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Abstract - In this paper we propose a novel transductive 
learning machine for spatiotemporal classification casted 
as an interactive segmentation problem. We present 
Markov conditional mixtures of naïve Bayes models with 
spatiotemporal regularization constraints in a transductive 
learning and inference framework. The proposed model 
extends on previous work [3] to account for non 
independent and identically distributed (i.i.d.) sequential 
data by imposing the learning and inference problem w.r.t. 
time. The multimodal mixture assumption on the class-
conditional likelihood for each covariate feature domain in 
conjunction with spatiotemporal regularization constraints 
allow us to explain more complex distributions required 
for classification in multimodal longitudinal brain 
imagery. We evaluate the proposed algorithm on 
multimodal temporal MRI brain images using ROC 
statistics and report preliminary results. 

Neural Informatics, Spatiotemporal Interactive Segmentation, 
Naïve Bayesian Transduction, Markov Conditional Mixtures. 

I.  INTRODUCTION 
Over the last decade we have seen an increase in the amount 
and complexity of heterogeneous biomedical data coming 
from laboratory tests, imaging methods, and gene-protein 
analysis revealing information at nano-to-organ scales. 
Current clinical practice of neuro-oncology requires the 
physician to manually extract, correlate and interpret 
information from heterogeneous data sources over time to 
diagnose, treat and manage patients with brain tumors [4]. 
Multimodal brain imaging provides the physician with neuro-
pathologic and -anatomic information enabling quantitative 
assessment of tumor progression and side effect symptoms. In 
the medical domain the labeling process of multimodal 
spatiotemporal image data requires expert knowledge and time 
intensive editing to obtain accurate label information for the 
object that is to be quantified. In the realm of computer aided 
diagnosis (CAD) interactive segmentation schemes have been 
well received by physicians, where the combination of human 
and machine intelligence can provide improved segmentation 

efficacy with minimal expert intervention [5]. Transductive 
learning (TL) or semi-supervised learning (SSL) is a suitable 
framework for learning-based interactive spatiotemporal 
segmentation given the scarce label problem. In this regard, 
transduction offers a workaround by leveraging the labels 
provided at time  to label the remaining test set at time . 
Obtaining temporal label information of the object of interest 
enables quantification of neuro-pathologic information that 
can be used for exploring functional and temporal 
relationships to other indicative factors to assess the patient’s 
health condition over time [4]. 
      In this paper we propose a novel transductive learning 
machine for spatiotemporal classification casted as an 
interactive segmentation problem. The contribution of our 
paper lies in extension of previous work [3] to the 
spatiotemporal domain. We present Markov conditional 
mixtures of naïve Bayes models (T-MCMNB) with 
spatiotemporal regularization constraints in a transductive 
learning and inference framework. The transductive generative 
formalism w.r.t. time allows us to provide i) predictive 
confidence of the classification for non i.i.d. sequential data 
and ii) assess performance guarantees of the inference while 
exploiting correlation between temporal observations. In a 
probabilistic formulation and using the framework of 
graphical models [8] we consider a bounded probability 
measure  describing the joint distribution of the given 
input and output label space . We make use of 
unconditional and conditional regularized Gaussian mixture 
models for each covariate feature domain on the class-
conditional likelihood to learn and infer the relationships in 

 using naïve Bayesian transduction. The naïve conditional 
independence assumption allows efficient computation of 
marginal and conditional distributions [6] for large-scale 
learning and inference. We choose a generative model over the 
discriminative counterpart motivated in part by a faster 
convergence rate of the asymptotic generalization error [9] 
when label information is scarce. Since the goal is to obtain 
label information only for the unlabeled test set at time  
we allow the posterior distribution to depend on future 
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observations with spatiotemporal regularization constraints to 
exploit the smoothness- and cluster assumption between 

 and . The algorithm shows promising 
segmentation performance with a sensitivity and specificity of 
up to 93.16% and 99.91%. 

II. RELATED WORK 
Consider a dataset drawn non-i.i.d. from , 
where  denote the labeled training set 
and   the unlabeled test set  with 

 unknown. The usual case is, that .   
 

A. The Naïve Bayes Model 
\ The naïve Bayes classifier finds successful application in text 
categorization tasks [2, 7]. Let  denote the joint 
distribution of the input samples and the class labels. The 
naïve conditional independence assumption allows us to 
factorize the joint distribution as a product of class prior and 
independent conditional probability distributions 

. In graphical model notation the naïve 
Bayes model has for each  node the parent node , where  
indexes the covariate feature dimension and  the number of 
samples. For the discrete case we assume each  to be 
sampled from a multinomial probability model 

 with . The class-
conditional probability for each  for the continuous case 
takes the form of a Gaussian  with 

 and .  
 

B. Transductive Multinomial Naïve Bayes 
The transductive naïve Bayes classifier [1, 2] was introduced 
for the application of text classification. The classifier uses 
both the training documents and the distribution of the test 
documents to learn a classification rule. The model is similar 
to the one outlined in section 2.A with the extension to 
perform transductive inference. The algorithm classifies the 
test documents using a multinomial naïve Bayes model 
initially learned from the labeled training documents (Step-I) 
and then sequentially relearned on the classified unlabeled test 
documents (Step-II) to perform transduction. We summarize 
their model as follows by omitting the time index: 
 

 

 

 

 
(1) 

  

This two-step iterative scheme estimates the prior and the 
class-conditional probability of the naïve Bayes model taking 
into account the unlabeled test distribution. Here  denotes the 
maximum a posteriori (MAP) estimate obtained from the 
labeled training set. They propagate into Step-II indicating that 
they have been iteratively relearned on the classified unlabeled 
test set. As reviewed in section 2.A the model in (1) assumes a 
multinomial probability model on the data when computing 
the class-conditional likelihood making it non-applicable to 
multimodal continuous data domains such as in multimodal 
medical brain imagery. 
      Exponential family models such as Gaussian or 
multinomial class-conditional mixture models may be 
restrictive dependent on the modeling problem and application 
domain. In real world applications often times the single 
Gaussian assumption is to limited to fully explain the 
complexity of . In non-negative data domains the uniform 
Gaussian assumption may produce incorrect model behavior 
due to variance symmetry or insufficient descriptive power. 
Previously outlined multinomial probability models mainly 
used in text classification [7] or their multinomial mixture 
counterpart [2] assume discrete finite unordered data domains 
with a fixed set of values. As opposed to [1, 2] we allow  
to be continuous and non-uniformly distributed with a 
multimodal cluster and smoothness assumption. Moreover we 
transfer this assumption into the temporal domain by letting 

 come from and  from . 

III. TRANSDUCTIVE MARKOV CONDITIONAL MIXTURE NAÏVE 
BAYES FOR SPATIOTEMPORAL SEGMENTATION 

Given the scarce label problem we choose a generative model 
over the discriminative counterpart motivated in part by a 
faster convergence rate of the asymptotic generalization error 
[9] when label information is scarce. In particular, we present 
a Markov conditional mixture naïve Bayes model (T- 
MCMNB) with spatial regularization constraints in a 
transductive learning and inference setting. Compared to [1] 
and [2] our model assumes for the class-conditional likelihood 
a spherical Gaussian mixture allowing us to represent and 
describe more complex distributions while keeping the 
parameter space tractable. To simplify the estimation we 
reduce the parameter space by assuming naïve conditional 
independence between the feature space and the class label 
imposing a regularization constraint on the class-conditional 
likelihood. The naïve conditional independence assumption 
allows efficient computation of marginal and conditional 
distributions [6] suitable for large scale learning and inference. 
The posterior is formed by learning the class-conditional 
mixture model  and prior  for each class exploiting 
labeled and unlabeled data. We allow the posterior distribution 
to depend on the unlabeled test set  with spatial 
regularization constraints to exploit the smoothness- and 
cluster assumption between  and  to 
perform predictive temporal segmentation. Transductive 
learning and inference assume and exploit a cluster 



assumption, where each cluster reflects different distributions 
of different species or latent model classes. 
 
A. Conditional Multi Latent Variable Model 
Our modeling problem consists of two latent variables one for 

 and the other for approximating the marginal 
. To account for multimodal densities we can consider 

a sub probability model  for each component . 
One can build an unconditional mixture density on  
with 

 

(2) 

  

where  are the mixture components obtained by 
marginalizing and conditioning over a  latent or hidden 
variable . The non-negativity constraints  are the mixing 
proportions and  denote the parameter space. 
In generative graphical models the latent variable forms the 
parent over the data leading us to the problem of density 
estimation. Rather than estimating an unknown density in our 
case we are interested in inferring class labels with observed 
latent variables using a conditional mixture model on the data. 
Using Bayes rule one can achieve this task by inverting the 
mixture density model in (2) to perform probabilistic 
inference. Conditioning on  the class-conditional of the 
latent variable  is 
 

 (3) 
 

The knowledge of  and  enables us to obtain the probability 
of the unobserved latent class label Y given the data. From the 
learned probability model at time  we can predict the class 
distribution of the next time step  to perform temporal 
segmentation. 
 

B. Transductive Learning and Inference 
Given  we learn the class-conditional and unconditional 
mixture densities of each class by maximizing the log-
likelihood of  and . To learn the marginal  for a 
given class label we assume  to be distributed as a 
spherical Gaussian mixture. To approximate both latent 
variables  and  we build the following likelihood model on 

 and  
 

 

(4) 

 

The MAP estimate of parameter  for  
with  i.i.d. observations has no closed form solution. 
Taking the log-likelihood of (4) gives 
 

 

(5) 

  

The log-sum term of above log-likelihood in equation (5) is a 
marginal probability and requires a non-linear optimization 
scheme. Alternatively equation (5) can be optimized by an 
iterative method to obtain the MAP or ML solution. One can 
choose from belief propagation and other approximate 
inference algorithms in probabilistic graphical models [8]. We 
choose the EM algorithm [10] for the sake of simplicity and 
conceptual clarity. Lower bounding the log-sum term with an 
auxiliary function  a local solution can be obtained by 
iteratively ascending  
 

 
(6) 

  

The first term of equation (6) calculates the posterior 
probability (E-step) whereas the preceding steps in (5) are the 
(M-step) equations. A proof that the update equations in (6) 
indeed maximize the log-likelihood can be found in [10].  
      The ML estimate of the sum-log term of equation (5) is 
much simpler. Maximizing the log-likelihood with respect to 

 the solution to the constraint optimization problem for the 
labeled training data is: 
 

 (7) 
 

Analog to equation (7) the ML estimate for  on the unlabeled 
test set updates accordingly with changed summation indices. 
From (6) and (7) the maximum a posteriori classification on the 
unlabeled test set can be obtained in a straight forward manner. 

IV. RESULTS & DISCUSSION 
We applied our algorithm to the task of interactive 
spatiotemporal brain tumor (edema) segmentation and 
evaluated our method with quantitative comparison to expert 
grading. We performed experimental evaluation on a 
multimodal temporal MR medical brain dataset with 

 and . The dataset has a 
resolution of 256x256x30 per modality and anisotropic voxel 
dimensions of 0.4x0.4x5mm. Multimodal registration was 
applied to bring the multimodal data sources into a common 
coordinate frame. We selected the most simplistic 
configuration of multimodal features by looking at FLAIR and 
DWI voxel intensities. The algorithm showed promising 
segmentation performance with a sensitivity and specificity of 
up to 93.16% and 99.91% respectively. By labeling a single 



slice at time  accurate predictions for future observations 
could be obtained. 

V. CONCLUSION 
In this paper we have presented a novel algorithm for 
spatiotemporal interactive segmentation using Bayesian 

transduction and Markov conditional mixtures in naïve Bayes 
models. By imposing the transductive learning and inference 
problem w.r.t. time and in conjunction with spatiotemporal 
regularization constraints efficient segmentation in non i.i.d. 
data could be achieved. Future work is devoted to extend the 
algorithm to higher-order Markov constraints to enable 
temporal active learning for interactive segmentation. 

 

 
Figure 1. Qualitative spatiotemporal segmentation results using T- MCMNB. A) Segmentation contours predicted for B are overlaid on dataset A to show edema 
change. The white arrows point out edema regions at time A that disappear in later. B) Segmentation result predicted for dataset B showing partial edema 
shrinkage. From left to right different slices of the brain are shown. 
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