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Regularization in Tomographic Reconstruction
Using Thresholding Estimators

Jérôme Kalifa*, Andrew Laine, and Peter D. Esser

Abstract—In tomographic medical devices such as single photon
emission computed tomography or positron emission tomography
cameras, image reconstruction is an unstable inverse problem, due
to the presence of additive noise. A new family of regularization
methods for reconstruction, based on a thresholding procedure in
wavelet and wavelet packet (WP) decompositions, is studied. This
approach is based on the fact that the decompositions provide a
near-diagonalization of the inverse Radon transform and of prior
information in medical images. A WP decomposition is adaptively
chosen for the specific image to be restored. Corresponding
algorithms have been developed for both two-dimensional and
full three-dimensional reconstruction. These procedures are fast,
noniterative, and flexible. Numerical results suggest that they
outperform filtered back-projection and iterative procedures such
as ordered- subset-expectation-maximization.

Index Terms—Dyadic wavelet transform, PET, SPECT, tomo-
graphic reconstruction, wavelet packets.

I. INTRODUCTION

WE are interested in the problem of tomographic recon-
struction of images from transmission data, which we

call tomographic projections orsinograms. Although the work
presented here has a wide range of applications for various to-
mographic devices, we will focus on medical images with single
photon emission computed tomography (SPECT) and positron
emission tomography (PET) cameras.

A slice of an object observed by a tomographic device is rep-
resented by a two-dimensional (2-D) discrete image .
An estimation of must be computed with a tomographic recon-
struction procedure from sinograms produced by a tomographic
device, denoted , and defined as

(1)
where is an observed image,
is an additive noise, and is the discrete Radon transform
which models the tomographic projection process. The discrete
Radon transform is derived from its continuous version,
which is equivalent to the X-ray transform in two dimensions
and is defined as [1]

(2)
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where , is the Dirac mass, ,
and . There are several different ways to define the discrete
Radon transform based on the continuous Radon transform [2].
Typically, a line integral along is ap-
proximated by a summation of the pixel values inside the strip

.
When three-dimensional (3-D) data is processed, we treat

it as a series of tomographic projections of translated 2-D
slices of the observed object. When necessary, the tomographic
projections are transformed via rebinning techniques in order
to obtain tomographic projections of 2-D slices: this approach
is in general not necessary for SPECT images, but is increas-
ingly common in 3-D PET image acquisition [3]. Thus, the 3-D
dataset is written as

(3)
The noise is usually modeled as a Gaussian white noise
, which is independent of , or as Poisson noise, whose in-

tensity at each pixel depends on the intensity of .
A tomographic reconstruction procedure incorporates the fol-

lowing steps.
• Filtered-Back-Projection: The basis for tomographic re-

construction is the identity, in the continuous case

(4)
where denotes a convolution, is the one-dimensional
(1-D) ramp filter whose Fourier transform satisfies

, and the back-projection operator is the
adjoint of

with , , and .
The filtered back-projection (FBP) algorithm is the appli-
cation of a discrete operator which is the discretiza-
tion of the operator . It can be directly computed
with a radial interpolation and a deconvolution by a 1-D
filter which is the discretized version of . The appli-
cation of the filter amplifies the high-frequency compo-
nents of the tomographic projections in the direction
of .

• Regularization: The deconvolution comes from the fact
that the Radon transform is a smoothing transform. Conse-
quently, back-projecting in the presence of additive noise
is an ill-posed inverse problem: numerically speaking, a
direct computation of is contaminated by a large
additive noise , which means that a reg-
ularization has to be incorporated in the reconstruction
procedure.
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Current approaches for regularization in tomographic recon-
struction can be classified into two families:

1) Regularized FBP (RFBP) is a linear filtering technique
in the Fourier space, in which the Fourier transform
of the filter is replaced by a filter where is a
low-pass filter which attenuates the amplification of high
frequencies. RFBP suffers from performance limitations
due to the fact that the sinusoids of the Fourier basis are
not adapted to represent spatially inhomogeneous data
as found in medical images. This has been proven by
Donoho [4], who has showed the sub-optimality of RFBP
to recover piece-wise regular signals, such as medical
images.

2) Iterative statistical model-based techniques are designed
to implement expectation-maximization (EM) and max-
imum a posteriori (MAP) estimators [5], [6]. In some
cases, these approaches can provide an improvement
over RFBP, but these estimators suffer from the following
drawbacks:

• Computation time.Almost all the corresponding al-
gorithms are too computer-intensive for clinical ap-
plications, with the exception of ordered-subset-ex-
pectation-maximization (OS-EM) [7], which is an
accelerated implementation of an EM estimator.
In MAP methods, useful priors usually give local
maxima, but the computational cost of relaxation
methods remains prohibitive.

• Theoretical understanding and justification.EM es-
timation lacks a theoretical foundation to under-
stand and characterize the estimation error. The the-
oretical properties of MAP estimators have been
more thoroughly studied and are better understood,
yet no optimality for a realistic model has been
established.

• Convergence.EM estimators are ill-conditioned, in
the sense that the corresponding iterative algorithms
have to be stopped after a limited number of itera-
tions. Beyond this critical number, the noise may be
magnified, and EM and OS-EM converge to a non-
maximum-likelihood solution. The number of iter-
ations must be chosen by the user.

In this paper, a new family of estimation procedures is studied
to address these limitations. These techniques are based on a
thresholding procedure in a time-frequency decomposition,
namely a wavelet or wavelet packet (WP) transform.

Section II introduces thresholding estimators in time-fre-
quency decompositions and their application to tomographic
reconstruction. Section III explains how the best WP trans-
form is chosen among the variety of possible wavelet and
WP representations, using a statistical estimation of the final
error. Section IV describes the corresponding fast noniterative
tomographic reconstruction algorithm to recover 2-D images.
Section V describes how the reconstruction algorithm can be
adapted to 3-D data to take advantage of the spatial correlations
of the data in the transaxial direction (axis). Section VI
presents sample numerical results on SPECT and PET data.
These numerical results are then compared with the results
obtained with state of the art procedures currently used in
existing medical devices, namely RFBP and OS-EM.

Wavelets have been previously introduced in tomography by
a large number of researchers. The most popular application of
wavelets in tomography is local reconstruction [8]–[15]. De-
laney and Bressler [16] as well as Blanc-Féraudet al. [17] used
wavelet transforms to obtain accelerated implementations of a
standard FBP. Bhatia, Karl, and Willsky [18], [19] combine
wavelets with a MAP model to derive sparse formulations of
the problem. Other authors have used wavelet methods to imple-
ment a postfiltering of a reconstructed image after it was recon-
structed by a standard algorithm [20]. Sahiner and Yagle [21]
use wavelet transforms to derive constraints on an iterative re-
construction algorithm. Finally, the wavelet-vaguelette decom-
position (WVD) [4], [22]–[24], which is related to the work pre-
sented here, will be discussed in this paper.

A. Notation

Upper cases are used to represent signals which are the results
of statistical processes.

II. THRESHOLDINGESTIMATORS

The operator is considered as an approximate discrete
inverse Radon transform operator. Letbe

The difference image is the radial interpolation error,
and is in general very low compared with the estimation error
due to the presence of noise. In this paper, our focus is not on
interpolation techniques, but on regularization: the imageis
considered to be our reference (ideal) image. Spline-based in-
terpolation techniques are currently the most popular for tomo-
graphic reconstruction [25], [26].

The estimation problem in (1) is also equivalent to the de-
noising problem

(5)

where and . If the noise was
Gaussian white, Donoho and Johnstone have established [27]
that a thresholding estimator in a properly selected vector family

, typically a wavelet basis, would
be optimal to recover spatially inhomogeneous data as found in
tomographic medical images. A thresholding estimatorof
in is defined as

(6)

where is a thresholding operator. Typical simple thresh-
olding rules include hard thresholding

if
if

(7)

and soft thresholding

if
if
if

(8)

The threshold is chosen to be proportional to the standard
deviation of the transform coefficient of the back-
projected noise, which is a random variable.
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A. Wavelet-Vaguelette Decomposition

In our situation, the choice of the decompositiondoes not
only depend on the prior information on the object, but also on
the back-projected noise, whose behavior is very specific due
to the fact that it has been distorted by back-projection and de-
convolution processes. The assumption underlying thresholding
estimators is that each coefficient in the decompositioncan
be estimated independently without a loss of performance. As
a consequence, such estimators are efficient if the coefficients
of the noise and of the object to be recovered are indeed nearly
independent in . This means that must provide a near-diag-
onalization of the noise and of the prior information in the
image .

The image is a spatially inhomogeneous, piece-wise reg-
ular signal, which is compactly represented in a wavelet decom-
position. When the noise is Gaussian white, then the noise

remains Gaussian because is linear. To obtain
a diagonal representation of the noise, one must find a decom-
position in which the covariance of, and hence , is nearly
diagonal. Since the inverse Radon transform is a Calderon–Zyg-
mund operator [28], it is also nearly-diagonal in a wavelet basis.

These two properties of wavelet bases led Donoho [4] to
suggest the use of thresholding estimators in wavelet bases
for several linear inverse problems, including the inversion of
the Radon transform. Such an estimator is given by (6), where
the basis is an orthogonal or a
bi-orthogonal wavelet basis. Donoho established the minimax
optimality of this approach, called a WVD, and showed its
superiority with respect to other approaches such as FBP, for
the recovery of piece-wise regular signals.

However, the WVD as studied by Donoho was developed
for a continuous model of the back-projection operator, and
assumes that the additive noise is always Gaussian white.
Moreover, the asymptotic optimality results establish the per-
formance of a WVD estimator for high resolution data, which
is not the case for PET and SPECT medical images. This means
that, unfortunately, despite numerical implementations and re-
finements by other researchers [22]–[24], the theoretical interest
of the WVD is not matched with a significant gain of perfor-
mance when compared with other techniques such as RFBP,
when applied to real clinical PET and SPECT data. The purpose
of this paper is to build estimators which share the same theo-
retical properties as WVD, but also provide an important addi-
tional flexibility and adaptivity which are essential to improve
the numerical performances and image quality of the resulting
algorithms.

The minimax optimality properties of the Wavelet-Vaguelette
Decomposition can only be established when the additive noise

is a Gaussian white noise. When is a Poisson noise, the
coefficients of its decomposition in a wavelet transform are not
independent, and the minimax optimality properties cannot be
verified. In practice, however, the strategy of finding a decompo-
sition in which is nearly diagonal remains valid, and guar-
antees that the numerical values of the transform coefficients
of filtered back-projected noise will be nearly
independent, even if is a Poisson noise. Section III-C ex-

(a)

(b)

Fig. 1. This figure illustrates the 2-D discrete Fourier domain for positive
frequencies. (a) Segmentation induced by a wavelet transform. The grey
areas correspond to the wavelet coefficients which are always put to
zero by the thresholding operator because these coefficients have been
contaminated by the numerical explosion of the back-projected noise at high
frequencies. (b) Segmentation induced by a particular WP transform. The
highest frequencies in which the information is completely dominated by
the back-projected can be isolated more accurately, and some information at
intermediate frequencies are recovered by the thresholding operator.

plains how the algorithm is adapted depending on the Gaussian
or Poisson nature of .

B. Wavelet Packets

A major problem of the WVD comes from the relatively poor
resolution in frequency of the wavelet transform. Fig. 1(a) il-
lustrates the partitioning of the 2-D discrete Fourier domain in-
duced by an orthogonal wavelet basis. At the finest scale of
the wavelet transform, which corresponds to frequencies higher
than in the horizontal and vertical directions, all the wavelet
coefficients are contaminated by the numerical explosion of the
back-projected noise . These coefficients are put to zero by
the thresholding operator, because the threshold valuesde-
pend on the standard deviation of the back-projected noise

, which is very large at highest frequencies. Alternatively, if
the threshold is chosen at a lower value, the noise remaining
in the reconstructed image is too important.

Kalifa and Mallat [29] have generalized Donoho’s approach
to adapt it to other types of decompositions, including WP bases.
WP bases are decompositions which can provide a compact rep-
resentation of an observed image, as well as a more accurate
segmentation of the frequency domain than a wavelet basis, to
improve the near-diagonalization of the noise. It is shown in
[29] that the thresholding estimation risk
is of the same order, up to a factor, of the decision risk

(9)
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To minimize (9), we need to concentrate the energy
over few vectors which produce coefficients larger than

, and among the remaining vectorsconcentrate the
energy over few large coefficients that are above
the noise level .

Fig. 1(b) gives an example: a more accurate segmentation of
the Fourier domain as compared with a wavelet transform en-
ables isolation of the highest frequencies, in which each coef-
ficient of the information is below the standard devia-
tion of the coefficients of the back-projected noise. Because
this WP decomposition, as opposed to a Fourier transform, pro-
vides a compact representation of information, thresholding al-
lows the recovery of most of the information in the rest of the
Fourier domain.

The choice of the best time-frequency decomposition in
which the thresholding estimation is computed is a matter of
compromise between the representation of the back-projected
noise and the representation of the datato be recovered.
There is no single time-frequency decomposition (such as a
Fourier basis, a wavelet basis, or a specific WP basis) which fits
all applications of SPECT and PET imaging. However, a WP
basis can be adaptively chosen from a dictionary of different
WP bases. This enables us to optimize the choice of the WP
transform for a specific type of observed image and for the
specific nature of the back-projected noise. This additional
adaptivity brings a significant improvement of numerical
performances with respect to a Wavelet-Vaguelette estimator.

III. CHOICE OFWAVELET PACKET DECOMPOSITION

A WP dictionary is a rapidly constructible set of distinct
and numerous orthogonal bases . It is possible, within
this dictionary, to search for a “best” basis for a specific
problem, according to a criterion chosen in advance. This
criterion is usually a cost function which is minimal in the best
basis. This best basis is computed using the fast best basis al-
gorithm of Coifman and Wickerhauser [30], with
operations for an image of samples.

Regularization in tomography is an estimation problem, and
the best basis for estimating is obtained empirically by
minimizing an estimation of the final estimation error (risk)

The quadratic estimation error can also be replaced with other
measures or error at the same computational cost. For example,
the error is sometimes considered in the image
processing community as a better measure to assess the percep-
tual quality of reconstructed images. For the method presented
in Section III-A, we have experienced the use of both theand

estimation errors with similar results. We will use theesti-
mation error in this presentation since its theoretical properties
are easier to manipulate and because the quadratic estimation
error is used to compute the PSNRs of reconstructed images.

Two alternatives are proposed to compute the choice of the
WP decomposition. In both cases, the resulting best basis is
designed to discriminate the noise and the information in
the signal. Hence a thresholding can remove most of the noise
without removing information.

A. Use of Phantom Images

Phantom images are synthetic images modeling observed or-
gans or anatomical structures, without any noise or artifacts.
A phantom image provides a reasonable representation of
how the image of the observed object should appear. When
phantom images of the observed organ are available, they can
be used for the computation of the best basis, assuming that the
phantom image is a mathematical model of the imageto be
recovered.

If the thresholding operator is a hard thresholding, (6)
becomes

(10)

where is either zero or one. When , the quadratic
estimation error on the corresponding coordinate is equal to the
variance of the random variable of the coordinate of the
back-projected noise. When , the quadratic estimation
error is the energy of the coordinate of . The op-
timal choice of the values of depends on the signal which
is unknown in practice; however the phantom imagecan be
used as model for , in which case the cost function for a given
WP basis is

which can be computed in practice with a numerical model of
the noise (see below). The best basis algorithm is used to find
the WP basis such that is minimal.

B. Use of The Stein Unbiased Risk Estimator (SURE)

The Stein Unbiased Risk Estimator [31] is an estimator of the
risk when is a soft thresholding operator. For a WP basis,
it is given by

(11)

with

if
if

(12)

where is the standard deviation of the random variable
.

The empirical best basis for estimating is obtained by
minimizing the estimated risk

(13)

The estimated risk is calculated in (11) as an additive cost func-
tion over the noisy coefficients.

The SURE-based approach to compute the best basis is in
general the most efficient to implement because it can be diffi-
cult to obtain phantoms whose properties, such as dynamics as
well as spatial and spectral behaviors, are close to the images to
be reconstructed.

C. Model of the Noise

The cost functions used to compute the best basis algorithm
depend on the back-projected noise. To generate a model of
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the noise , it is necessary to first generate a model of the addi-
tive noise observed in the sinograms. The model of the noise

is obtained by back-projecting the model of the noise. The
goal here is not to find an accurate estimation of the realization
of the noise on the available data, but to evaluate its ampli-
tude as well as its spatial and spectral behavior.

Depending on the type of images, the noiseis assumed to
be either Gaussian white noise or Poisson noise.

• When is assumed to be a white Gaussian noise, the
problem is to estimate its standard deviation. Donoho and
Johnstone [27] showed that an accurate estimator can be
calculated from the median of the finest scale wavelet co-
efficients. Once the standard deviation has been estimated,
a numerical model of is computed using a white noise
random generator.

• When is assumed to be a Poisson noise, the sinograms
are roughly denoised using the Poisson intensity estima-

tion method by Fryzlewicz and Nason [32]. The resulting
denoised sinograms cannot be back-projected and
produce tomographic images of good quality. However the
difference between the original and the denoised
sinograms is a good estimation of the Poisson noise.

IV. RECONSTRUCTIONALGORITHM

The tomographic reconstruction algorithm is carried out by
the following steps.

1). FBP without regularization of the to-
mographic projections to obtain the
back-projected image .
2). (Optional) Computation of the best
WP basis optimized for a specific
image to be restored, using one of the two
methods presented in Section III . The best
basis can be recomputed for each image,
or can be computed once and stored in ad-
vance, to save computation time. However
the computation of the best basis algo-
rithm is very fast.
3). WP transform of the back-projected
image in the best basis to obtain
the WP coefficients .
4). Thresholding of the WP coefficients.
5). Inverse WP transformation of the
thresholded coefficients to obtain the
estimate image .

The thresholding operator is preferably a soft thresholding,
with a threshold value proportional to the stan-
dard deviation of the noise coefficients. is typically
chosen between 1.5 and 3. It can either be a constant or
depend on the WP vector : in this case, it is smaller when the
support of the Fourier transform of is concentrated in lower
frequencies. This imposes that the remaining noise on the recon-
structed image will have a nearly flat power spectrum, because

the coefficients of the noise which correspond to higher frequen-
cies will be more attenuated, and the remaining noise will prac-
tically behave like a white Gaussian noise. This is useful when
combined with a supplemental thresholding in another decom-
position, as explained in Section V. Finally, note that the soft
thresholding, which attenuates on the whole image the intensity
of the remaining noise, guarantees that the reconstructed data
will be sufficiently regular and free of strong artifacts.

The WP transform and its inverse are computed with fast filter
bank algorithms of complexity for signals of samples
[33]. Numerical results are improved if the WP transform and
its inverse are undecimated, i.e., translation-invariant, in which
case the filter bank algorithm is equivalent to the “à trous” al-
gorithm [33].

V. EXTENSION TO 3-D RECONSTRUCTION

So far, the WP reconstruction has been presented for 2-D re-
construction of slices. We now consider (3), where we have 3-D
data in the form of a series of tomographic projections of
translated 2-D slices of an observed object. It is useful to take
advantage of the correlations of the signal in the transaxial di-
rection ( axis) to obtain a better discrimination between infor-
mation and noise. In this case, a regularization is computed on
the whole 3-D data, but the back-projections are still computed
slice by slice.

The FBP operator is still a 2-D operator; assuming that
the power spectrum of the additive noiseis constant in every
direction, the power spectrum of the filtered back-projected
noise will remain constant in the transaxial direc-
tion and will not depend on the position on theaxis, contrary
to the and axis. As a consequence, there is no need to
use a decomposition with a good resolution in the Fourier
domain along the axis. The best decomposition must only
provide a compact representation of spatially inhomogeneous
data, which means that a wavelet decomposition is the most
appropriate. The best results are obtained with a combination
of a slice-by-slice 2-D regularization in a WP decomposition,
using the algorithm of Section IV, and a supplemental fully
3-D regularization on the whole 3-D volume, using a second
thresholding estimator in a 3-D dyadic wavelet decomposition:
for each slice , an estimation is first computed with
a thresholding of the WP coefficients. The error can
be considered as a residual noise. This noise has a power
spectrum which is nearly flat at high frequencies, and it is
nearly diagonalized in a wavelet decomposition.

To take full advantage of the 3-D information in the data, we
want to apply a 3-D dyadic wavelet transform on the volume,
where the wavelets can be adaptively oriented perpendicular to
the singularities of the signal. This directional selectivity en-
ables us to maximize the correlation between the vectors of
the wavelet family and the information of the signal. The ef-
ficiency of noise removal is thus greatly improved. It should be
mentioned that other types of transform are currently being de-
signed to provide geometrical adaptivity for denoising and in-
verse problems, see in particular [34] and [35].

A 3-D dyadic wavelet transform is computed with a family of
wavelets which are the discretized translations and dilatations of
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three wavelets , and that are the partial derivatives of
a smoothing function

For a given , , , and have been equally dilated and
are translated in the same position, but they have respectively a
horizontal, vertical and transaxial direction; let us denote

for

and

(14)

For a volume image , the wavelet transform of
at a scale 2has three components which can be written as frame
inner products

(15)

Because , , and are partial derivatives of, these three
components are proportional to the coordinates of the gradient
vector of smoothed by a dilated version of.

From these coordinates, one can compute the angle of the gra-
dient vector, which indicates the direction in which the partial
derivation of the smoothed has the largest amplitude. The am-
plitude of this maximum partial derivative is equal to the mod-
ulus of the gradient vector and is, therefore, proportional to the
wavelet modulus

(16)

We do not threshold independently each wavelet transform
component . Instead, we threshold the modulus

. This is equivalent to selecting first a direction in
which the partial derivative is maximum at each scale 2, and
thresholding the amplitude of the partial derivative in this di-
rection. This can be viewed as an adaptive choice of the wavelet
direction in order to best correlate the signal. The coefficients
of the dyadic wavelet transform are then computed back from
the thresholded modulus and the angle of the gradient vector.

The dyadic wavelet transform is implemented with a fast filter
bank “à trous” algorithm [33]. The 3-D tomographic reconstruc-
tion algorithm is decomposed in the following steps.

1). For all , computation of the
regularized 2-D image using the
algorithm described in Section IV .
2). Three–dimensional dyadic wavelet de-
composition of the volume
to obtain 3-D dyadic wavelet coefficients

.

3). Computation of the modulus coeffi-
cients of the 3-D dyadic
wavelet coefficients, following (16) .
4). Thresholding of the modulus coeffi-
cients.
5). Computation of the denoised 3-D dyadic
wavelet coefficients from the thresholded
modulus coefficients.
6). Inverse 3-D dyadic wavelet transform
from the denoised 3-D dyadic wavelet coef-
ficients to obtain the regularized volume

.

The thresholding operator on the modulus coefficients is a
hard thresholding, since a supplemental soft thresholding would
add an unnecessary smoothing on the reconstructed data.

VI. NUMERICAL RESULTS

Numerical results are provided for synthetic phantom images
to demonstrate the metrical performances, in terms of signal-to-
noise ratio (PSNR), of the WP-based reconstruction with respect
to RFBP and WVD. Numerical results on real clinical SPECT
and PET data are also provided to demonstrate the perceptual
performance of the WP reconstruction. Examples include bone,
brain and Jaszak phantom images, which have very different
dynamics and properties.

Fig. 2 compares the reconstructions of a RFBP reconstruc-
tion, a WVD reconstruction, and a WP reconstruction on a syn-
thetic 256 256 Shepp-Logan phantom, starting from 192 pro-
jections, as in a standard PET device. Since an ideal reference
image is available, this example enables us to compare the met-
rical performance directly. The filter used for RFBP has been
optimized to obtain the best possible PSNR. Experiences have
been conducted with different shapes of filters, including co-
sine, Hamming, Hann, and Shepp-Logan filters. The best filter
in this example is a Hann filter. The WVD algorithm includes
a translation-invariant decomposition [23] and its thresholding
strategy has been carefully optimized to provide the highest pos-
sible PSNR, using scale-dependent thresholds. In all the exper-
iments, the same filter bank has been used for the WVD and for
the WP algorithm, namelysymmletswith four null moments,
and the WP tree has been selected using the SURE-based proce-
dure of Section III-B. As mentioned in Section IV, for both WP
and WVD, the threshold values are proportional
to the estimated standard deviation of the noise coefficients,
where is scale-dependent for WVD and tree node-depen-
dent for WP, and is typically between 1.5 and 3. The PSNRs of
the RFBP-reconstructed image and of the WVD-reconstructed
image are respectively 19.5 dB and 18.2 dB while the PSNR
of the WP-reconstructed image is 23.5 dB. Fig. 2(e) illustrates
the frequency segmentation roughly induced by the WP basis
chosen by the best basis algorithm for this image. The best WP
basis is usually composed of wavelets in low frequencies, but
performs a moderately finer segmentation in higher frequencies.

Fig. 3 provides another comparison with a synthetic phantom
of a brain. Both the parameters of the RFBP and of the WVD
have been modified to be specifically optimized for this new
image, while the same default parameters have been kept for
the WP-reconstructed image to assert the robustness of the algo-
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(a) (b)

(c) (d) (e)

Fig. 2. (a) Reference image of a Shepp-Logan Phantom. (b) Reconstructed image with RFBP. (PSNR = 19:5 dB) (c) Reconstructed image with a WVD
(PSNR = 18:2 dB). (d) Reconstructed image with a WP thresholding (PSNR = 23:5 dB). (e) Segmentation of frequencies induced by the selected WP basis.
At low frequencies, fork < N=4, the selected vectors are regular wavelets, while the WP basis performs a finer segmentation in higher frequencies.

(a) (b)

(c) (d) (e)

Fig. 3. (a) Reference image of a 256�256 Brain Phantom. (b) Sinograms simulated with 192 angular positions and 192 detectors, as in standard PET devices.
(c) Image reconstructed with an optimized RFBP (PSNR = 19:8dB). (d) Image reconstructed with a WVD estimator (PSNR = 18:7dB). (e) Image reconstructed
with a WP thresholding (PSNR = 21:6 dB).

rithm. The PSNR of the RFBP-reconstructed image is 19.8 dB,
the PSNR of the WVD-reconstructed image is 18.7 dB, while
the PSNR of the WP-reconstructed image is 21.6 dB. For both
images, the WVD is slightly inferior in terms of metrical perfor-

mances to RFBP, while the WP reconstruction algorithm clearly
outperforms both algorithms by a substantial margin.

Fig. 4 compares numerical results computed on SPECT
clinical data of 128 128 bone images, using an OS-EM
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(a) (b)

(c)

Fig. 4. A 128�128 SPECT image of bone reconstructed with (a) RFBP,
(b) OS-EM, and (c) thresholding in a WP basis, starting from sinograms with
128 projections.

reconstruction, a RFBP and a WP-based reconstruction, and
starting from 128 projections. Again, the filter used for RFBP
has been optimized to provide the best perceptual results. The
parameters used for the OS-EM reconstruction, such as the
number of iterations, are the parameters used by physicians
in clinical conditions for an image of this type. The OS-EM
reconstructed image is very smooth because the OS-EM
algorithm has to be stopped after a limited number of iterations,
otherwise the noise is strongly amplified and the algorithm
converges to a noisy reconstructed image. Here the OS-EM
algorithm was stopped after eight iterations. On the other hand,
the RFBP-reconstructed image is corrupted by a significant
amount of noise and artifacts, which cannot be reduced unless
the reconstructed image becomes extremely smoothed. With
the WP reconstruction algorithm, the amount of smoothness
of a reconstructed image can be controlled precisely, while
the noise is reduced significantly as compared with an image
reconstructed with RFBP or OS-EM.

Figs. 5 and 6 exhibit two series of sections of a 3-D SPECT-
acquired brain volume reconstructed with RFBP, and with the
combination of the 2-D WP and 3-D dyadic wavelet regular-
ization presented in Section V. Once again, the RFBP-recon-
structed images exhibit noise and artifacts which are likely to be
interpreted as information. These patterned artifacts do not ap-
pear on the images reconstructed with WPs and dyadic wavelets.

Finally, Fig. 7 compares numerical results on PET images of
a Jaszak phantom, starting from 192 projections, using a FBP
and a WP-based reconstruction. Fig. 7(a) and (b) exhibits a
single slice of the reconstructed volume, while Fig. 7(c) and
(d) exhibits the resulting images after summing together five
adjacent slices, as is often done in practice. The RFBP-re-
constructed images are corrupted by a significant noise and

(a) (b)

(c) (d)

Fig. 5. Slices of a 128�128�90 3-D SPECT Brain scan reconstructed with
FBP reconstruction, starting from sinograms with 128 projections. To compare
with Fig. 6.

(a) (b)

(c) (d)

Fig. 6. Slices of a 128�128�90 3-D SPECT Brain scan reconstructed with a
combined thresholding in 2-D WP and 3-D dyadic wavelet decompositions. To
compare with Fig. 5.

their smaller structures are more difficult to detect than in the
WP-reconstructed images.
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(a) (b)

(c) (d)

Fig. 7. (a) 192�192 PET image of a single slice of an RFBP-reconstructed
Jaszak phantom, starting from sinograms with 192 projections. (b) PET image
of a single slice of a WP-reconstructed Jaszak phantom. (c) PET image of a sum
of 5 adjacent slices of an RFBP-reconstructed Jaszak phantom. (d) PET image
of a sum of 5 adjacent slices of a WP-reconstructed Jaszak phantom.

VII. SUMMARY

A new family of tomographic reconstruction algorithms
based on a thresholding in wavelet and WP decompositions
has been developed for the recovery of PET and SPECT
images. This approach is based on the fact that wavelet and WP
decompositions are adapted to both the nature of the medical
images to be recovered and the properties of the inverse Radon
transform. Corresponding algorithms are fast, and available for
2-D and 3-D data.

Numerical results on a variety of PET and SPECT images
demonstrate a significant improvement, perceptually and metri-
cally, with respect to state of the art methods such as FBP and
OS-EM, currently used in existing medical devices.
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