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ABSTRACT

Advances in medical imaging techniques and devices has re-

sulted in increased use of imaging in monitoring disease pro-

gression in patients. However, extracting decision-enabling

information from the resulting longitudinal multi-modal im-

age sets poses a challenge. Radiologists often have to man-

ually identify and quantify certain regions of interest in the

longitudinal image sets, which bear upon the patient’s con-

dition. As the number of patients increases, the number of

longitudinal multi-modal images grows, and the manual an-

notation and quantification of pathological concepts quickly

becomes impractical. In this paper we explore how minimal

annotations provided by the user at a few time points can be

effectively leveraged to automatically annotate data in the en-

tire multi-modal longitudinal image sets. In particular, we

investigate the required number of annotated images per time

point and across time for obtaining reasonable results for the

entire image set, and what multi-modal cues can help boost

the overall annotation results.

Index Terms— Computer-Aided Diagnosis Systems,

Multi-modal Images, Longitudinal Image Sets, Supervised

Learning, Semi-supervised Learning, Brain Tumors

1 Introduction

MRI studies are widely accepted in brain tumor patient man-

agement as reliable indicators for obtaining prognostic in-

formation and observing the patient’s response to treatment

plans. Clinicians can obtain valuable insight about the dis-

ease progression and the effect of a particular treatment plan

by examining the temporal images for a given patient and

correlating them with other factors and biomarkers. Figure

2 shows the co-evolution pattern of the “edema” volume, as

obtained from the longitudinal image studies, and the timing

of a specific therapy plan.

The challenge is how to identify and quantify the con-

cepts of interest in the large number of imaging studies at-

tributed to a patient. Patients with high-grade Gliomas, such

as Glioblastoma Multiforme (GBM), have often about ten or

more temporal studies and for each study multiple MRI pro-

tocols including T1, T2, T1 and T2 with contrast, and Fluid

Fig. 1: Co-evolution of the volume of edema region and the dosage

of the drug Bevacizumab (Avastin) is displayed over time for a given

patient.

Attenuated Inversion Recovery (FLAIR). Figure 2 shows a

subset of the longitudinal images found within a specific pa-

tient record. Clinicians simply do not have the time to manu-

ally annotate each image in the longitudinal patient records or

detect patterns along multi-modal images. The process needs

to be automated but at the same time guided by the experts

knowledge. Accurate detection of pathological concepts and

the analysis of such findings is useful in making better judg-

ments about the effectiveness of particular cancer therapies.

Given the large amount of data and the limited number of

tools to analyze multiple images simultaneously, radiologists

frequently use a single MRI protocol at each time point to lo-

cate pathological concepts. For instance, concept “edema” is

usually identified using FLAIR images given that such images

enhance the edema regions by assigning distinct intensity val-

ues. However, noise and image artifacts can introduce a sig-

nificant amount of false positives when a single image modal-

ity is used. That is why in machine annotation of pathological

concepts, cues obtained from multiple protocols can often en-

hance the results [1].

Previously, a number of methods have been proposed to

detect pathological concepts such as “edema” and “tumors”

[1]. Most existing techniques rely on training a system that

can learn the characteristic properties of the condition under

consideration. However, information about how to minimize

user input while improving accuracy has not been reported.

This paper reports our approach, experiments, and results for

designing a framework to automatically annotate pathological

concepts within longitudinal MR images. We address some of
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Fig. 2: Subset of the longitudinal images found within a specific

patient record.

the questions that previous work did not explicitly answer in-

cluding: How many 2D images should be annotated to extend

the automatic detection process to the complete volumetric

dataset? How many longitudinal 2D images should be anno-

tate to broaden the detection process to temporal 3D images?

Which multi-modal images should be considered when ex-

tracting features to detect the pathological concept “edema”?

Which image features better capture pathological concepts

such as “edema”?

We hope that answers to such questions can provide in-

sight on how to go about designing effective algorithms for

structuring and quantifying the multi-modal longitudinal im-

age sets.

2 Approach

Fig. 3: Pipeline used to combine transductive and inductive learning

mechanisms to accurately detect pathological concept in MR im-

ages. The transductive method provides pseudo-ground truth labels

from which an inductive machine is trained.

To answer the questions stated above, we first designed a

framework for automatic detection of pathological concepts

in longitudinal multi-modal image sets. The system uses

multi-modal cues in conjunction with transduction and in-

ductive learning techniques to automatically extract regions

corresponding to pathological concepts in MR images. In

this work, we focus on the concept of “edema”; however the

approach is able to generalize to other concepts of interest.

Figure 3 shows a diagram of the system. First, the multi-

modal set of images belonging to every timepoint are aligned

(registered) into a common coordinate system, where mean-

ingful multi-modal image features can be extracted. A combi-

nation of linear and affine multi-resolution registration tech-

niques is employed during this step to compensate for size,

resolution, and positional differences. Second, a set of im-

ages are presented to an expert where seed positive and neg-

ative labels for the pathological concept under consideration

are manually selected. These seed regions are then leveraged

and propagated by the transductive inference to assign labels

to all pixels in the image. In transductive learning, the data

set D = [Dl,Du] ∈ PXY consists of the labeled training set

Dl = (xn, yn)
l

n=1
and the unlabeled set Du = (xn, ŷn)

l+u

n=l+1

with ŷn unknown. Usually, l ≪ u. The goal of transductive

inference is to find a smooth function f in input space onto

the output space, such that f(xi) is close to the associate yi

on the training set. This function could then be employed to

associate labels to the elements of the unlabeled set Du. In

[2] we proposed the Transductive Conditional Mixture Naive

Bayes (T-CMNB) learning machine for spatial multi-modal

generative classification casted as an interactive segmentation

problem with minimal expert intervention. The multi-modal

mixture assumption on each covariate feature dimension and

spatial regularization constraints in T-CMNB allowed us to

explain more complex distributions required for spatial clas-

sification in multi-modal imagery.

The resulting classification is then used as pseudo-ground

truth to train an inductive model. For each training point in the

transductive model, a combination of first- and second-order

statistics are estimated to create a multi-dimensional descrip-

tor. Histogram features including mean, standard deviation,

and skewness are extracted from each training point in con-

junction with textural features such as energy, contrast, and

correlation. Those set of features are combined and used as

the characteristic descriptor for each training point. SVMs

[3] are then used to learn an inductive and more generic clas-

sification model. Finally, the inductive model is used to auto-

matically identify the particular medical concept on new input

data. At this step, we performed a number of experiments to

answer some of the questions about how much annotation is

needed to extend the automatic identification process to volu-

metric data and longitudinal 3D images.

3 Experiments and Results

To study how minimum user input can be used to quickly

learn and classify new data, our framework was tested with

a collection of multi-modal and temporal MRI studies of pa-

tients with high-grade glioma brain tumors.

3.1 Multi-modal Image Features

Radiologists often analyze the gray-level values of FLAIR

images to determine the edema progression. Our first exper-



iments were to determine which image features and modal-

ities improve the identification of the pathological concept

“edema”. We extracted first- and second-order statistics from

each training point. By training and testing a large set of

images in a round-robin fashion, we found that even when

FLAIR images are used, textural features improved the accu-

racy of the classification by at least 1%. In addition we found

that always when the image features were extracted using

FLAIR together with T1 and T1 with contrast, the accuracy of

detecting the pathological concept “edema” increased above

that of FLAIR alone. This shows that despite FLAIR being

the primary image modality used by radiologists to identify

“edema”, multi-modal protocols appear to have hidden cues

which can improve the automatic identification process of

edema regions. In addition, although image intensity levels

in FLAIR are the primary image features used by radiologists

to determine edema regions, our results show that the combi-

nation of histogram statistics with textural properties always

performed better than just using intensity-based image fea-

tures.

Fig. 4: (left) Benefits of using the multi-modal cues to automatically

detect edema regions. When the image features were extracted us-

ing FLAIR, T1, and T1 with contrast, the accuracy of detecting the

pathological concept “edema” always increased. (right) After train-

ing a set of inductive models for each multi-modal combination, we

found that the combination of histogram- and texture-based features

always performs better than histogram-based features alone.

To further answer the question regarding which image

features to extract, two feature selection techniques were ap-

plied to the complete feature vector: maximum relevance and

minimum Redundancy Maximum Relevance (mRMR)[4]. We

found that when only FLAIR images were used, the maxi-

mum relevance features were able to improve the automatic

detection process; however when using any combination of

multi-modal features, the aggregate feature vector always per-

formed better than any subset of features. Figure 4(left) shows

the results of training ten models for each protocol combina-

tion, note that multi-modal features always improve classifi-

cation. Figure 4(right) shows the results of training ten mod-

els with different set of image features. From the plot we

can see that with any protocol combination, histogram- and

textural-based image features always performed better than

intensity-based features and that with multi-modal features

the aggregate feature vector always outperforms any subset

of features.

3.2 Number of Training Images

Obtaining insight regarding the number of images that need

to be annotated is an important question faced during the de-

sign of any CAD system. First, an effective concept detection

system should use minimum user annotation to learn anatom-

ical properties. Second, since the MR parameters can change

significantly between scans and/or between different scan-

ners, learning within a single image can introduce a signifi-

cant amount of mis-classification.

Given a 3D MRI image, we would like to determine how

many 2D images (slices) need to be annotated to infer the rest

of the volume (30+ slices). For this experiment, 20 datasets of

multi-modal MRI images were used. After testing over 225

different combinations, we found the threshold number to be

three (3). That is, we found that on average the complete vol-

ume can be accurately classified based on the annotation of

three images. Figure 5(left) shows a stacked plot with the

average accuracy and variability with different number of an-

notated images. Note that when only one or two images are

annotated, the classification results are not that accurate and

include a significant amount of variability. In addition, when

more than three images are used, the improvements of the

classification are not that significant.

A question that arises from these experiments is which

three images should be annotated. We performed several ex-

periments annotating images from different part of the vol-

ume and did not find any specific pattern of the effects of

picking a set of images versus randomly annotating some of

the images. Therefore, we can conclude that any three differ-

ent images can be annotated when accurate prediction of the

complete volume is needed.

 75

 80

 85

 90

 95

 0  1  2  3  4  5  6  7

%
 o

f 
T

ru
e
 P

o
s
it
iv

e

Number of Slices 

Number of Trainig Slices vs. True Positive

FLAIR
FLAIR / T1 / T1+C

Fig. 5: (left) We found that when multi-modal image features are

used, annotating at least three images provides enough information

to learn the characteristic properties of the concept under consider-

ation. (right) When a single image is annotated, the prediction of

other 2D images is better determined if features from a single im-

age modality are used. However, when more than two images are

annotated, multi-modal images features always perform better than

a single image modality.

In situations where prediction of the complete volumet-

ric data is needed but less than two images are annotated, the

use of a single image protocol (i.e. FLAIR) gives better re-

sults than using multi-modal image features. However, once

more than two images are annotated, multi-modal image fea-

tures always improve the automatic detection process. Figure



5(right) shows some of our results.

We believe that the reason behind the threshold value

three is due to the high anisotropic sampled imagery fre-

quently found within MRI studies and the uncertainty intro-

duced by the registration. Since there is not a one-to-one

mapping between different image modalities due to the large

spacing between slices, multi-modal image features from a

single image might not capture the complete characteristic

properties of the concept under consideration, however, if

more than two images are annotated, the benefits of multi-

modal features then become clear.

Number of Temporal Images

1T 2T 3T 4T

Number of

Slices per

Volume

1S 71.22 79.77 82.68 83.46

2S 71.85 81.46 84.32 85.56

3S 72.99 82.02 86.46 86.73

Table 1: Results of annotating different number of slices and 2D

temporal images. From the results we can see that to extend the

automatic detection process to longitudinal dataset, annotating tem-

poral data is crucial. In particular, we can see that once more than a

single temporal dataset is annotated, there is a significant improve-

ment on the overall accuracy. We also found that annotating three

images from two different timepoints (i.e. six images) had about the

same accuracy than annotating a single image from three different

timepoints. In addition, by annotating more training points and tem-

poral images the accuracy of the classification can increase, however

after three timepoints, the rate at which the improvement occur be-

comes minimal. Thus, we can conclude that three is good threshold

that can be considered during the design of CAD systems.

Given the significant differences commonly found be-

tween consecutive MR scans, longitudinal MR images present

a great amount of intensity differences and noise. If a pattern

is learned from a single timestep, the model frequently can-

not be extended to other temporal 3D images or the results

will be highly dominated by mis-classification. How many

temporal images are required to create an accurate detection

system to classify volumetric data over time? We found that

to guarantee an 80% or better classification and detection of

the pathological concept edema over longitudinal data, image

from three different timepoints should be annotated. Table 1

presents our results.

Figure 6 shows our results with a particular temporal

dataset. Our results highlight the importance of training a sys-

tem with images of at least three different timepoints. Note

the significant amount of variability that can occur when im-

ages from a single timepoint are annotated. However, when

three different timepoints are used, the accuracy increases

and the results are more uniform. On average, by annotating

three images of three different timepoints, we were able to

automatically identifying the edema volume over time with

88.6% true positives.

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10

%
 o

f 
T

ru
e
 P

o
s
it
iv

e

Timestamp 

Multi-Modal: Accuracy Over Time

1 Tp
2 Tp
2 Tp
3 Tp

Fig. 6: Comparison of the effects of training a system with a dif-

ferent number of temporal images. Note that once three temporal

images are used for training, the accuracy of the longitudinal classi-

fication is mostly uniform.

4 Discussion and Conclusion
This paper shows how the combination of transductive and

inductive learning techniques can enable the development

of flexible concept detection systems for longitudinal multi-

modal imagery with minimum user interaction. In addition,

it shows how minimum user input can be used to effectively

leverage entire multi-modal longitudinal image sets. In par-

ticular, we showed that, multi-modal image features improve

the overall classification results when the annotations comes

from more than two images. We also present results about

the number of annotated images that are needed to guar-

antee accurate classification results within a volume and/or

with temporal 3D images. We believe that such insight will

help with the design of flexible CAD systems and effective

algorithms for quantifying multi-modal longitudinal datasets.
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