
Record and Transplay:

Partial Checkpointing for Replay Debugging

Dinesh Subhraveti∗1, 2 and Jason Nieh†2

1IBM Almaden Research Center
2Columbia University

Technical Report CUCS-050-09

Abstract

Software bugs that occur in production are often dif-
ficult to reproduce in the lab due to subtle differ-
ences in the application environment and nondeter-
minism. Toward addressing this problem, we present
Transplay, a system that captures application soft-
ware bugs as they occur in production and deter-
ministically reproduces them in a completely different
environment, potentially running a different operat-
ing system, where the application, its binaries and
other support data do not exist. Transplay intro-
duces partial checkpointing, a new mechanism that
provides two key properties. It efficiently captures
the minimal state necessary to reexecute just the last
few moments of the application before it encountered
a failure. The recorded state, which typically con-
sists of a few megabytes of data, is used to replay
the application without requiring the specific appli-
cation binaries or the original execution environment.
Transplay integrates with existing debuggers to pro-
vide facilities such as breakpoints and single-stepping
to allow the user to examine the contents of variables
and other program state at each source line of the ap-
plication’s replayed execution. We have implemented
a Transplay prototype that can record unmodified
Linux applications and replay them on different ver-
sions of Linux as well as Windows. Experiments with
server applications such as the Apache web server
show that Transplay can be used in production with
modest recording overhead.

1 Introduction

When core business processes of a customer are sus-
pended due to an application failure, nothing is more
important to the application provider than to quickly
diagnose the problem and put the customer back in
business. Resolving a critical issue typically starts
with reproducing the reported bug in the lab. Once
the developer is able to reproduce the bug and ex-
amine the internal application state, the resolution
follows quickly. However, reproducing a software bug
is one of the most time consuming and difficult steps
in the resolution of a problem.

∗dineshs@us.ibm.com
†nieh@cs.columbia.edu

Reproducibility of a bug is impacted by hetero-
geneity in the application environments. A variety of
operating systems, corresponding libraries and their
many versions, application tiers supplied by different
ISVs, and network infrastructure with varied config-
uration settings make application environments com-
plex and bugs hard to reproduce. The source of the
problem might be an incorrect assumption implic-
itly made by the application about the availability or
configuration of local services such as DNS, or about
co-deployed applications and their components, or it
may surface only when a particular library version is
used. Furthermore, nondeterministic factors such as
timing and user inputs contribute to the difficulty in
reproducing software bugs.

The common approach of conveying a bug report
is often inadequate. Typically a bug report has to be
followed up with several rounds of exchange between
user and developer. Even if all the necessary data is
somehow conveyed to the developer, accurately repli-
cating the application environment in the lab is an
error prone and tedious process. Some application
vendors [6, 7] provide built-in support for collecting
information when a failure occurs. Other sophisti-
cated mechanisms [3] may provide more comprehen-
sive data including traces and internal application
state, in an attempt to ensure that sufficient con-
text is recorded to be able to reproduce and possibly
fix the bug. However, they are often limited in their
ability to provide insight into the root cause of the
problem because they represent the aftermath of the
failure, not the steps that lead to it. Furthermore,
indiscriminate recording and transfer of client data
evokes privacy concerns.

To address these problems, we introduce Transplay,
a software failure diagnosis tool that efficiently
records application bugs as they occur in production
and replays them across heterogeneous environments.
By directly monitoring the application and captur-
ing the bug as it occurs in production, the burden
of repeated testing to reproduce the bug is removed.
Transplay also side steps the probe effect problem by
allowing its instrumentation to be enabled while the
application is running in production. In the lab, there
is no need to install or configure the original applica-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion, support libraries, or operating system to repro-
duce the failure. Portions of the application environ-
ment, including parts of application and library code
necessary to reproduce the failure, are automatically
recorded. No source code modifications, relinking, or
other assistance from the application is expected.

Transplay performs two key functions. First, it
transparently decouples the application from the un-
derlying environment. Applications are decoupled
from the operating system by recording system call
results, then replaying the results instead of reexe-
cuting system calls during replay. Applications are
decoupled from installed binaries by recording spe-
cific code pages within executable files, then using
the recorded pages during replay. Applications are
decoupled from processor MMU structures such as
segment descriptor tables by trapping and emulating
the offending instructions during replay.

Second, Transplay introduces the notion of par-
tial checkpointing to minimize the amount of data
to be recorded, while ensuring that all informa-
tion necessary to reproduce the failure is available.
Based on the premise of short error propagation dis-
tances [31, 40, 38], Transplay captures the partial
state of the application necessary for its execution
during the last few hundreds of milliseconds prior to
its failure. The resulting partial checkpoint is used to
partially reconstruct the application at the developer
site and allow it to run from an intermediate point
prior to the failure to the point of failure. Rather than
taking a complete application checkpoint [33, 16],
which can require higher overhead and might have
an adverse impact on client’s privacy, partial check-
pointing selectively records discrete pieces of data ac-
cessed by the application during a brief time interval
immediately preceding the failure. To also help re-
duce privacy concerns, partial checkpointing only al-
lows the application to be deterministically replayed
for the specific brief time interval; it cannot run live
or replay before or after the specific time interval.

Transplay integrates with standard interactive de-
buggers to provide functionality such as setting
breakpoints within a discrete interval of an applica-
tion’s execution, as recorded in a partial checkpoint.
A developer can repeatedly reexecute and observe the
last few moments of the application’s execution be-
fore encountering a fault, and examine the contents
of variables and other program state at each source
line of replayed execution to expose the steps that the
application took to reach the failure state.

We have implemented a Transplay prototype in the
Linux kernel that can record application execution on
one Linux system and replay it on a completely dif-
ferent Linux system based on a different distribution

without any of the original application binaries or
software libraries. We have also implemented a user-
level replay tool for Windows using binary instrumen-
tation that can replay Linux applications on Win-
dows. We demonstrate Transplay’s ability to record
and replay execution across Linux and Windows oper-
ating systems using several real applications, includ-
ing the Apache web server. Our measurements show
that recording overhead is less than 15% on various
real applications, and respective partial checkpoints
consume only a couple of megabytes.

2 Usage Model

Transplay is a tool for recording and replaying spec-
ified intervals of an application’s execution. Once
Transplay is installed on the same machine as a pro-
duction application, it continuously records its exe-
cution. When a fault occurs, Transplay outputs a set
of partial checkpoints taken before the fault. When
recording a multi-process application, partial check-
points are saved separately for each process, along
with information identifying the process that had the
failure.

The recorded information can be then sent to the
application developer, who can use Transplay to re-
play the partial checkpoints to reproduce the failure.
Because partial checkpoints are per process, a devel-
oper does not need to replay the entire application.
The developer could just select the process where
the fault occurs to simplify problem diagnosis, and
Transplay will replay just that process, with its inter-
actions with other application processes virtualized.

Transplay integrates with the GNU Project Debug-
ger (GDB) to closely monitor and analyze the execu-
tion of the application being replayed. Any inputs
needed by the replay are provided from the recorded
partial checkpoint, and any outputs generated by the
replay are captured into an output file and made
available to the user. For instance, if the application
writes into a socket, the user would be be able to ex-
amine the contents of the buffer passed to the write

system call and also see how the content of the buffer
is generated during the steps leading to the system
call. For root cause analysis, Transplay allows the
programmer to set breakpoints at arbitrary functions
or instructions, single step the instructions, watch the
contents of various program variables at each step,
and monitor the application’s original recorded in-
teractions with the operating system and other pro-
cesses. Reverse debugging can also be done by resum-
ing the application from an earlier partial checkpoint
with a breakpoint set to a desired point of execution
in the past.

A partial checkpoint file itself does not contain any

2



symbol information, so the debugger retrieves it from
a separately provided symbol file. Typically, applica-
tion binaries are stripped of their symbol table and
debugging sections before they are shipped to the
user. However, the symbol and debugging informa-
tion is preserved in respective formats [8] separately
in a symbol file which would be accessible to devel-
opers.

3 Partial Checkpointing

Transplay introduces a novel notion of partial check-
pointing. A partial checkpoint represents the partial
state of the application necessary to replay the appli-
cation’s execution for a specified interval. Since the
recording is only for a brief interval of time, the space
needed to store the partial checkpoint can be small.
Even though the application itself may be large in its
memory footprint and processing large quantities of
data, it only accesses a fraction of its state during a
brief interval of time.

A partial checkpoint has four key characteristics.
First, it is defined only for a specific interval of an
application’s execution and contains only the portion
of state accessed by the application in that interval.
Second, it is only useful for replaying the specific time
interval, not for running the application normally.
Third, it is captured over the specified time inter-
val, not at a single point in time. Fourth, the state
captured is completely decoupled from the underlying
application binaries and the operating system.

Partial checkpointing significantly differs from con-
ventional checkpointing. Unlike conventional check-
pointing, partial checkpointing does not capture the
complete state of an application, only what is needed
by the application for a specified time interval. In
particular, the system state of the application main-
tained internally by the operating system, such as
the state of file descriptors and the state of various
OS resources, is not included in the partial check-
point. It allows partial checkpointing to be imple-
mented without intrusive kernel changes and enables
a partial checkpoint to be replayed even on a different
operating system. Unlike conventional checkpointing,
partial checkpointing does not allow normal applica-
tion execution to resume from a checkpoint. Unlike
conventional checkpointing which captures all of its
state at a given point in time, partial checkpointing
captures its state across a time interval. Since it must
know what the application will do in a given time
interval to know what state to save, a partial check-
point is captured over the entire time interval and
is not fully saved until the end of the time interval.
Because the state needed by an application in its fu-
ture execution can be arbitrarily large, conventional

checkpoint implementations typically impose depen-
dencies on the underlying system to reduce storage
requirements, such as requiring that files in persis-
tent storage be available to the resumed application.
In contrast, partial checkpointing does not impose
such a requirement because, the specific portions of
data on disk, including portions of application bina-
ries themselves needed by the application during re-
play, are included in the partial checkpoint.

Partial checkpointing also differs from incremen-
tal checkpointing [35]. While an incremental check-
point tracks the pages written by the application
since last checkpoint, partial checkpoint tracks the
pages read by the application. Incremental check-
pointing requires storing an initial full checkpoint fol-
lowed by a series of increments. On the contrary, par-
tial checkpointing ignores all prior application state
and records only pages read by the application within
the current recording interval.

Transplay’s checkpointing approach significantly
differs from virtual machine based snapshotting and
logging. While VM snapshots provide portable re-
play, their space requirement is several orders of mag-
nitude higher than that of partial checkpoints. Since
VM snapshotting involves checkpointing the state of
the entire operating system and its applications, in-
cluding the state of secondary storage, the amount
of data in each snapshot is large and it can take sev-
eral tens of seconds or minutes to complete. On the
other hand, since Transplay only captures the most
relevant application level state, it is able to take sev-
eral partial checkpoints of the application per second.
The high checkpoint frequency also allows for quick
forward and backward movement of execution during
replay. Furthermore, virtual machine based logging
imposes high runtime overhead given the large num-
ber of low level hardware events. For instance, only a
fraction of the network traffic processed by a virtual
network card would be visible to the application and
consumed by it.

Transplay divides the recording of an application
into periodic, contiguous time intervals. For each in-
terval, it records a partial checkpoint for each ap-
plication process that executes during that interval.
A recording interval can be configured to be of any
length; it can be few tens of milliseconds or several
seconds of execution time. Shorter intervals incur
more runtime recording overhead, while longer inter-
vals result in larger partial checkpoints. As the ap-
plication executes, a series of partial checkpoints are
generated and the most recent set of checkpoints is
stored in a fixed size memory buffer. Storing a set of
partial checkpoints rather than just the most recent
one ensures that a certain minimum amount of execu-

3



tion context is available when a failure occurs. Partial
checkpoints are maintained in memory to avoid disk
I/O and minimize runtime overhead. The number of
partial checkpoints and hence the length of execution
history available at any point depends on the size of
the memory buffer dedicated for this purpose. Older
partial checkpoints are discarded to make room for
the new ones.

Partial checkpoints maintained in memory can be
written to disk at any time by stopping the current
recording interval, causing the accumulated partial
checkpoints in memory to be written to disk. Writ-
ing partial checkpoints to disk bears some similarity
to the core dumps generated by the operating sys-
tem. However, a core dump only contains the state
of the application at the point of failure, while a par-
tial checkpoint consists of the state of the application
a few moments before the failure and the state nec-
essary to deterministically lead its execution to the
point of failure.

If the application encounters a failure at the begin-
ning of the recording interval, the most recent partial
checkpoint may not contain sufficient context for root
cause analysis. Transplay seamlessly splices the dis-
crete series of consecutive partial checkpoints into a
new partial checkpoint encompassing the total length
of the original checkpoints. The user can resume the
application from any partial checkpoint in the series
and have it continue the execution through the in-
termediate checkpoints, finally reaching the point of
failure. The user can progressively go, as far back as
necessary, within the available checkpoint set to reach
the problem source. A particular partial checkpoint
in the series marks a well-defined point in the execu-
tion of the application from where the application can
be resumed. An arbitrary point within the recording
interval can be reached by rolling forward from the
latest checkpoint prior to the desired execution point,
thus simulating reverse execution.

Transplay uses a user space instrumentation frame
work which provides the basic start and stop prim-
itives that control partial checkpointing. The prim-
itives are implemented by a Transplay agent pro-
gram, which starts the application to be recorded,
runs within the application context, and occupies a
shared memory region mapped at an unused portion
of its address space, 1 allowing for a quick transi-
tion of control from application code to the agent,
when application events occur. The agent installs a
common signal handler to all signals that the applica-

1On our Linux/x86 prototype, Transplay agent program
is loaded at the address range 0x08000000 - 0x08031000.
Common Linux/x86 applications do not use addresses below
0x08048000.

tion may receive, and processes them first before for-
warding them to the application. It allows Transplay
to intercept exceptions caused by application failure,
such as a segmentation violation or divide by zero,
to cause checkpoints to be written to disk. It also
enables an external process to communicate with the
agent via a reserved signal to start and stop record-
ing or to write checkpoints at any time based on an
external fault sensor. Transplay agent tracks applica-
tion’s system calls by providing a simple kernel exten-
sion to the system call tracing component of ptrace
which allows the originating thread itself to be sig-
naled when a system call is made, along with any
external debugger which may have been registered to
receive the notifications. Within the signal handler
context, the agent is able to process the system call
by reading and writing to the thread’s registers avail-
able on the signal stack, that point to system call
arguments in Linux. The agent can emulate the sys-
tem call, nullify it or process it in any other way, all in
user space, before returning control to the application
code. Further ptrace notifications are disabled while
the agent code itself is running. The agent’s shared
memory region is uniformly mapped across all appli-
cation processes at the same address, and the agent
persists across exec system call by intercepting it and
performing the exec operation in user space while re-
taining the region it is occupying. The memory region
occupied by the Transplay agent is marked read-only
and the application is not allowed to change the per-
mission, so that potentially buggy application code
does not accidentally corrupt the agent’s memory.

A recording interval commences with an external
process sending all application threads a reserved sig-
nal to have them reach a barrier. At the barrier, the
agent first records the current processor context of
the thread. The processor context marks the initial
point of execution during replay. It consists of the
state of the CPU/FPU registers and the per-thread
state of the processor MMU such as descriptor entries
in the segment descriptor tables. Register context is
obtained from the signal stack and descriptor entries
used by the thread are obtained through the API pro-
vided by the OS. On Linux, get thread area is used
to read the GDT and modify ldt, to read the LDT.

After recording the processor context, Transplay
starts monitoring the application’s interfaces to cap-
ture every input that crosses the application bound-
ary. The inputs can be viewed as two forms of execu-
tion state. One is the initial set of accessed memory
pages. The application code itself is considered an in-
put, and if the application executes a particular func-
tion in a particular shared library, the specific code
page(s) containing the function are recorded. Sec-

4



tion 4 describes how accesses to memory pages are
tracked for constructing this initial state. The other
is a continuous log of relevant application events, in-
cluding a log of system call results, which is used to
control the replay of the application. Section 5 de-
scribes how Transplay performs the logging. Memory
state is recorded per application process and the log is
recorded per thread. This results in a self-contained
checkpoint of application’s execution that can be used
to replay the application with no dependency on the
source environment. stop command concludes the
recording interval and collects the logs generated dur-
ing the execution. The processor context together
with subsequently recorded application inputs within
a recording interval forms the state necessary to de-
terministically replay the application’s execution dur-
ing that interval.

When an application is recorded, each thread
within the application undergoes recording. Every
thread in the application records its private proces-
sor state and one thread per process records the
common memory state. Partial checkpoints gener-
ated are stored in separate buffers by the Transplay
agent within respective processes. Transplay decou-
ples individual processes from other processes when-
ever possible, so that each process can be indepen-
dently replayed and debugged. For example, system
call logging automatically decouples processes com-
municating via pipes or other interprocess commu-
nication mechanisms such as semaphores, message
queues and file locks.

4 Tracking Memory Pages

To record a partial checkpoint for an application,
Transplay must determine the memory pages that are
read by the application during an interval of its exe-
cution. Transplay leverages built-in support for dirty
and accessed bits provided by the MMU hardware for
this purpose. Since the hardware sets the bits trans-
parently and automatically, there is no continuous
additional cost in tracking the pages. The accessed
and dirty bits are typically used within the kernel to
implement page replacement algorithms and virtual
memory. Transplay cooperatively shares the use of
these bits with the kernel by keeping track of ker-
nel use of and changes to these bits by extending the
macros used to read and manipulate these bits.

Only pages that were read during a recording in-
terval are needed during replay. If the application
only writes to a page, but does not read from it, such
a page is not required during replay. However, ac-
cessed and dirty bits provided by most processors are
not sufficient to determine if a written page has also
been read since both reads and writes to a page set

the accessed bit. We conservatively include all ac-
cessed pages in the partial checkpoint even though
the application may not have read from some of them.

If a page is modified by the application during a
recording interval, the original copy of the page needs
to be included in the partial checkpoint. To obtain
the original copies of the dirty pages, Transplay lever-
ages the copy-on-write mechanism implemented as
a part of the kernel’s clone functionality. At the
beginning of each recording interval, a child process
(shadow process) is created which shares all other re-
sources with the parent except for virtual memory.
The shadow process exclusively acts as a backup copy
of the parent’s virtual memory, and does no process-
ing other than to wait for requests from its parent. It
never modifies any pages used by the application. At
the end of the recording interval, stop examines the
accessed and dirty bits of each page in the process
address space, obtains the original copies of the dirty
pages from the shadow process and kills it. A new
shadow process is created to track the original copies
of the dirty pages for the next recording interval.

If one of the application processes forks a child pro-
cess, the new child process is automatically placed
within the purview of Transplay instrumentation.
Transplay implicitly performs a start which records
the register context at the fork system call and
creates a shadow process to preserve the original
copies of the pages dirtied by the child process within
the first recording interval. For the same reason,
Transplay also performs an implicit start immedi-
ately after performing the user space exec to initially
load the application.

The page tracking mechanism as described above
may include multiple copies of the same page in dif-
ferent partial checkpoints. For instance, if the same
page is read by the application in two consecutive
recording intervals, it is included in both the par-
tial checkpoints. To avoid this duplication, Transplay
implements a version of incremental checkpointing
adapted to suit the semantics of partial checkpoint-
ing. The algorithm consists of two parts. The first
part is implemented as a part of the stop oper-
ation and the second part is implemented by the
write checkpoints routine, which writes the par-
tial checkpoints stored in memory to disk when the
application exits or encounters a failure.

A data structure, initial page set, represents
the set of pages contained in a partial check-
point. It consists of elements of type (page address,
page data), and indicates the initial set of pages
loaded into memory when the application is re-
sumed. Page addresses are unique within the set and
page data indicates the contents of that page. Some

5



elements of the set may only contain the page address
without any associated page data, in which case, the
page data would be indicated as nil.

At the end of the recording interval, stop queries
the kernel module to determine which pages in
the process address space have been accessed. If
a page was read, its address is added to the
initial page set with nil page data. If a page
was written, the original copy of the dirty page is
obtained from the shadow process. The page ad-
dress and the original page data are added to the
initial page set.

When the application either exits or encounters an
exception, write checkpoints writes the accumu-
lated partial checkpoints to disk. Partial checkpoints
are processed starting from the earliest one to the
most recent one in sequence. For each element in the
initial page set, its page address, is written. If
the page data is not nil, the page data is also writ-
ten. If the page data is nil, the initial page sets
of the subsequent partial checkpoints are searched to
check if the page address exists. If an element with
matching page address is found in a subsequent par-
tial checkpoints and the associated page data is not
nil, no page contents are written for that page. It
implies that the page was overwritten in a subsequent
recording interval and the original copy of the page
will be saved in that partial checkpoint. There is no
need to save the page in the present partial check-
point. If such an element is not found, the current
contents of memory at the address page address is
saved as the page data. Not finding a matching ele-
ment implies that the current data at page address

was not subsequently modified and still valid. Simi-
lar processing is applied to each partial checkpoint in
sequence.

4.1 Changes in Memory Region Geometry

If the application unmaps a region of memory during
the course of a recording interval, the pages in that
region that may have been accessed will be missed
by the stop operation which is called only at the
end of the interval, by which time, the memory re-
gion would not exist. Similarly if a new region is
mapped during a recording interval, the shadow pro-
cess would not contain the region. Transplay handles
these cases with the following extension, which in-
tercepts mapping and unmapping operations to cap-
ture the accessed pages in memory regions which have
been mapped or unmapped during a recording inter-
val.

System calls are recorded as an ordered list of
syscall records. Transplay keeps track of sys-
tem calls that modify memory regions by also logging

them to the set, recent maps. The set indicates the
system calls (mmap, brk, exec) which have mapped
a memory region within a recording interval. The
recent maps set is emptied at the beginning of each
recording interval. When the application unmaps a
region of memory, the recent maps set is searched to
find the most recent syscall record which maps the
region encompassing the region being unmapped. If
a matching syscall record is not found, it implies that
the region was not mapped in the current recording
interval. The regions must have been inherited from
a previous recording interval, and the accessed and
dirty pages are added to the initial page set in
the same manner as described earlier.

If a matching record is found, it is removed from
the set, accessed and dirty pages in the region are
recorded as described earlier, and the recorded pages
are linked with the corresponding syscall record

in the main system call log to be written to disk by
write checkpoints.

If a memory region is mapped during the course
of the recording interval, it would not be a part of
the address space of the shadow process which is cre-
ated at the beginning of the recording interval. The
original data of the dirty pages of such a region is de-
termined as follows. If the region is an anonymously
mapped private memory region, the original data is
marked as a special zero page, to indicate that the
page is initialized with zeros. Otherwise, if the page
is mapped from a file, the original contents of the
dirty page are obtained directly form the file. Since
the page must have been recently accessed by the pro-
gram within the current recording interval, it is likely
to be in the file system cache and unlikely to cause
disk IO.

In addition to the system calls such as mmap that ex-
plicitly map new regions into process address space,
kernel implicitly maps new pages at the top of the
stack as the stack grows. If a page within the stack
region, which is not available in the shadow pro-
cess but accessed in the current recording interval,
is found, it is assumed that the page was mapped
by the kernel and it’s page address is added to the
initial page set with nil page data. Since the
kernel grows the stack with zero-initialized pages, if a
dirty stack page which is not available in the shadow
process is found, it is added to the initial page set

with associated page data set to zero page.

5 Logging

5.1 System Calls

To replay applications, Transplay must log system
calls. For most system calls, Transplay simply records
the system call return value and the return data con-

6



tained in system call parameters and provides it back
to the application during replay. The data is captured
as unstructured binary data and replayed as such.
Transplay does not modify or otherwise attempt to
interpret it. During application execution recording,
each system call is logged as a syscall record data
structure. It contains the system call return value
and data returned to the application through the sys-
tem call parameters. Transplay agent maintains an
ordered list of syscall records for each thread of
the host application process, for logging purpose.

Transplay uses a data plug-in which encodes the
system call interface of the operating system, to
record the system calls. Transplay consults the plug-
in to determine which system call parameters carry
data to be returned to the application and their sizes.
For each system call, the plug-in encodes the fol-
lowing three pieces of information: 1. system call
service number 2. the number and the sizes of sys-
tem call parameters 3. whether a specific parameter
may contain return data. In addition, the plug-in
also indicates the system call interrupt vector and
the calling convention. For instance, Linux/x86 and
BSD/x86 use int 0x80 or sysenter instruction to
trap into the kernel to service a system call. The sys-
tem call service number is placed in eax register and
the system call arguments occupy respective regis-
ters. This approach of using a data plug-in decouples
the record/replay mechanism from the system call
semantics of the operating system and makes both
Transplay and partial checkpoints portable across dif-
ferent operating systems.

There are only two types of system calls which
need additional processing beyond recording their re-
sults when recording application execution. Since
partial checkpoints are per process, system calls
for process control (clone, fork, vfork, exit,

exit group) need to allocate and deallocate state
for recording partial checkpoints. Since partial
checkpoints require tracking memory pages, system
calls that deal with address space geometry (mmap,

munmap, brk, execve) need additional processing
as discussed in Section 4. In general, when the appli-
cation invokes a system call that requires additional
processing beyond mere log and replay, Transplay
uses the native services available on the target oper-
ating system to process the system call. For instance,
when the application calls mmap, an equivalent system
call available on the target operating system is used
to map the memory region.

5.2 Nondeterminism

Recording and replaying the system calls addresses
most common sources of application nondetermin-

ism. This includes nondeterminism due to system
calls such as gettimeofday, select, read and write.
For example, consider the case where two processes
concurrently write into one end of a pipe, and a third
process reading from the other end. Normally, this
leads to nondeterministic execution. The data read
by the third process depends on the interleaved or-
der in which the first two processes are scheduled.
However, Transplay decouples this interprocess in-
teraction by independently recording the system call
results. During replay, the writers are returned the
number of bytes written into the pipe as observed
during recording, and the reader is passed the data
from the log independent of the writers, thereby re-
moving the nondeterminism and the dependency be-
tween the readers and writes. The same applies
to synchronization and interprocess communication
mechanisms such as semaphores and message queues,
where processes interact through the system call in-
terface.

Nondeterminism due to specific user input or ex-
ternal inputs processed by the application are also
captured within the system calls. Nondeterminism
due to hardware instructions such as RDTSC is handled
through a trap and emulate mechanism. Linux pro-
vides a prctl interface to cause a SIGSEGV signal to
be sent when RDTSC instruction is executed. The re-
sulting SIGSEGV signal is intercepted by Transplay
agent to emulate and record the instruction. Cap-
turing nondeterminism due to concurrent accesses to
shared memory is an important and difficult prob-
lem that requires an elaborate solution. We sepa-
rately implemented a record and replay mechanism
to efficiently capture concurrent accesses to shared
memory, which we are currently integrating with
Transplay.

6 Partial Replay

A partial checkpoint is self-contained and contains
all data necessary to independently replay the appli-
cation’s execution for a specified interval. Applica-
tions alternate between user and kernel space execu-
tion, typically performing most of their work in user
space, while delegating resource allocations and other
privileged operations to the operating system ker-
nel. The kernel parts of the execution occur through
well defined system call interface, and can be col-
lapsed into a quick replay of the system call results
to the application, thus bypassing the kernel execu-
tion. There are two classes of exceptions in which sys-
tem calls must be reexecuted instead of just return-
ing their results: system calls that modify the address
space geometry (mmap, munmap, brk, execve) and
the system calls related to processor’s MMU context

7



(set thread area, modify ldt). We discuss these
in further detail below. Replaying the system call re-
sults is done in an OS independent way by Transplay
agent on behalf of the application and hence the ap-
plication never directly contacts the target operating
system. As long as the application receives consistent
responses to the system calls it makes, the applica-
tion continues to run as expected. The user space
portions of an application’s execution, by definition,
do not depend on the kernel services and can be ex-
ecuted independently, even on a different OS.

To replay a piece of a previously recorded applica-
tion, user first chooses a specific application process
and an interval of execution to replay, by selecting
a sequence of partial checkpoints from an available
set of previously recorded partial checkpoints. All
threads within the chosen process are resumed to-
gether. The memory address space is partially re-
constructed with just the portions of state accessed
by the application during that interval. The state
required by the application is computed by consol-
idating the partial checkpoints representing the in-
terval. In particular, the new initial page set is
computed by taking the union of initial page sets
of individual partial checkpoints. If a particular
page address appears in the initial page set of
more than one partial checkpoint, the element with
non-nil page data in the earliest partial checkpoint
is added to the new initial page set. During re-
play, memory pages accessed by the application are
loaded into memory in stages. The application is
initially resumed with the pages contained in the
initial page set. The rest of the pages accessed by
the application during the course of its execution are
loaded progressively at each system call that maps
the region. When the application makes a system
call that maps a new memory region during replay,
the corresponding syscall recordwould contain the
set of pages to be loaded into memory at that point.

Transplay provides two alternative mechanisms to
replay the application from a partial checkpoint. Al-
ternative 1: A mechanism based on Transplay in-
strumentation, which is efficient but only applies to
replay across Linux systems. Alternative 2: A sec-
ond mechanism based on Pin [28], which is less effi-
cient but allows a partial checkpoint to be replayed
on Windows. Since speed is not a primary concern in
offline interactive debugging, the replay mechanism
based on Pin is useful even though it is relatively
slow. Regardless of the mechanism, partial replay
consists of two phases. 1. Load phase, where an ini-
tial set of memory pages (initial page set) in the
consolidated partial checkpoint are loaded into mem-
ory. 2. Reexecute phase, where the application is

deterministically reexecuted under the control of the
instrumentation. The transition from load phase to
reexecute phase occurs when control is transferred to
the application code.

6.1 Partial Replay Across Linux

The load phase is performed by Transplay agent. As
a reminder, Transplay agent is a statically linked pro-
gram with an unconventional load address. Since
Transplay agent is loaded at a region of address space
which is not normally used by applications, it is able
to load application’s memory pages without overwrit-
ing itself. However, the address space used for the
stack region is usually the same for all applications.
To avoid potential memory conflict when restoring
the target application’s stack, Transplay allocates a
separate region of memory to be used as its own stack.
The new stack is put into effect, as the first step of the
load phase, by loading the top address of the region
into the stack pointer.

After restoring memory regions, Transplay agent
creates the application threads contained in the pro-
cess. Each new thread initializes itself and sends itself
a reserved signal to restore the thread specific state.
Within the signal handler, the thread restores the seg-
ment descriptors as saved in its respective log using
set thread area, modify ldt system calls. Then
the processor context on the signal stack is replaced
with that saved in the log. When the signal handler
returns, the implicit sigreturn at the end of the sig-
nal handler loads the processor context, and control is
directly transferred to the application code. If the log
indicates that the execution involves shared memory
interaction with other processes, all processes partic-
ipating in the interaction are identified and started
simultaneously upfront from their respective partial
checkpoints. Each individual process is partially re-
constructed as previously outlined. Transplay agent
continues to monitor the application and ensures a
deterministic replay until the execution reaches the
end of the specified interval. Most application sys-
tem calls are handled by returning the system call
result from the log. If the application makes a sys-
tem call that maps a new memory region into the
process address space, the specific pages within the
region that the application is going to access within
the current recording interval are mapped and loaded
in advance. If the application calls clone system call,
Transplay creates a new thread, adds it to Transplay
instrumentation and reads the respective log file to re-
play the system calls that it will subsequently make.
If the application makes either set thread area or
modify ldt system calls, they are simply forwarded
to the underlying kernel.

8



Transplay is able to replay a partial checkpoint on
a different operating system distribution regardless of
the environment and packages installed because the
application binary pages are captured directly from
the source system. For instance, Linux kernel auto-
matically maps a virtual ELF shared object (VDSO)
that occupies a memory page within the process ad-
dress space. A compatible C library uses it as a stub
for system call entry. Since both the VDSO page and
the respective pages from the C library within the
application that use the system call entry stub are
obtained from the source environment, the replaying
application will run successfully even though the tar-
get kernel and the C library in use are different. Any
differences in the system call API between the source
and target operating systems does not affect replay
since the replaying application never directly contacts
the target system. The application will replay con-
sistently even though the system calls it makes are
unavailable or have different semantics.

6.2 Partial Replay on Windows

To demonstrate the effectiveness of Transplay ap-
proach to replay checkpoints across two completely
different operating systems, we developed a replay
mechanism based on Pin [28] binary instrumentation
which can replay partial checkpoints of Linux appli-
cations on Windows. It also shows that partial replay
can be implemented in multiple ways.

The load phase is performed by the Windows ver-
sion of Transplay agent in user space using the Win-
dows API. First, the address space of the applica-
tion is partially reconstructed as outlined in alter-
native 1. Then, individual application threads are
created. Each thread makes a special system call,
which Pin instrumentation layer intercepts and in-
vokes Transplay Pintool [28] to perform the reexecute
phase of replay. Transplay pintool reads the respec-
tive log file of the thread to obtain its saved processor
context and loads it using Pin’s PIN ExecuteAt API
function, which turns over control to the application
code.

Transplay Pintool continues to monitor the appli-
cation to satisfy the requests it makes during its exe-
cution. When it makes a Linux system call, the Pin-
tool traps the system call interrupt instruction, copies
system call return data to the application, increments
the instruction pointer to skip the system call instruc-
tion and allows the application to continue normally.
In particular, when new memory regions are mapped,
respective memory pages that will be accessed by the
application in its future execution are brought into
memory in a way similar to alternative 1, except us-
ing the Windows API.

Application events related to the processor MMU
are treated through a trap and emulate mechanism.
Windows configures the CPU descriptor tables based
on its memory layout which is different from that of
Linux. A segment selector, which is an index into
the segment descriptor table, used by the Linux ap-
plication may point to a different region of memory
on Windows or may not be valid at all. Also, any
attempts to update the Windows descriptor tables
may result in a conflict with the way Windows uses
its memory resources. Transplay resolves these con-
flicts by intercepting and emulating the offending in-
structions within the Linux application’s binary and
the system calls that modify the descriptor tables.
At any time during replay, Transplay maintains a ta-
ble that maps the segment registers available to the
user applications (fs, gs) to the base linear address
of the segment that they currently point to. The ta-
ble is populated by intercepting the set thread area

and modify ldt system calls and the mov instructions
that load these segment registers during replay. The
set thread area and modify ldt system calls pro-
vide the mapping between the segment base address
and the selector, while the mov instructions provides
the mapping between the selector and the segment
register. Subsequently, when the application exe-
cutes an instruction that refers to a memory location
through a segment register, the target instruction is
rewritten such that it fetches the memory operand at
the right offset relative to the base address of the seg-
ment pointed to by the segment register, as indicated
by the table.

6.3 Partial Replay with GDB

Transplay integrates with GDB to provide debugging
facilities during partial replay. Although the instru-
mentation used to monitor the application is based
on a ptrace extension, it does not interfere with ex-
isting semantics of the ptrace interface. Any ptrace

notifications destined to external processes continue
to occur. As the application executes, the ptrace

subsystem generates additional application events in
the form of signals that notify Transplay agent of
the application’s events. Although these events are
extraneous to the application, they do not perturb
its execution. A simple GDB configuration script is
provided to mask out these events to ensure trans-
parency in debugging. The script also contains neces-
sary GDB commands that load the appropriate sym-
bol information and direct the replay process until
the application is fully initialized for the user to start
interacting through the debug interface.

The GDB configuration script begins the debug-
ging session with the invocation of Transplay agent

9



itself as the debuggee. The agent reads the par-
tial checkpoint file, reconstructs application’s address
space and initializes the processor context on the sig-
nal stack. The debugger doesn’t intervene during this
process. The latency of partially reconstructing the
application from a partial checkpoint file is usually
imperceptible to the user. After the application is
loaded, the agent hits a preconfigured breakpoint at
a special symbol placed immediately before turning
over control to the application. A single forward step
within the GDB script returns from the signal han-
dler and into the application code.

At this point, the application is stopped within
the debugger at a state few moments prior to its
failure when it was recorded. The debugger shows
the register state and the source line where the ap-
plication is currently stopped. The user can then
set break points, single step through the source lines
to examine the intermediate values of program vari-
ables and monitor application’s interactions with the
operating system and other processes. Any inputs
needed by the application are automatically provided
by Transplay to preserve replay determinism. For in-
stance, when the application attempts to read from
the console, the input is directly provided from the
partial checkpoint rather than waiting for user input.
If the user wishes, he or she can also “step into” the
system call to see the actions taken by Transplay on
behalf of the user. System call instructions are often
embedded within the system libraries and develop-
ers usually skip through these portions of code dur-
ing normal debugging. Once the application returns
from the system call, the perceived state of the appli-
cation’s registers and memory would be identical to
its state at the corresponding point during recording.

7 Limitations and Extensions

Short error propagation distances: Not all fail-
ures may be reproduced by Transplay. Although re-
ported as rare [31], the root cause of some failures
may lie far in the past, outside the recent execution
context recorded by Transplay.

Client privacy: While Transplay strives to min-
imize the amount of state necessary to be recorded
and transmitted to the developer, a partial check-
point may still contain sensitive client data. To fur-
ther reduce the recorded state, a partial checkpoint
can be preprocessed on-site to generate a memory ref-
erence trace by replaying it through an offline tracing
tool and filtering out unaccessed memory locations
from the pages stored in the checkpoint. To com-
pletely avoid having to transmit any raw data, it is
conceivable to provide a remotely accessible web in-
terface to a hosted debugger which runs the partial

checkpoint at the client site within an isolated web
environment.

Application level bugs: Transplay relies on the
kernel to correctly record application’s execution, and
assumes that the kernel itself is bug free. While re-
producing kernel level bugs is not supported, it is pos-
sible to record and replay an entire kernel running in
the user space within a virtual machine such as Qemu.
We are exploring the right interface points between
Transplay and Qemu that would allow a guest kernel
to be correctly and efficiently recorded and debugged.

Accurate system call specification: In order
to accurately record and replay system call responses,
Transplay requires an accurate representation of the
system call API in the form of a data plug-in as de-
scribed in Section 5.1. Some system calls, especially
ioctl interface dealing with uncommon devices may
have poorly specified semantics, making it difficult
to record such system calls. Given additional sup-
port from the kernel [11], the memory side effects of
those system calls may also be captured correctly.

Read-only debugging: Transplay disallows any
debugging operations that would potentially alter
the deterministic execution course of replay. For in-
stance, writing to the registers or other program vari-
ables may make the application take an execution
course which does not represent its original execution
during recording.

Replay across different hardware architec-

tures: Transplay currently requires that the source
and target hardware architectures be the same. In
order to provide replay across different architec-
tures, we have done a preliminary integration be-
tween Transplay and Qemu-user [9]. Qemu-user is
an ancillary component of Qemu [9] which allows an
application built for one architecture to be executed
on a different architecture of the same operating sys-
tem. It leverages a subset of Qemu’s functionality to
execute a user application on a virtual CPU without
the need for a guest kernel running underneath the
application. We extended Qemu-user by providing a
partial checkpoint loader which enables it to load a
partial checkpoint file in addition to its built-in sup-
port for ELF binaries, and a system call replay mech-
anism that replaces Qemu-user’s existing system call
translation component when running a partial check-
point. While this is currently work-in-progress, we
have been able to replay simple Linux/x86 partial
checkpoints on Linux/ppc hardware.

Application tracing: In addition to interactive
debugging, Transplay can be used to efficiently gen-
erate fine-grain traces of applications running in pro-
duction, which can be used for post-analysis, debug-
ging or archival. While existing tracing tools can

10



provide fine-grain traces, they cannot be applied to
production software due to their runtime cost. Also,
storing execution traces as static data can consume
large storage space and extracting relevant informa-
tion through search can be difficult. A partial check-
point, on the other hand, implicitly encodes the appli-
cation state at each point of its execution and serves
as a compact representation of an application trace.
It allows a variety of traces such as system call and
memory reference traces, to be derived offline by run-
ning replay through existing tracing tools. Relevant
application state can be quickly accessed by setting
breakpoints or watchpoints within the debugger. We
are currently developing a Pin based tool to generate
application traces from partial checkpoints.

8 Experimental Results

We have implemented Transplay as a prototype
on Linux and Windows operating systems. Our
Transplay prototype generates partial checkpoints of
unmodified Linux applications and replays them on
other Linux distributions running different versions of
the kernel and libraries, and on Windows. The target
Windows system we used reserves the top 2GB of its
address space for kernel use. To avoid conflict with
the Linux applications’ use of address space on Win-
dows, we configured the Linux kernel to limit user
space allocations to the lower 2GB of address space
while recording. Alternatively, Windows kernel can
be configured to only use the top 1GB of the total
4GB address space by passing it the /3GB boot op-
tion.

The experimental setup consists of two identical
machines, each with an Intel Core 2 Duo 2.4GHz pro-
cessor and 2GB of RAM. One of them is installed with
Ubuntu 8.10, and the other is installed with Win-
dows XP version 2.16 and Fedora 11, in two bootable
partitions of its hard disk. Ubuntu system runs a
modified Linux-2.6.26 kernel with the ptrace exten-
sion and an interface to extract accessed and dirty
bit information and the Fedora system runs a mod-
ified Linux-2.6.26 kernel with the ptrace extension
to support Transplay’s native instrumentation based
replay.

The application scenarios evaluated in the exper-
iments are listed in Table 1. Recording was per-
formed on the Ubuntu machine with each applica-
tion continuously recorded while the measurements
were taken. At any point of time, seven most re-
cent partial checkpoints were maintained in mem-
ory. apache was configured to run with three pro-
cesses and used shared memory. Even though it used
shared memory, we did not notice any nondetermin-
ism originating from it. We were able to correctly re-

play its partial checkpoints. For apache and squid,
httperf benchmark [30] was used to generate a work-
load of 200 connections per second and the result-
ing connection response time was measured, gzip

was recorded while it was uncompressing a 64MB
compressed file that decompresses to a 285MB clear
text file, bc was calculating the value of pi to 2000
decimal places, and abiword and gv were each dis-
playing a document while they were being monitored
and recorded. In each application scenario, an ar-
tificial failure event was triggered during the bench-
mark by sending the application a SIGSEGV signal, so
that Transplay would write-out the last seven partial
checkpoints. The resulting partial checkpoints were
then replayed individually on Fedora and Windows
systems. The experiment was repeated six times with
varying lengths of recording intervals from 125ms to
4000ms on a log scale. We removed the applications
used in the experiment from the Fedora system, and
so the replay exclusively relied on the checkpointed
memory and binary pages.

We have also experimented with several real soft-
ware bugs reported in Bugbench [26], to verify that
our prototype can correctly capture and replay them.
In each case we ran the faulty application on Ubuntu
with Transplay enabled. The bug was triggered using
specially crafted input. The same partial checkpoint
produced by Transplay, representing the last 200 ms
of the execution was then replayed on both Fedora
and Windows. We were able to single-step through
the source lines and examine the contents of various
program variables at each step. For instance, the mal-
formed URL request was apparent in the input buffer
which caused the Squid proxy server to fail due to a
heap overflow bug. While reproducing another bug
in bc’s program parser, relevant code snippet of the
bad input program that triggered a memory corrup-
tion in bc was captured in Transplay’s log along with
other events necessary for the bug to manifest. In
each case, we verified that the execution trajectory is
identical. In case of gzip and bc for example, we ver-
ified that the output text of gzip and the value of pi
generated by bc matched in all cases. In general, any
divergence would automatically surface during replay
as an unexpected event which doesn’t coincide with
recorded log.

Figure 1 shows the normalized performance of four
applications: apache, squid, gzip and bcbench [2]
at recording intervals varying from 125ms to 4000ms.
Squid showed the highest worst case overhead of 15%
at 125ms recording interval. The overhead was 13%
for apache, 6% for gzip and 5.5% for bc at the same
interval length. In all cases, the overhead became
unnoticeable at sufficiently long recording intervals.

11



 0

 2

 4

 6

 8

 10

 12

 14

 16

apache squid gzip bcbench

P
er

ce
nt

ag
e 

N
or

m
al

iz
ed

 O
ve

rh
ea

d

125ms
250ms
500ms

1000ms
2000ms

Figure 1: Performance Overhead

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

apache

squid
gzip

bcbench

abiword

gv

K
B

pages read
pages written

syscall data

Figure 2: Space Breakdown (1 s)

 100

 1000

 10000

apache

squid
gzip

bcbench

abiword

gv

K
B

125ms
250ms
500ms

1000ms
2000ms
4000ms


Figure 3: Recording Storage

 0.01

 0.1

 1

 10

apache

squid
gzip

bcbench

abiword

gv

m
s

start record
stop record

Figure 4: Recording Latency (1 s)

 0.1

 1

 10

 100

 1000

apache

squid
gzip

bcbench

abiword

gv

m
s

Linux
Windows


Figure 5: Resume Time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

apache

squid
gzip

bcbench

abiword

gv

m
s

Linux
Windows


Figure 6: Reexecute Time

Application Description

apache-2.2.11 Web server (httperf workload)

squid-2.3 Cache proxy server (httperf workload)

gzip-1.2.4 Uncompress a 64MB compressed file

bcbench-1.06 Calculate pi to 2000 places

abiword-2.6.6 Word processor

gv-3.5.8 Document viewer

Table 1: Application scenarios used for experiments

Figure 2 shows the storage space occupied by differ-
ent constituents of a partial checkpoint representing
a one second recording interval. It consists of three
parts - the amount of memory read and dirtied by
the application, and the amount of data returned via
system calls. In most cases, the memory pages domi-
nate the partial checkpoints. A significant portion of
this overhead originates in the file system data cap-
tured by Transplay which enables the applications to
be replayed without an equivalent install base at the
target site. The large system call log shown by gzip

accounts for the contents of the compressed file read
through the read system calls. bcbench on the other
hand is mostly CPU-bound and its partial check-
points contain little system call related data. Figure
3 shows the rate at which the total size of a partial
checkpoint grows with the length of the recording in-
terval.

Figure 4 shows the time taken to perform start

and stop operations. In general, start operation is
relatively light and the time it takes is dominated by
the creation of the shadow process. stop is heavier

because it has to scan the page tables of the appli-
cation to determine the pages accessed in the last
recording interval. gzip behaves anomalously be-
cause of the large system call data held by Transplay
agent in its address space. When the shadow process
is created during start, the clone system call copies
the page table entries of the entire address space
of the process including those within the Transplay
agent memory region. However, Transplay doesn’t
scan its own memory region when it checks the ac-
cessed and dirty bits, making stop relatively lighter.

Figures 5 and 6 show the times taken by resume
and reexecute phases of the replay operation respec-
tively on Fedora and Windows systems. As expected,
the resume and reexecute times are far greater on
Windows than on Linux. Transplay uses its na-
tive instrumentation mechanism to replay on Linux,
which intercepts and replays the system calls effi-
ciently. The large replay times on Windows is due
to Pin’s instruction-level instrumentation. We ob-
serve that the reexecute times for applications such
as apache and squid were much smaller compared
to their recording times. A partial checkpoint of a
one second interval could be replayed in a few tens
of milliseconds. This speedup is due to the fact that
server applications spend most of their time in poll

and select system calls. During replay, Transplay
readily returns from these system calls without the
wait.

9 Related Work

While interactive debugging tools [1] are helpful for
analyzing bugs that can be easily reproduced, they
do not assist with reproducing bugs. Techniques for

12



compile-time static checking [27, 12] and runtime dy-
namic checking [19, 4] are useful in detecting certain
types of bugs but many bugs escape these detection
methods and surface as failures, to be reproduced and
debugged in the developer environment.

Checkpointing has been a focus of extensive study.
Checkpointing systems [34, 37] allow application
state to be rolled back to a point in the past. Some
of them [25, 39] have been applied to cyclic debug-
ging, where the intent is to reduce the waiting time in
repeated debugging cycles. Most of these techniques
are only applicable to compute-bound parallel jobs.
More recent implementations [32, 16, 21] of check-
pointing are able to checkpoint a more general class
of applications. Even though checkpointing the com-
plete state of an application has proved to be diffi-
cult [16] and kernel intrusive [29], they typically aim
to checkpoint the application state as completely as
they can to minimize the impact of checkpointing on
the application after it resumes. In particular, they
checkpoint the entire virtual memory of the applica-
tion even though most of the state may not be rele-
vant to debugging. Given large memory footprints of
modern applications, these techniques usually store
the checkpoints on secondary storage, incurring high
overhead during the process. As a result, they cannot
afford to take frequent checkpoints necessary for de-
bugging, especially when the application is running
in production.

Optimizations such as incremental checkpointing
[35] significantly improve checkpointing performance.
However, maintaining a long series of incremen-
tal checkpoints corresponding to a lengthy failure-
free operation can be expensive and unnecessary.
Flashback [38] proposes a lightweight checkpointing
scheme based on fork system call, which allows a pro-
grammer to record and replay certain type of bugs.
Repeated testing to trigger the bug, recording its oc-
currence and replaying it to analyze its root cause,
all have to occur in one user session at the pro-
grammer site. The checkpoints it generates cannot
be saved to persistent storage, or transmitted to an
offsite programmer for analysis. In general, check-
point/rollback schemes that don’t allow production
use require the bug to be reproduced offline through
repeated runs. Some times the bug may never oc-
cur due to probe effect introduced by the system.
Triage [40] proposes a diagnosis protocol to automat-
ically determine the root cause of a software failure
in production. They repeatedly reexecute the failure
triggering code to gain insight into the nature of the
bug. While such a technique may work for a limited
set of well characterized bugs, they are generally not
suitable for many common bugs which require intu-

itive faculties and application-specific knowledge of
a human programmer. For instance, the right set of
program inputs and environment manipulations to be
used for each repetition of the execution heavily de-
pends on the application and generally not possible
to automatically generate.

Execution replay systems [18, 36, 25, 33, 39] ad-
dress application nondeterminism as an independent
problem. They provide varying degrees of support for
nondeterminism by recording and replaying the non-
deterministic events that affect the application. Most
of them are able to record and replay system calls.
Typically, replay is restricted to identically config-
ured systems running the same operating system and
they cannot handle discrepancies in the application
environment in general. Due to high frequency of
nondeterministic events, they produce large amounts
of data, especially for long application runs. Some
[13, 33] address shared resource nondeterminism by
capturing the interactions among processes and re-
playing them. They require cooperation from the ap-
plication and are nontransparent. R2 [18] requires the
programmer to choose a high-level subroutine that
completely encloses the program nondeterminism so
that it can be used as a point of interception.

Virtual machines have been recently proposed [10,
23] as a debugging tool. Virtual machines, in gen-
eral, provide the advantage of being operating sys-
tem agnostic. However, due to the additional state
introduced by the guest operating system and other
processes which are not relevant to the application
being debugged, virtual machine checkpointing is a
relatively high overhead operation and requires large
amount of storage space. Furthermore, the continu-
ous runtime overhead imposed by virtual machines
[24] may not be acceptable to some applications.
Restoring a virtual machine involves restoring the
complete OS state, its processes and potentially large
secondary storage state. Tens of seconds or minutes
may elapse between each step in an interactive debug-
ging operation, making the process unnatural. The
techniques we introduce in Transplay may be used
to partially address this overhead. For instance, by
applying partial checkpointing, the state accessed by
the guest operating system during the last few sec-
onds of its execution can be recorded, rather than the
complete virtual machine state.

Extending legacy software through transparent in-
strumentation is a common approach to providing in-
novative and new functionality. Many methods of in-
strumentation have been developed. Some are imple-
mented in the kernel [5, 20, 15], some in user space
[17, 22] and some others [14] a combination of ker-
nel and user space. User space approaches typically

13



intercept application’s calls to the library functions.
Most of them are only applicable to dynamically
linked binaries and generally cannot prevent the ap-
plication from bypassing the instrumentation. While
kernel based instrumentation methods are more gen-
eral and secure, they require significant extensions to
the kernel and are often race prone.

10 Conclusions

Transplay is a software failure diagnosis tool which
captures application bugs that occur in production
and allows the recorded bugs to be deterministically
reproduced again and again in a completely different
environment, running a different operating system,
without having to replicate the original setup or to
do repeated testing. Transplay provides an innova-
tive and efficient mechanism to record the complete
state required to replay an application, including rel-
evant pieces of its executable files, for a brief interval
of time before its failure. The captured state, which
typically amounts to a few megabytes of data, can
be used to deterministically replay the application’s
execution to expose the steps that lead to the fail-
ure. No source code modifications, relinking or other
assistance from the application is required. In order
to provide this functionality, Transplay uses a novel
instrumentation mechanism based on a simple kernel
extension that decouples the application from its un-
derlying operating system, the installed set of appli-
cation binaries, and other CPU state which can con-
flict with the target system. Transplay introduces the
notion of a partial checkpoint that represents the par-
tial state of the application necessary to replay its ex-
ecution for a specified interval. Partial checkpointing
minimizes the amount of data to be recorded while
ensuring that all information necessary to reproduce
the bug is available. Transplay integrates with a stan-
dard unmodified debugger to provide debugging facil-
ities such as breakpoints and single-stepping through
source lines of application code while the application
is replayed.

We demonstrate the effectiveness of Transplay ap-
proach through our prototype, which can capture
partial checkpoints of unmodified Linux applications
and deterministically replay them on other Linux dis-
tributions and on Windows. We have recorded sev-
eral real-life software bugs using Transplay and in
each case, Transplay captured the root cause of the
failure and the necessary bug triggering data and
events. With modest recording overhead, Transplay
is able to generate partial checkpoints of several ap-
plications such as the Apache web server, and cor-
rectly replay them on Windows. Our evaluation of
Transplay shows that it would be a valuable tool that

can simplify the root cause analysis of production ap-
plication failures.

References

[1] GDB, The GNU Debugger.

[2] http://www.yagoto-urayama.jp/
˜oshimaya/nbug/etc/bench/bcbench.html.

[3] IBM Corporation, WebSphere Appli-
cation Server V6: Diagnostic Data,
http://www.redbooks.ibm.com/
redpapers/pdfs/redp4085.pdf.

[4] Intel Corporation, Assure,
http://developer.intel.com/software/products/assure/.

[5] Linux vserver project, linux vservers.

[6] Microsoft Corporation, Dr. Watson Overview.

[7] Mozilla.org, Quality Feedback Agent.

[8] The DWARF Debugging Standard,
http://dwarfstd.org/.

[9] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proceedings of the annual confer-
ence on USENIX Annual Technical Conference,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[10] J. Chow, T. Garfinkel, and P. Chen. Decoupling
dynamic program analysis from execution in vir-
tual environments. In ATC’08: USENIX 2008
Annual Technical Conference on Annual Techni-
cal Conference, pages 1–14, Berkeley, CA, USA,
2008. USENIX Association.

[11] F. Cornelis, M. Ronsse, and K. D. Bosschere.
Bosschere. tornado: A novel input replay tool. In
In Proceedings of the International Conference
on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA 03), Las Ve-
gas, pages 1598–1604. CSREA Press, 2003.

[12] D. Evans, J. Guttag, J. Horning, and Y. M. Tan.
Lclint: a tool for using specifications to check
code. SIGSOFT Softw. Eng. Notes, 19(5):87–96,
December 1994.

[13] S. I. Feldman and C. B. Brown. Igor: a sys-
tem for program debugging via reversible exe-
cution. In PADD ’88: Proceedings of the 1988
ACM SIGPLAN and SIGOPS workshop on Par-
allel and distributed debugging, pages 112–123,
New York, NY, USA, 1988. ACM.

14



[14] T. Garfinkel, B. Pfaff, and M. Rosenblum. Os-
tia: A delegating architecture for secure sys-
tem call interposition. In In Proc. Network and
Distributed Systems Security Symposium, pages
187–201, 2004.

[15] D. P. Ghormley, S. H. Rodrigues, D. Petrou, and
T. E. Anderson. Slic: An extensibility system for
commodity operating systems. In In Proceedings
of the 1998 USENIX Annual Technical Confer-
ence, pages 39–52, 1998.

[16] C. Goater, D. Lezcano, C. Calmels, D. Hansen,
S. Hallyn, and H. Franke. Making applications
mobile under linux. In Proceedings of 8th Linux
Symposium, 2006.

[17] I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted
helper applications confining the wily hacker. In
SSYM’96: Proceedings of the 6th conference on
USENIX Security Symposium, Focusing on Ap-
plications of Cryptography, pages 1–1, Berkeley,
CA, USA, 1996. USENIX Association.

[18] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu,
M. Wu, M. F. Kaashoek, and Z. Zhang. R2:
An application-level kernel for record and replay.
In In Proc. Operating Systems Development and
Implementation (OSDI), 2008.

[19] R. Hastings and B. Joyce. Purify: Fast detec-
tion of memory leaks and access errors. In The
Winter Usenix, 1992.

[20] S. Ioannidis, S. M. Bellovin, and J. M. Smith.
Sub-operating systems: A new approach to ap-
plication security. In In Proceedings of the 10th
ACM SIGOPS European Workshop. ACM, 2002.

[21] G. J. Janakiraman, J. R. Santos, D. Subhraveti,
and Y. Turner. Cruz: Application-transparent
distributed checkpoint-restart on standard oper-
ating systems. In Proceedings of the 2005 In-
ternational Conference on Dependable Systems
and Networks, pages 260–269, Washington, DC,
USA, 2005. IEEE Computer Society.

[22] M. B. Jones. Interposition agents: transparently
interposing user code at the system interface.
SIGOPS Oper. Syst. Rev., 27(5):80–93, 1993.

[23] S. King, G. Dunlap, and P. Chen. Debugging op-
erating systems with time-traveling virtual ma-
chines. In USENIX Annual Technical Confer-
ence, 2005.

[24] O. Laadan and J. Nieh. Transparent checkpoint-
restart of multiple processes on commodity op-
erating systems. In ATC’07: 2007 USENIX An-
nual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, pages 1–
14, Berkeley, CA, USA, 2007. USENIX Associa-
tion.

[25] T. LeBlanc and J. MellorCrummey. Debugging
parallel programs with instant replay. IEEE
Trans. Comput., 36(4):471–482, 1987.

[26] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and
Y. Zhou. Bugbench: Benchmarks for evaluating
bug detection tools. In Workshop on the Evalu-
ation of Software Defect Detection Tools, 2005.

[27] M. Luján, J. R. Gurd, T. L. Freeman, and
J. Miguel. Elimination of java array bounds
checks in the presence of indirection. In JGI ’02:
Proceedings of the 2002 joint ACM-ISCOPE
conference on Java Grande, pages 76–85, New
York, NY, USA, 2002. ACM.

[28] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumenta-
tion. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language
design and implementation, volume 40, pages
190–200. ACM Press, June 2005.

[29] J. Mogul, L. Brakmo, D. E. Lowell,
D. Subhraveti, and J. Moore. Unveiling
the transport. In In HotNets II, 2003.

[30] D. Mosberger and T. Jin. httperf: a tool for mea-
suring web server performance. SIGMETRICS
Perform. Eval. Rev., 26(3):31–37, 1998.

[31] S. Narayanasamy, G. Pokam, and B. Calder.
Bugnet: Continuously recording program ex-
ecution for deterministic replay debugging.
SIGARCH Comput. Archit. News, 33(2):284–
295, 2005.

[32] S. Osman, D. Subhraveti, G. Su, and J. Nieh.
The design and implementation of zap: A sys-
tem for migrating computing environments. In
Operating System Design and Implementation,
2002.

[33] D. Z. Pan and M. A. Linton. Supporting reverse
execution for parallel programs. SIGPLAN Not.,
24(1):124–129, 1989.

15



[34] J. Plank. An overview of checkpointing in
uniprocessor and distributed systems, focusing
on implementation and performance. Technical
report, 1997.

[35] J. Plank, J. Xu, , and R. Netzer. Compressed
differences: An algorithm for fast incremental
checkpointing, technical report cs-95-302, 1995.

[36] Y. Saito. Jockey: A user-space library for record-
replay debugging. In AADEBUG05: Proceed-
ings of the sixth international symposium on Au-
tomated analysis-driven debugging, pages 69–76,
2005.

[37] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa,
and S. Jiang. Current practice and a direc-
tion forward in checkpoint/restart implementa-
tions for fault tolerance. In IPDPS ’05: Proceed-
ings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05)
- Workshop 18, page 300.2, Washington, DC,
USA, 2005. IEEE Computer Society.

[38] S. Srinivasan, S. Kandula, C. Andrews, and
Y. Zhou. Flashback: A lightweight extension
for rollback and deterministic replay for software
debugging. In USENIX Annual Technical Con-
ference, 2004.

[39] J. Steven, P. Chandra, B. Fleck, and
A. Podgurski. jRapture: A capture/replay tool
for observation-based testing. SIGSOFT Softw.
Eng. Notes, 25(5):158–167, 2000.

[40] J. Tucek, S. Lu, C. Huang, S. Xanthos, and
Y. Zhou. Triage: diagnosing production run
failures at the user’s site. In Proceedings of
SIGOPS symposium on operating systems prin-
ciples, 2007.

16


