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Regularization in Tomographic Reconstruction
Using Thresholding Estimators

Jérome Kalifa*, Andrew Laine, and Peter D. Esser

Abstract—in tomographic medical devices such as single photon where f.(z1,z2) € L?(R?), § is the Dirac massy € [0, 27),
emission computed tomography or positron emission tomography andt € R. There are several different ways to define the discrete
cameras, image reconstruction is an unstable inverse problem, due Radon transform based on the continuous Radon transform 2.

to the presence of additive noise. A new family of regularization
methods for reconstruction, based on a thresholding procedure in
wavelet and wavelet packet (WP) decompositions, is studied. This

Typically, a line integral along;; cosa + zosina = t is ap-
proximated by a summation of the pixel values inside the strip

approach is based on the fact that the decompositions provide at — 1/2 < nicosa + nasina < ¢ +1/2.

near-diagonalization of the inverse Radon transform and of prior

When three-dimensional (3-D) data is processed, we treat

information in medical images. A WP decomposition is adaptively it as a series of tomographic projections/éf translated 2-D
chosen for the specific image to be restored. Corresponding sjices of the observed object. When necessary, the tomographic

algorithms have been developed for both two-dimensional and
full three-dimensional reconstruction. These procedures are fast,
noniterative, and flexible. Numerical results suggest that they
outperform filtered back-projection and iterative procedures such
as ordered- subset-expectation-maximization.

Index Terms—PDyadic wavelet transform, PET, SPECT, tomo-
graphic reconstruction, wavelet packets.

. INTRODUCTION

projections are transformed via rebinning techniques in order
to obtain tomographic projections of 2-D slices: this approach
is in general not necessary for SPECT images, but is increas-
ingly common in 3-D PET image acquisition [3]. Thus, the 3-D
dataset is written as

V0<z<Ns, Y[t a,z] = R(f[n1,ns,z]) + W[t, a, 2].

®3)

The noisel is usually modeled as a Gaussian white noise

W, which is independent of, or as Poisson noise, whose in-

WE are interested in the problem of tomographic recofensity at each pixel depends on the intensitRgf).
struction of images from transmission data, which we A tomographic reconstruction procedure incorporates the fol-
call tomographic projections ainograms Although the work  |o\ing steps.

presented here has a wide range of applications for various to-
mographic devices, we will focus on medical images with single
photon emission computed tomography (SPECT) and positron
emission tomography (PET) cameras.

A slice of an object observed by a tomographic device is rep-
resented by a two-dimensional (2-D) discrete im#ge, , no].
An estimation off must be computed with a tomographic recon-
struction procedure from sinograms produced by a tomographic
device, denoted’[t, o], and defined as

Y[t> a] = R(f[”l, n2]) + W[t> a] 1)

where{ f[n1,n2]}o<n, <N:, 0<n. <N, iS an observed imagéy’
is an additive noise, an® is the discrete Radon transform
which models the tomographic projection process. The discrete
Radon transform is derived from its continuous versiop,
which is equivalent to the X-ray transform in two dimensions
and is defined as [1]

(Refe)(t, )
://fc(mhm)é(:clcosa—f—msina—t)dmldm27 (2)
R /R
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Filtered-Back-ProjectionThe basis for tomographic re-
construction is the identity, in the continuous case

Je(w1,32) = REK((Refe)(t ) = Ré(ge x (Refe)(t, @)

4
wherex denotes a convolution,. is the one-dimensional
(1-D) ramp filter whose Fourier transform satisfies
7.(w) = |w|, and the back-projection operatRr is the

adjoint of R,
27
(Rp)(@) / p(t, a)da
0
T

with # = (21,72),t = 71 - @, andd@ = (cos a,sin )T
The filtered back-projection (FBP) algorithm is the appli-
cation of a discrete operat®"" which is the discretiza-
tion of the operatofR} K. It can be directly computed
with a radial interpolation and a deconvolution by a 1-D
filter ¢ which is the discretized version gf. The appli-
cation of the filterg amplifies the high-frequency compo-
nents of the tomographic projections in the direction

of ¢.

Regularization The deconvolution comes from the fact
that the Radon transform is a smoothing transform. Conse-
guently, back-projecting in the presence of additive noise
is an ill-posed inverse problem: numerically speaking, a
direct computation oR'™VY is contaminated by a large
additive noiseZ = R™ W, which means that a reg-
ularization has to be incorporated in the reconstruction
procedure.

0278-0062/03$17.00 © 2003 IEEE
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Current approaches for regularization in tomographic recon-Wavelets have been previously introduced in tomography by
struction can be classified into two families: a large number of researchers. The most popular application of
_ _ _ . . wavelets in tomography is local reconstruction [8]-[15]. De-
1) Regularized FBP (RFBP) is a linear filtering techniqugyney and Bressler [16] as well as Blanc-Fératidl. [17] used
in the Fourier space, in which the Fourier transfajifl ) ayelet transforms to obtain accelerated implementations of a
of the filter ¢ is replaced by a filte[k]7[k] wherer is &~ gtandard FBP. Bhatia, Karl, and Willsky [18], [19] combine
low-pass filter which attenuates the amplification of higly ayelets with a MAP model to derive sparse formulations of
frequencies. RFBP suffers from performance limitationge nroblem. Other authors have used wavelet methods to imple-
due to the fact that the sinusoids of the Fourier basis 8{g.nt 5 postfiltering of a reconstructed image after it was recon-
not adapted to represent spatially inhomogeneous daff,cied by a standard algorithm [20]. Sahiner and Yagle [21]
as found in medical images. This has been proven by \yavelet transforms to derive constraints on an iterative re-
Donoho [4], who has showed the sub-optimality of RFBR,hstrction algorithm. Finally, the wavelet-vaguelette decom-
to recover piece-wise regular signals, such as med'%sition (WVD) [4], [22]-[24], which is related to the work pre-

image;s. o . . sented here, will be discussed in this paper.
2) lterative statistical model-based techniques are designed

to implement expectation-maximization (EM) and maxa_ Notation
imum a posteriori (MAP) estimators [5], [6]. In some
cases, these approaches can provide an improveme,
over RFBP, but these estimators suffer from the followin8
drawbacks:

» Computation timeAlmost all the corresponding al-
gorithms are too computer-intensive for clinical ap- The operatofR™ is considered as an approximate discrete
plications, with the exception of ordered-subset-exnverse Radon transform operator. lfgte
pectation-maximization (OS-EM) [7], which is an .
accelerated implementation of an EM estimator. fi = R™(R(f)).

In MAP methods, useful priors usually give loca
maxima, but the computational cost of relaxatio

pper cases are used to represent signals which are the results
Statistical processes.

Il. THRESHOLDING ESTIMATORS

l'I'he difference imag¢g¢ — f; is the radial interpolation error,

: L Undis in general very low compared with the estimation error
method; remains prohl_bmve. e due to the presence of noise. In this paper, our focus is not on

* 'I_'heo_reucal understandm_g andjust|f|c_at|dEM es- interpolation techniques, but on regularization: the im#gis
timation lacks a theoretical foundation to under'considered to be our reference (ideal) image. Spline-based in-

staqd and chara}cterlze the estlmatlon error. The ﬂ}%'rpolation techniques are currently the most popular for tomo-
oretical properties of MAP estimators have bee

. raphic reconstruction [25], [26].
more thorolughl-y studied anq are better understoo 'The estimation problem in (1) is also equivalent to the de-
yet no optimality for a realistic model has beer?woising problem
established.

» ConvergenceEM estimators are ill-conditioned, in X=[fi+2Z (5)
the sense that the corresponding iterative algorithms
have to be stopped after a limited number of iterawhere X = R™Y andZ = R™W. If the noiseZ was
tions. Beyond this critical number, the noise may b&aussian white, Donoho and Johnstone have established [27]
magnified, and EM and OS-EM converge to a northat a thresholding estimator in a properly selected vector family
maximume-likelihood solution. The number of iter-B = {g.,., g}, fo<m<n,«n, -1, typically a wavelet basis, would
ations must be chosen by the user. be optimal to recover spatially inhomogeneous data as found in

In this paper, a new family of estimation procedures is studié@mographic medical images. A thresholding estimatarf ;
to address these limitations. These techniques are based &h 3 is defined as
thresholding procedure in a time-frequency decomposition, s *
namely a wavelet or wavelet packet (WP) transform. F= %: pm (X, gm)) I ©6)

Section Il introduces thresholding estimators in time-fre-
guency decompositions and their application to tomograpﬁ'?’
reconstruction. Section Il explains how the best WP tran&*
form is chosen among the variety of possible wavelet and z, if |z| > T,

WP representations, using a statistical estimation of the final pm () = {0, if |z| < T, ()
error. Section IV describes the corresponding fast noniterative _ -
tomographic reconstruction algorithm to recover 2-D imagednd soft thresholding

erep,, is a thresholding operator. Typical simple thresh-
ding rules include hard thresholding

Section V describes how the reconstruction algorithm can be T  ifax>T
adapted to 3-.D data to take .adva.ntag'e of th(_a spatial gorrelanons pm(@) = @+ T, ifo<—Th . @)
of the data in the transaxial direction @xis). Section VI 0 if 2] < T,

presents sample numerical results on SPECT and PET data.

These numerical results are then compared with the resuitse thresholdr,, is chosen to be proportional to the standard
obtained with state of the art procedures currently used deviationo,,, of the transform coefficientZ, g,,) of the back-
existing medical devices, namely RFBP and OS-EM. projected noise, which is a random variable.
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A. Wavelet-Vaguelette Decomposition N/2

In our situation, the choice of the decompositiBrdoes not
only depend on the prior information on the objggtbut also on
the back-projected nois&, whose behavior is very specific due
to the fact that it has been distorted by back-projection and de-
convolution processes. The assumption underlying thresholding
estimators is that each coefficient in the decompositioran
be estimated independently without a loss of performance. As
a consequence, such estimators are efficient if the coefficients N/Z
of the noise and of the object to be recovered are indeed nearly
independent irB. This means thalf must provide a near-diag-
onalization of the nois& and of the prior information in the N2
image f;.

The imagef; is a spatially inhomogeneous, piece-wise reg-
ular signal, which is compactly represented in a wavelet decom-
position. When the nois® is Gaussian white, then the noise
7 = R™W remains Gaussian becad@&" is linear. To obtain
a diagonal representation of the naisgone must find a decom-
position in which the covariance &, and henc&® ™™, is nearly
diagonal. Since the inverse Radon transform is a Calderon-2Zyg- -
mund operator [28], it is also nearly-diagonal in a wavelet basis. N2

These two properties of wavelet bases led Donoho [4] to ()
suggest the use of thresholding estimators in wavelet bases 1. This figure illustrates the 2-D discrete Fourier domain for positive

for several linear inverse problems, including the inversion dfduencies. (a) Segmentation induced by a wavelet transform. The grey
! areas correspond to the wavelet coefficients which are always put to

the Radon transform. Such an estimator is given by (6), whekgo by the thresholding operator because these coefficients have been
the basisB = {!}mﬂfn}ogng\H*er is an orthogonal or a contaminated by the numerical explosion of the back-projected noise at high
bi-orthogonal wavelet basis. Donoho established the minim%%?ﬁ?cf'reesdugbgcizgmexﬁgﬁntﬁzdﬁfg?m%; ?:‘rgglrﬂ?)je\t’gs, g?&fg{gd Tbr;e
optimality of this approach, called a WVD, and showed ite back-projected can be isolated more accurately, and some information at
superiority with respect to other approaches such as FBP, ifygrmediate frequencies are recovered by the thresholding operator.
the recovery of piece-wise regular signals.

However, the WVD as studied by Donoho was developddains how the algorithm is adapted depending on the Gaussian
for a continuous model of the back-projection operator, afdf Poisson nature df’.
assumes that the additive noiBé is always Gaussian white.
Moreover, the asymptotic optimality results establish the peﬁ’-‘ Wavelet Packets
formance of a WVD estimator for high resolution data, which A major problem of the WVD comes from the relatively poor
is not the case for PET and SPECT medical images. This me&@solution in frequency of the wavelet transform. Fig. 1(a) il-
that, unfortunately, despite numerical implementations and festrates the partitioning of the 2-D discrete Fourier domain in-
finements by other researchers [22]-[24], the theoretical interd&c€d by an orthogonal wavelet basis. At the finest scale of

of the WVD is not matched with a significant gain of perfor—the wavelet transform, which corresponds to frequencies higher

mance when compared with other techniques such as RFg}gnN/zllnthe horizontal and vertical directions, all the wavelet

) - coefficients are contaminated by the numerical explosion of the
wher_1 apphed_to real c_;hmca! PET and S_PECT data. The purpQSgck—projected nois#. These coefficients are put to zero by
of this paper is to build estimators which share the same th

X ; ) , %Re thresholding operator, because the threshold valyede-
retical properties as WVD, but also provide an important addd‘end on the standard deviatiep, of the back-projected noise

tional flexibility and adaptivity which are essential to improvez, which is very large at highest frequencies. Alternatively, if
the numerical performances and image quality of the resultifge threshold’;,, is chosen at a lower value, the noise remaining
algorithms. in the reconstructed image is too important.

The minimax optimality properties of the Wavelet-Vaguelette Kalifa and Mallat [29] have generalized Donoho’s approach
Decomposition can only be established when the additive notseadapt it to other types of decompositions, including WP bases.
W is a Gaussian white noise. Whé¥ is a Poisson noise, the WP bases are decompositions which can provide a compact rep-
coefficients of its decomposition in a wavelet transform are nggsentation of an observed imaggeas well as a more accurate
independent, and the minimax optimality properties cannot B8gmentation of the frequency domain than a wavelet basis, to
verified. In practice, however, the strategy of finding a decompBlProve the near-diagonalization of the noigelt is shown in

sition in whichR™ is nearly diagonal remains valid, and guarl2°] that the thresholding estimation riskt’) = E(|| '~ fi]|*)

antees that the numerical values of the transform coefﬁcieﬁ‘fisof the same order, up tolag(V) factor, of the decision risk

of filtered back-projected noisg = R™W will be nearly ra(F) = S min(o2 2y 9
independent, even iV is a Poisson noise. Section IlI-C ex- (i) %: (@m » [{fis gm)[") ®)

@)
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To minimize (9), we need to concentrate the endidy| Z||?} A. Use of Phantom Images
over few vectorg,,, which produce coefficients,, larger than

Y Phantom images are synthetic images modeling observed or-
|(fi, 9m)|, and among the remaining vectarsconcentrate the

2 fow | HiCients . that b gans or anatomical structures, without any noise or artifacts.
energyl| f;||* over few large coefficients f;, g,,)| that are above A phantom imagef,,, provides a reasonable representation of

the noise leveb,. ho%/v the imagef; of the observed object should appear. When

Fig. 1(b) gives an example: a more accurate segmentation ol : .
. i : antom images of the observed organ are available, they can
the Fourier domain as compared with a wavelet transform eg

ables isolation of the highest frequencies, in which each co ﬁ usted fqr the c.omputattrl]on oft.thel bes(tj blas]isthas.summgbthat the
ficient (f;, gm) oOf the information is below the standard devigPhantom image is a mathematical model of the image be

tion o,,, of the coefficients of the back-projected noise. Becauggcovered. i ) )
this WP decomposition, as opposed to a Fourier transform, prolf the thresholding operatop is a hard thresholding, (6)
vides a compact representation of information, thresholding 26c0mes
lows the recovery of most of the information in the rest of the = %
Fourier domain. Y r= Z (X, )9 (10)
The choice of the best time-frequency decomposition in "
which the thresholding estimation is computed is a matter Wherea,, is either zero or one. Whem,, = 1, the quadratic
Compromise between the representa‘[ion of the back-projecmimation error on the Corresponding coordinate is equal to the
noiseZ and the representation of the dafato be recovered. variance of the random variab|¢, g,,,) of the coordinate of the
There is no single time-frequency decomposition (such asdack-projected noisg. Whena,,, = 0, the quadratic estimation
Fourier basis, a wavelet basis, or a specific WP basis) which fagor is the energ¥(f;, g.,)|* of the coordinate off;. The op-
all applications of SPECT and PET imaging. However, a Wiimal choice of the values af,,, depends on the sign#l which
basis can be adaptively chosen from a dictionary of differeistunknown in practice; however the phantom imggecan be
WP bases. This enables us to optimize the choice of the WBed as model fof;, in which case the cost function for a given
transform for a specific type of observed image and for th&P basisB” = {g;,, ¢;* fo<m<N,xN,—1 IS
specific nature of the back-projected noige This additional ) ) )
adaptivity brings a significant improvement of numerical C(BY) =" min (|(fon, 9017 (E(Z, g2))%)
performances with respect to a Wavelet-Vaguelette estimator. m
which can be computed in practice with a numerical model of
the noiseZ (see below). The best basis algorithm is used to find
the WP basid3” such thatC(3”) is minimal.
A WP dictionary is a rapidly constructible set of distinct ) ) ) _
and numerous orthogonal basgs”} .. It is possible, within B. Use of The Stein Unbiased Risk Estimator (SURE)
this dictionary, to search for a “best” badfs* for a specific ~ The Stein Unbiased Risk Estimator [31] is an estimator of the
problem, according to a criterion chosen in advance. Thisk whenp is a soft thresholding operator. For a WP basis
criterion is usually a cost function which is minimal in the best is given by
basis. This best basis is computed using the fast best basis al- w g2
gorithm of Coifman and Wickerhauser [30], with( N log V) (fi) = Z O (KX, 97)1%) (1)
operations for an image df samples. . m
Regularization in tomography is an estimation problem, agth

I1l. CHOICE OFWAVELET PACKET DECOMPOSITION

the best basi#™ for estimatingf; is obtained empirically by lu—o2| fu<T2
minimizing an estimation of the fina¥ estimation error (risk) O (u) = o2 + T2, ifu>T2 12)
r(E, f:) = E(IF - f:]1?). \<Nzheqrve)0m is the standard deviation of the random variable

The quadratic estimation error can also be replaced with otherThe empirical best basiS™ for estimatingf is obtained by

measures or error at the same computational cost. For examm@,'m'z'ng the estimated risk

thel! error&(||F — f;||) is sometimes considered in the image F(f) = min i (fi) - (13)

processing community as a better measure to assess the percep- v

tual quality of reconstructed images. For the method preseniBe estimated risk is calculated in (11) as an additive cost func-

in Section 11I-A, we have experienced the use of bothithend tion over the noisy coefficients.

12 estimation errors with similar results. We will use fReesti- The SURE-based approach to compute the best basis is in

mation error in this presentation since its theoretical propertiggneral the most efficient to implement because it can be diffi-

are easier to manipulate and because the quadratic estimagigl to obtain phantoms whose properties, such as dynamics as

error is used to compute the PSNRs of reconstructed imagegyvell as spatial and spectral behaviors, are close to the images to
Two alternatives are proposed to compute the choice of the reconstructed.

WP decomposition. In both cases, the resulting best basis_is i

designed to discriminate the noige and the information in C: Model of the Noise

the signal. Hence a thresholding can remove most of the nois@he cost functions used to compute the best basis algorithm

without removing information. depend on the back-projected noigeTo generate a model of
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the noiseZ, it is necessary to first generate a model of the addie coefficients of the noise which correspond to higher frequen-
tive noiseW observed in the sinograms. The model of the noisges will be more attenuated, and the remaining noise will prac-
Z is obtained by back-projecting the model of the ndiseThe tically behave like a white Gaussian noise. This is useful when
goal here is not to find an accurate estimation of the realizatiocombined with a supplemental thresholding in another decom-
of the noisel¥ on the available data, but to evaluate its amplposition, as explained in Section V. Finally, note that the soft

tude as well as its spatial and spectral behavior. thresholding, which attenuates on the whole image the intensity

Depending on the type of images, the ndiEds assumed to of the remaining noise, guarantees that the reconstructed data
be either Gaussian white noise or Poisson noise. will be sufficiently regular and free of strong artifacts.

 WhenW is assumed to be a white Gaussian noise, theThe WP transform and its inverse are computed with fast filter
problem is to estimate its standard deviation. Donoho ahank algorithms of complexit®) (V) for signals ofN samples
Johnstone [27] showed that an accurate estimator can[B8]. Numerical results are improved if the WP transform and
calculated from the median of the finest scale wavelet cits inverse are undecimated, i.e., translation-invariant, in which
efficients. Once the standard deviation has been estimatease the filter bank algorithm is equivalent to the “a trous” al-
a numerical model ofV is computed using a white noisegorithm [33].
random generator.
* WhenW is assumed to be a Poisson noise, the sinograms
Y are roughly denoised using the Poisson intensity estima-
tion method by Fryzlewicz and Nason [32]. The resulting
denoised sinogramg,.,, cannot be back-projected and So far, the WP reconstruction has been presented for 2-D re-
produce tomographic images of good quality. However thgnstruction of slices. We now consider (3), where we have 3-D
differenceY —Yy.,, between the original and the denoisedata in the form of a series of tomographic projectionsVaf
sinograms is a good estimation of the Poisson ndise translated 2-D slices of an observed object. It is useful to take
advantage of the correlations of the signal in the transaxial di-
rection ¢ axis) to obtain a better discrimination between infor-
mation and noise. In this case, a regularization is computed on

The tomographic reconstruction algorithm is carried out Bje whole 3-D data, but the back-projections are still computed
the following steps. slice by slice. .

The FBP operatoR™ is still a 2-D operator; assuming that
the power spectrum of the additive noigéis constant in every
direction, the power spectrum of the filtered back-projected
noiseZ = R™ W will remain constant in the transaxial direc-
tion and will not depend on the position on thaxis, contrary
to then; andn, axis. As a consequence, there is no need to
use a decomposition with a good resolution in the Fourier
domain along the: axis. The best decomposition must only
provide a compact representation of spatially inhomogeneous
data, which means that a wavelet decomposition is the most
appropriate. The best results are obtained with a combination
of a slice-by-slice 2-D regularization in a WP decomposition,
using the algorithm of Section IV, and a supplemental fully
3-D regularization on the whole 3-D volume, using a second
thresholding estimator in a 3-D dyadic wavelet decomposition:

V. EXTENSION TO 3-D RECONSTRUCTION

IV. RECONSTRUCTIONALGORITHM

1). FBP without regularization of the to-
mographic projections Y to obtain the
back-projected image X=fi+7Z

2). (Optional) Computation of the best

WP basis B" optimized for a specific
image to be restored, using one of the two
methods presented in Section Il . The best
basis can be recomputed for each image,
or can be computed once and stored in ad-
vance, to save computation time. However
the computation of the best basis algo-
rithm is very fast.

3). WP transform of the back-projected

image X in the best basis B7 to obtain
the WP coefficients {X, gm) }m-

4). Thresholding of the WP coefficients.

5). Inverse WP transformation of the
thresholded coefficients to obtain the

estimate image  F.

for each slicez, an estimatior#[., ., z] is first computed with

a thresholding of the WP coefficients. The er®r— f can

be considered as a residual noise. This noise has a power
spectrum which is nearly flat at high frequencies, and it is
nearly diagonalized in a wavelet decomposition.

To take full advantage of the 3-D information in the data, we
want to apply a 3-D dyadic wavelet transform on the volume,
where the wavelets can be adaptively oriented perpendicular to
the singularities of the signal. This directional selectivity en-

‘The thresholding operator is preferably a soft thresholdingyjes us to maximize the correlation between the vectors of
with a threshold valug’, = An o, proportional to the stan- the wavelet family and the information of the signal. The ef-

dard deviationo,,, of the noise coefficientsd,, is typically
chosen between 1.5 and 3. It can either be a con&tant )\ or

ficiency of noise removal is thus greatly improved. It should be
mentioned that other types of transform are currently being de-

depend on the WP vectgy,: in this case, it is smaller when thesigned to provide geometrical adaptivity for denoising and in-
support of the Fourier transform gf,, is concentrated in lower verse problems, see in particular [34] and [35].

frequencies. This imposes that the remaining noise on the reconA 3-D dyadic wavelet transform is computed with a family of
structed image will have a nearly flat power spectrum, becausavelets which are the discretized translations and dilatations of
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three wavelets)!, 4»? andy* that are the partial derivatives of3). Computation of the modulus coeffi-
a smoothing functiord cients {M;F[li,l2,v]}j1,,1,,0 Of the 3-D dyadic

00(1, w2, 23) wavelet coefficients, following (16) .

P (z1, 12, 23) = 4). Thresholding of the modulus coeffi-
Oz cients.
(21, T2, 23) :89(37{7“727‘”3) 5). Computation of the denoised 3-D dyadic
1z wavelet coefficients from the thresholded
V¥ (w1, 59, 53) _00(w1, w9, 73) modulus coefficients.
e O3 ' 6). Inverse 3-D dyadic wavelet transform

from the denoised 3-D dyadic wavelet coef-
ficients to obtain the regularized volume

%/ﬁ [’I’Ll, na, Z]}nl M2,z

For a giveny, ¢;, 47, andy? have been equally dilated an

are translated in the same position, but they have respective

horizontal, vertical and transaxial direction; let us denote

P¥[n1,me, 2] = 23;21/)’“ [% % 2%} fort <k <3 The thresholding operator on the modulus coefficients is a
hard thresholding, since a supplemental soft thresholding would
add an unnecessary smoothing on the reconstructed data.

and

?’Ll—ll n2—12 Z—U:|

1
k _ k
1/}]-71171271,[711,712,2] - 23]’/21[) |: 27 ) 27 Y

VI. NUMERICAL RESULTS

(14) Numerical results are provided for synthetic phantom images
For a volume imagé", the wavelet transform of [n1,n,, 2] 10 demonstrate the metrical performances, in terms of signal-to-

ata scale 2has three components which can be written as frarf@ise ratio (PSNR), of the WP-based reconstruction with respect

inner products to RFBP and WVD. Numerical results on real clinical SPECT
L - and PET data are also provided to demonstrate the perceptual
Ty F[ly, b, v] =< Foabiy, 4,0 > k=1,2,3. (15) performance of the WP reconstruction. Examples include bone,

Because)!, 12, andy? are partial derivatives of, these three brain and Jaszak phantom images, which have very different
dl){ﬂamms and properties.

components are proportional to the coordinates of the gradie ig. 2 compares the reconstructions of a RFBP reconstruc-

vegtr(;rrr(l)l‘rl: e:;ng (;)ct)?gii Eég ((j)lr|1aetigr:/ ggsnlqonuf)g the anale of the tion, a WVD reconstruction, and a WP reconstruction on a syn-
' b 9 .gfletic 256x 256 Shepp-Logan phantom, starting from 192 pro-

dient vector, which indicates the direction in which the partial _. ; : . .
derivation of the smoothefl has the largest amplitude. The amlectlons, as in a standard PET device. Since an ideal reference

plitude of this maximum partial derivative is equal to the modiage 1S available, th'S example gnables us to compare the met-
ulus of the gradient vector and is, therefore, proportional to tﬁ'gal performance_ directly. The f||t_er used for RFBP_ has been
wavelet modulus optimized to obtam_ the _best possible PSNR. Exp_erlenqes have
been conducted with different shapes of filters, including co-
MJF sine, Hamming, Hann, and Shepp-Logan filters. The best filter
= = = in this example is a Hann filter. The WVD algorithm includes
= \/|Tj1F[ll7 o, v][? + |T12F[l17127“]|2 + |7}*°’F[11J2vv]|2- a translation-invariant decomposition [23] and its thresholding
(16) strategy has been carefully optimized to provide the highest pos-
. sible PSNR, using scale-dependent thresholds. In all the exper-
We do not t}t‘[eSh‘)'d independently each wavelet transfoffies, the same filter bank has been used for the WVD and for
componentl7 F'[l1, I, v]. Instead, we threshold the modulughe wp algorithm, namelgymmietswith four null moments,
M;F[l1, 1>, v]. This is equivalent to selecting first a direction inand the WP tree has been selected using the SURE-based proce-
which the partial derivative is maximum at each scaleahd  dure of Section I11-B. As mentioned in Section 1V, for both WP
thresholding the amplitude of the partial derivative in this diand WVD, the threshold valuég,, = \,, o., are proportional
rection. This can be viewed as an adaptive choice of the wavelgthe estimated standard deviatigy of the noise coefficients,
direction in order to best correlate the signal. The coefficienfghere \,, is scale-dependent for WVD and tree node-depen-
of the dyadic wavelet transform are then computed back frogient for WP, and is typically between 1.5 and 3. The PSNRs of
the thresholded modulus and the angle of the gradient vectothe RFBP-reconstructed image and of the WVD-reconstructed
The dyadic wavelet transform is implemented with a fast filtemage are respectively 19.5 dB and 18.2 dB while the PSNR
bank “a trous” algorithm [33]. The 3-D tomographic reconstrugf the WP-reconstructed image is 23.5 dB. Fig. 2(e) illustrates

tion algorithm is decomposed in the following steps. the frequency segmentation roughly induced by the WP basis
chosen by the best basis algorithm for this image. The best WP
1). For all 0 < z < Nz, computation of the basis is usually composed of wavelets in low frequencies, but
regularized 2-D image {FI.,.,z]} using the performs a moderately finer segmentation in higher frequencies.
algorithm described in Section IV . Fig. 3 provides another comparison with a synthetic phantom
2). Three—dimensional dyadic wavelet de- of a brain. Both the parameters of the RFBP and of the WVD
composition of the volume {F[n1,n2,2]}ny na,z have been modified to be specifically optimized for this new
to obtain 3-D dyadic wavelet coefficients image, while the same default parameters have been kept for

{T]kF[ll, Lo, 0]}ty do 0 the WP-reconstructed image to assert the robustness of the algo-
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N/2

N/4

0 N/4 N/2

(d) (e)

Fig. 2. (a) Reference image of a Shepp-Logan Phantom. (b) Reconstructed image with REBR. & 19.5 dB) (c) Reconstructed image with a WVD
(PSNR = 18.2 dB). (d) Reconstructed image with a WP thresholdiB§X R = 23.5 dB). (e) Segmentation of frequencies induced by the selected WP basis.
At low frequencies, fok < N/4, the selected vectors are regular wavelets, while the WP basis performs a finer segmentation in higher frequencies.

(b)

(© (d) (e)

Fig. 3. (a) Reference image of a 26856 Brain Phantom. (b) Sinograms simulated with 192 angular positions and 192 detectors, as in standard PET devices.
(c) Image reconstructed with an optimized RFBISNR = 19.8 dB). (d) Image reconstructed witha WVD estimaBE(NR = 18.7 dB). (e) Image reconstructed
with a WP thresholdingSNR = 21.6 dB).

rithm. The PSNR of the RFBP-reconstructed image is 19.8 dB®ances to RFBP, while the WP reconstruction algorithm clearly
the PSNR of the WVD-reconstructed image is 18.7 dB, whileutperforms both algorithms by a substantial margin.

the PSNR of the WP-reconstructed image is 21.6 dB. For bothFig. 4 compares numerical results computed on SPECT
images, the WVD is slightly inferior in terms of metrical perfor<linical data of 12&128 bone images, using an OS-EM
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(b) (b)

(d)

Fig. 4. A 128<128 SPECT image of bone reconstructed with (a) RFBF:ig. 5. Slices of a 128128x 90 3-D SPECT Brain scan reconstructed with
(b) OS-EM, and (c) thresholding in a WP basis, starting from sinograms witilBP reconstruction, starting from sinograms with 128 projections. To compare
128 projections. with Fig. 6.

(©

reconstruction, a RFBP and a WP-based reconstruction, and
starting from 128 projections. Again, the filter used for RFB
has been optimized to provide the best perceptual results.
parameters used for the OS-EM reconstruction, such as
number of iterations, are the parameters used by physici
in clinical conditions for an image of this type. The OS-E
reconstructed image is very smooth because the OS-
algorithm has to be stopped after a limited number of iteratio
otherwise the noise is strongly amplified and the algorith
converges to a noisy reconstructed image. Here the OS-
algorithm was stopped after eight iterations. On the other ha
the RFBP-reconstructed image is corrupted by a signific
amount of noise and artifacts, which cannot be reduced unless @) (b)
the reconstructed image becomes extremely smoothed. With

the WP reconstruction algorithm, the amount of smoothng
of a reconstructed image can be controlled precisely, wh
the noise is reduced significantly as compared with an imal
reconstructed with RFBP or OS-EM.

Figs. 5 and 6 exhibit two series of sections of a 3-D SPEC
acquired brain volume reconstructed with RFBP, and with t
combination of the 2-D WP and 3-D dyadic wavelet regula
ization presented in Section V. Once again, the RFBP-recq
structed images exhibit noise and artifacts which are likely to
interpreted as information. These patterned artifacts do not i
pear on the images reconstructed with WPs and dyadic wavelets.

Finally, Fig. 7 compares numerical results on PET images of © @

a Jaszak phantom, starting from 192 projections, using a FBP. 6. Slices of a 128128x90 3-D SPECT Brain scan reconstructed with a

and a WP-based reconstruction. Fig. 7(a) and (b) exhibitscoo{nblned thresholding in 2-D WP and 3-D dyadic wavelet decompositions. To
. . . . compare with Fig. 5.

single slice of the reconstructed volume, while Fig. 7(c) and

(d) exhibits the resulting images after summing together five

adjacent slices, as is often done in practice. The RFBP-their smaller structures are more difficult to detect than in the

constructed images are corrupted by a significant noise awiP-reconstructed images.
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(6]
(7]

(10]
[11]

@ (b)
(© (d)

Fig. 7. (a) 192192 PET image of a single slice of an RFBP-reconstructed
Jaszak phantom, starting from sinograms with 192 projections. (b) PET imagg.8]
of a single slice of a WP-reconstructed Jaszak phantom. (c) PET image of a sum
of 5 adjacent slices of an RFBP-reconstructed Jaszak phantom. (d) PET image
of a sum of 5 adjacent slices of a WP-reconstructed Jaszak phantom.

[12]

[13]
[14]

[15]
[16]

[17]

VIl. SUMMARY [20]

A new family of tomographic reconstruction algorithms
based on a thresholding in wavelet and WP decompositiong1]
has been developed for the recovery of PET and SPECT
images. This approach is based on the fact that wavelet and W]
decompositions are adapted to both the nature of the medical
images to be recovered and the properties of the inverse Rad6R
transform. Corresponding algorithms are fast, and available for
2-D and 3-D data. [24]

Numerical results on a variety of PET and SPECT images
demonstrate a significant improvement, perceptually and metriz5]
cally, with respect to state of the art methods such as FBP and
OS-EM, currently used in existing medical devices. [26]
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