures in micro-array wells. To detect the 
presence of protein crystal formation, images of these 
wells are acquired regularly using robotic cameras. 
Traditionally, a crystallographer would manually process 
each image – identifying the wells that resulted in protein 
crystal formation. This manual inspection process is slow 
and given the high rate of mixture output, it has become 
near impossible for crystallographers keep up. Our aim is 
to create an automated method of detecting which wells 
have crystals and which ones do not. We make use of a 
neural network that is trained based on manually 
classified ground truth data. After it is trained, the 
automatic classifier would give a binary output – a value 
of one for the detection of crystals and precipitates in 
images and a value of zero otherwise. In our previous 
papesr, the core methods of using multi-scale Laplacian 
image representation to extract image features and the 
implementation of the neural network classifier were 
discussed. Here we present a new, optimized approach to 
training the neural network and results from a large-scale 
test. We claim that the neural network can be better 
trained if the training image dataset is optimized in the 
sense that ambiguous images are removed during the 
initial training processes. Incremental training is 
implemented so that the network can be improved as more 
data becomes available. From initial results with training 
based on a 6,000 optimized image dataset, the accuracy 
of the improved classifier approaches 95% in identifying 
a wide array of images.  

Introduction 

The topic of genomics has garnered great interest in 

recent years. Numerous consortiums have been 

established with the goal of identifying and reproducing 

protein structures. The consortiums bring together 

scientists from a wide range of backgrounds. The process 

begins with biochemists who dream up the different 

formulations. These concoctions are then seeded using 

robotics with different mixtures on a 1565 matrix well 

plate to create a huge variety of cocktails. The mixtures 

are incubated and at regular intervals, such as a day, a 

week or two weeks, they are checked for protein formation 

using a robotic camera which acquires the image of each 

well. In the past, when the production output of concoctions 

was slow, a trained crystallographer would manually inspect 

each image to see which wells have resulted in protein 

crystal. Aside from crystals, the crystallographer may 

typically observe mixtures with precipitates, organic 

material, skins, no reaction, or a combination of all of these. 

Typically, protein formation occurs in 1% of all mixtures. 

The mixtures with crystals are further examined and once the 

protein structure is identified, the formulation of these 

mixtures is recorded and they can be placed in the protein 

production pipeline.  

Given the recent advances and trend of moving towards high-

throughput protein production, the identification of which 

mixtures resulted in protein crystals has become the 

bottleneck. Manual inspection of each well simply cannot 

keep up with the output. At the NESG Consortium, there are 

more than 3 million images that are backlogged for 

processing and this number grows everyday. This delays the 

discovery of concoctions that lead to protein formation and 

hence lowers the potential protein production output.  

It is evident that an automated classification method is 

needed to address this problem. However, this problem is 

complicated by the fact that the protein structures may take 

many different shapes, precipitates and organic material not 

only clutter the image but also have similar shapes to protein 

crystals, the mixtures take the form of a droplet in the well 

which leads to irregular boundaries and non-uniform lighting 

conditions, and acquired images may be out of focus. 

Samples of these images are shown in Fig. 1. All this leads to 

difficulties in classification.  

(a) (b) (c)

Figure 1: Examples of well images. (a) & (b) both do not 
contain crystal or precipitates. (c) contains protein crystals 

The general approach we took to tackle this challenge is to 

use a neural network classifier. Previously expert labeled 

images are used as ground truth. Features from these images 
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are extracted and pass in as inputs to the network. The 

classifier uses this previous knowledge to determine the 

likely presence of crystals in unknown images. The next 

section will provide an overview of the core methods and 

a detailed analysis for optimizing the training. The 

subsequent section will show the results of this effort. A 

detailed analysis of our core methods was presented in 

our previous papers [1,2]. 

Methods 

Droplet cropping 

The first step is to isolate the region of interest, which in 

this case is the droplet. The Ellipsoidal Hough transform 

is used to identify the possible elliptical boundaries in an 

image based on edge map information. The algorithm is 

modified as suggested by Malassiotis et al. in which 

gradient information is used instead of a computationally 

intensive three-dimensional search [3]. Figure 2a shows 

the result of performing this step.  

Laplacian Pyramid Filter & Feature Extraction 

The Laplacian filter is used to decompose the image into 

three different levels. Each level is obtained by 

subtracting a low-pass filtered image from the original 

image resulting in a pyramid structure shown in Figure 2. 

The Laplacian filter is used to extract the boundary 

information and image features. The multi-scale 

representation is capable of extracting the useful features 

of the image and at the same time, reduces the sample 

size. The image features are extracted from first and 

second order histograms of the Laplacian pyramid 

coefficients. The histograms contain useful information 

and clues as to the presence of protein crystals. Eight 

statistical features, which are invariant to orientation, are 

computed. These contain the mean, standard deviation, 

skewness, kurtosis, energy, entropy, autocorrelation, and 

power.  

(a) (b) 

Figure 2:  (a) shows the result from droplet cropping. (b) 
shows the 3 level Laplacian pyramid expansion

Neural Network Classification 

The feature vectors calculated in the previous step is 

passed into the input layer of a three-layer feed forward 

neural network shown in Figure 3. The LOG sigmoid 

transfer functions are used for both hidden and output 

layers to generate an output that is between zero and one. 

Backprojection and mean square error optimization were 

used to train the network. The output of this network is 

binary. An output of “1” would indicate the presence of 

crystals or precipitates as defined by the crystallographer 

who contributed the manually labeled image dataset used as 

the ground truth. An output of “0” would indicate that 

crystals or precipitates were not present but the image may 

contain organic matter, skins from a dried well, or a clear 

well. The actual value that the neural network outputs 

however is in between these two extremes. A threshold is 

needed to separate the two classes and this is discussed in 

optimization.  

Figure 3: Three layer feed forward neural network 

Training Database Optimization 

The classifier is trained both using an optimized and random 

database of negative images. The optimized images are 

selected to minimize characteristics that tend to lead to 

ambiguous outputs, those which output from .4 to .6.  To 

optimize the database, a sample dataset of roughly 200 

images is run using a modified trained classifier.  The 

modifications include capabilities to categorize problematic 

images.  Images which outputted in the range of .4 and .6 are 

categorized under ambiguous and the falsely identified 

images are marked as either false positive or false negative. 

The images in the ambiguous category are manually scanned 

to determine possible universal characteristics or trends that 

led to their false classification or ambiguity.    These 

characteristics can be broken into three broad categories:  

images with non-crystalline precipitates (Figure 4a), images 

with heavy ripples (Figure 4b), and images with significant 

air pockets (Figure 4c).  

(a) (b) (c)

Figure 4: Categories of ambiguous images. (a) non-
crystalline precipitates (b) heavy ripples (c) air pockets

The three image types are manually removed from a larger 

bank to produce sets of 1000, 2000, and 4000 “clean” 

images.  The process to clean the dataset included viewing 

each image of the large dataset individually, and removing 

the image if it fell into the three categories.  The reasoning 

behind the optimization is incremental learning.  The 

classifier is initially trained with well-defined positive and 
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negative images.  Eventually, each training set fed to the 

classifier will contain an increased level of ambiguity.   

Incremental Training 

Given the large size and potential additions to the training 

database, it did not make sense to train the entire database 

at once. Instead a linear piecewise approach was taken 

and illustrated in Figure 5. 

Figure 5: Flow diagram of the training protocol. 
Calculated weights from a block of the image dataset are 
cascaded into the training of the subsequent image block 

From Figure 5, a block from the overall dataset is 

selected, used to train the neural network and the weights 

from the neural net classifier are saved. A second block of 

images is selected and this time, the weights from the 

previously trained neural net is passed as an input an 

additional input. The neural network uses the previous 

weights r to train with the new block of images leading to 

new weights for neural classifier which incorporates data 

from the previous two image blocks. This process is 

repeated until the training of the entire image database is 

complete.  

An added benefit of this scheme is that as additional 

images are acquired, the weights of these images can be 

added to an existing network. This enables the neural net 

classifier to be updated without having to retrain the 

massive database.  

Threshold Optimization 

Given the rare occurrence of protein crystal formation 

(1% of all mixtures), it is crucial that an automatic 

classification method does not miss any hits. In other 

words, the false negative percentage needs to be kept as 

low as possible. Using some initial data, it was observed 

that a number of images with proteins did not surpass the 

default detection threshold of 0.5 and were labeled as a no 

protein/precipitate image. Figure 6 shows the classifier 

output for each image ranging from 0 for no crystals to 1 

for crystal hits.  

The solid dots are ideal or ground truth data and the 

circles are the classifier outputs. Ideally, the circles and 

dot should match. The red line represents the default 

threshold – everything above the line would be labeled as 

a crystal hit and everything below as a miss. It is evident that 

a number of images with crystals had a neural net classifier 

output that was below the red threshold line and falsely 

labeled as a miss. This problem was remedied by 

incorporating the blue dashed line which represents the new 

threshold line. This was experimentally determined and set at 

0.03. Although the false positive percentages increase 

slightly, the more crucial statistic of false negatives fall 

drastically.  

Image dataset 
Weights from 

classifier 
Image blocks 

Training 

Module

Final weights 

from classifier 

Figure 6:  Neural net classifier output. Red line is the 
original threshold, blue is the optimized threshold detection

Results

In order to test the benefits of cleaning the training dataset, 

the classifier was trained using both uncleaned and cleaned 

datasets. The number of images in the database was also 

varied to find the effects of database size on the training of 

the classifier. These classifiers were tested by running a set of 

manually labeled, previously unseen images. The false 

positive percentage was obtained by finding the number of 

images without proteins or precipitates that were labeled as 

ones with it and vice versa for false negative. The total error 

was found by adding the false positives and negatives 

together. The ratio between images with proteins and 

precipitates and those without is roughly in a 1 to 10 ratio. 

While this ratio is greater than the actual percentages, it was 

found that this ratio yielded the best false negative rate. 

Using a smaller ratio tends to bias the classifier into 

generating more false negatives. Given the rare nature protein 

crystals, false negatives need to be kept at a minimum. The 

results are shown in Table 1.  

Uncleaned Images 
Size FP FN Error
1,000 2.88 5.04 7.92 

2,000 1.44 5.22 6.66 

4,000 1.26 4.68 5.94 

6,000 0.72 4.86 5.58 

Cleaned Images 
Size FP FN Error
1,000 3.96 3.43 7.39 

2,000 4.68 3.24 7.92 

4,000 5.40 3.42 8.82 

6,000 3.12 1.40 4.52 
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Table 1: Results from testing 
From the results shown in Table 1, it is clear that 

classifiers trained with the cleaned image database 

yielded better results than those trained with the presence 

of ambiguous images. Furthermore, removing the 

ambiguity plays a larger role in small training datasets 

than compared to large datasets. With a database of over 

4,000 images, the role of database optimization seems to 

have a much lesser effect presumably because the weight 

of a few ambiguous images is overshadowed by other 

more distinct images.  

A second observation is that as the size of the training 

database expands, the classification results improve. The 

more images that the neural network is exposed to, the 

better is its abilities to classify unknown images. One way 

to improve accuracy is to add more manually classified 

images into the training. The largest training size that was 

used is 6,000 because there were not enough images with 

proteins to maintain the 1 in 10 ratio.  

Discussion

The results from this classifier are very promising. While 

it may not attain the same accuracy as from manual 

inspection, the main advantage lies in that it can classify, 

with respectable results, completely automatically. While 

a trained crystallographer may be able to inspect 8,000 

images a day, our automatic classifier can process 20,000 

images a day without tiring. This number is scalable and 

dependent solely on computational power. It will 

continuously process images as long as the program and 

machines are running. While the ultimate goal is to 

replace the crystallographer and manual inspection all 

together, a semi-automatic method is still tremendously 

useful. Instead of processing 1565 images per well, the 

crystallographer can inspect only a handful that the 

automatic classifier had problems with and deemed as 

ambiguous.  

Future work in this area aims to expand the training 

database to further enhance the reliability of the classifier. 

Since the current classifier only gives a binary output, 

another enhancement would be to increase the number of 

classification outcomes to include the ability to 

distinguish precipitates from crystals as well as organic 

matter and dried skins.   
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