
Rank-Aware Subspace Clustering for Structured Datasets
Columbia University Computer Science Technical Report cucs-043-09

Julia Stoyanovich
∗

Columbia University
New York, NY, USA

jds1@cs.columbia.edu

Sihem Amer-Yahia
Yahoo! Research

New York, NY, USA
sihem@yahoo-inc.com

ABSTRACT
In online applications such as Match.com and Trulia.com
users define structured profiles in order to find potentially
interesting matches. Typically, profiles are evaluated against
large datasets and produce thousands of matches. In addi-
tion to filtering, users also specify ranking in their profile,
and matches are returned in the form of a ranked list. Top
results in ranked lists are typically homogeneous, which hin-
ders data exploration. For example, a user looking for 1-
or 2-bedroom apartments sorted by price will see a large
number of cheap 1-bedrooms in undesirable neighborhoods
before seeing any apartment with different characteristics.
An alternative to ranking is to group matches on common
attribute values (e.g., cheap 1-bedrooms in good neighbor-
hoods, 2-bedrooms with 2 baths). However, not all groups
will be of interest to the user given the ranking criteria.

We argue here that neither single-list ranking nor attribute-
based grouping is adequate for effective exploration of ranked
datasets. We formalize rank-aware clustering and develop a
novel rank-aware bottom-up subspace clustering algorithm.
We evaluate the performance of our algorithm over large
datasets from a leading online dating site.

1. INTRODUCTION
In online applications that involve large structured datasets,

such as Yahoo! Personals and Trulia.com, there are often
thousands of high-quality items, in this case, persons and
apartments, that satisfy a user’s information need. Users
typically specify a structured target profile in the form of
attribute-value pairs, and this profile is then used by the
system to filter items. On dating sites, a target profile may
specify the age, height, income, education, political affilia-
tion, and religion of a potential match. In real estate ap-
plications, a profile describes a user’s dream home by its
location, size, and number of bedrooms. The number of
matches to a specific profile is often very high, making data
exploration an interesting challenge.

Typically users also specify ranking criteria which are used
to rank matches. For example, in Yahoo! Personals, poten-
tial matches can be ranked by decreasing income or increas-
ing age, while in Yahoo! Real Estate, available houses may
be ranked by increasing price or decreasing size. Ranking

∗Research supported in part by National Institute of Health
grant 5 U54 CA121852-03

helps users navigate the set of results by limiting the number
of items that they see at any one time, and by making sure
that the items users see first are of high quality (according to
the ranking criteria). However, ranking also brings the dis-
advantage of match homogeneity: the user is often required
to go through a large number of similar items before finding
the next different item. This is illustrated in the following
fictional example inspired by Yahoo! Personals.

Example 1.1. User Mike is looking for a date. Mike
specifies that he is interested in women who are 20 to 30
years old and who have some college education, and requests
that results be sorted on income in descending order. When
inspecting the results, Mike notices that the top ranks are
dominated by women in their late-twenties with a Master’s
degree. It takes Mike a while to scroll down to the next set
of matches which are different from the top-ranking ones.
In doing so, he skips over some unexpected cases such as
younger women with higher education and income levels, or
women with high income who did not graduate from college.
After additional data exploration, Mike realizes that there
is a correlation between age, education (filtering), and in-
come (ranking). Such correlations would have been obvious
if data were presented in labeled groups such as [20-24]

year-olds with a bachelor’s degree, [25-30] year-olds

who make more than 75K, etc.

A key point that arises from this example is that a user
who is browsing a result set sequentially, item by item, is
only able to infer some trends and correlations in the data
after seeing a significant number of items. Sequential pre-
sentation is not very helpful if the user is trying to under-
stand general properties of a dataset, i.e., explore the data,
particularly if the dataset is large.

The complexity of manual data exploration increases with
more sophisticated ranking. For example, Mike’s profile
could provide a custom scoring function that computes a
score which is inversely proportional to the distance from
his geographic location to the location of his match, and di-
rectly proportional to the match’s income. Helping the users
better understand the results, which enables easier naviga-
tion and profile refinement, is even more important in this
case, given that correlations between item attributes and the
ranking function are less obvious.

1.1 Motivating User Study
In order to better understand the challenges of ranked

data exploration, we interviewed six potential users. All
users were male, and they were all members of Yahoo! Re-

search. Users were asked to specify a realistic Yahoo! Per-
sonals profile, and to discuss their data exploration experi-
ence with us during the course of the interview. We con-
ducted free-form interviews and did not use a questionnaire
so as not to influence the users’ statements by a limited
menu of options. Users were allowed to select among a pre-
specified set of ranking attributes.

User profiles were evaluated by our prototype implementa-
tion, against the Yahoo! Personals dataset. Profile matches
were presented in two ways: ranked list and clustered items.
Three users were shown the ranked list first, followed by
clustered items; the order was reversed for the other three
users.

As the users were interacting with the ranked list inter-
face, they noted that results are homogeneous: there was
little variation in attribute values among top-ranked items.
As a result, item attributes were ignored by most users, and
the decision of whether to further explore a particular pro-
file was based solely on the photo. All six users explicitly
stated result homogeneity as a concern. The other key ob-
servation was that ranking is opaque. Indeed, item ordering
was not considered helpful in data exploration and was not
well-understood by some users. Even for single-attribute
ranking, some users wanted to see items with a variety of
values for the ranking attribute. Two users explicitly stated
this limitation.

During their interaction with the clustered items interface
users noted that diverse results were more easily accessible,
and that clustered items helped them refine their search pref-
erences. Three out of six users decided to refine their query
moments after seeing clusters of results. Two of the three
explicitly commented that the presentation enabled them to
quickly understand the result set and to refine their query
more effectively.

1.2 Limitations of Clustering Algorithms
Clustering is an effective data exploration method that is

applicable to structured, semistructured, and unstructured
data alike. Clustering algorithms assign N items to K � N
groups, where K is either known in advance or discovered by
the algorithm. To be useful for data exploration, the algo-
rithm must produce meaningful descriptions for the clusters.
There are many families of clustering algorithms that can be
used for this task. Some algorithms partition the dataset,
while others assign each point to zero, one, or several clus-
ters. Some algorithms operate over all item attributes, while
others attempt dimensionality reduction techniques. In do-
mains like Yahoo! Personals, where datasets are large and
all items are described by a large number of attributes, it is
intuitive to use subspace clustering.

Subspace clustering is an extension of traditional cluster-
ing that seeks to find clusters in different subspaces of a
dataset [17]. Clusters of items are high-quality regions iden-
tified in multiple, possibly overlapping, subspaces. Many
subspace clustering algorithms use the density of a region
as a quality measure. In the simplest case, density is a per-
centage of data points that fall within a particular region,
and the algorithm aims to find all regions that have density
higher than a pre-defined threshold. We give an overview of
one of the first subspace clustering algorithms, CLIQUE [1],
in Section 3.1, and we illustrate it here with an example.

Example 1.2. Consider a fictional real estate example
in Table 1: a database of 300 rental apartments, listing

beds # baths size (ft2) price ($) # apts
1 1 600 1800 5

1.5 700 2100 55
1 750 2900 25

2 1.5 700 2200 30
1 800 2400 60
2 800 2850 10
2 950 3500 100

3 1.5 950 2900 5
2 1000 3200 10

Table 1: A fictional real estate database.

the number of bedrooms, number of bathrooms, size in ft2,
monthly rental price, and the number of such apartments
currently on the market. Mary is looking for an apartment
that is at least 600-ft2 in size and has at least one bedroom,
and she wants the matches sorted on price in increasing or-
der. All apartments in Table 1 match Mary’s profile.

Assume a density threshold θ = 0.1. A typical density-
based subspace clustering algorithm starts by dividing the
range of values along each dimension (attribute) into cells,
and by computing the density in each cell. For example,
each distinct value of #beds, size, and #baths may corre-
spond to a cell, and price may be broken down into intervals
(1500, 2000], (2000, 2500], (2500, 3000], and(3000, 3500]. Cells
that do not pass the density threshold are pruned at this
stage. The algorithm immediately prunes 600-ft2 apart-
ments (5

300
< θ), 750-ft2 apartments (25

300
< θ), 1000-ft2

apartments (10
300

< θ), and apartments in the (1500, 2000]

price range (5
300

< θ). Given Mary’s interest in cheaper
apartments (price is her ranking condition), it is problem-
atic that the cheapest apartments in the dataset, the 600-ft2

apartments that cost $1800, are pruned.
Next, the algorithm progressively explores clusters in higher

dimensions by joining lower-dimensional ones. For example,
the 1-dimensional cluster of 800-ft2 apartments (70 items)
can be joined with the 1-dimensional cluster of apartments
in the (2000, 2500] price range (145 items). The result of
this join is a region with 60 800-ft2 2-bedrooms at $2400
per month, which qualifies as a cluster since it passes the
density threshold. However, the region that results from
joining the 950-ft2 apartments (105 items) with apartments
in the (2500, 3000] price range (40 items) does not qualify as
a cluster (it contains only 5 items) and is pruned, losing the
potentially interesting 3-bedrooms for a relatively low price
($2900). Density decreases in higher dimensions and the
algorithm stops when there are no more clusters to explore.

1.3 Challenges of Rank-Aware Clustering
A lower density threshold would evidently guarantee that

some of the regions pruned using a higher threshold would
be preserved. However, if the threshold is set too low, the
algorithm would keep merging neighboring cells, ultimately
identifying much larger clusters, and possibly one cluster
containing the entire dataset. Moreover, not all regions that
pass a typical clustering quality metric, e.g., density or en-
tropy, are equally interesting to the user. Indeed, given a
scoring function, some items, and hence some clusters, are
more desirable than others (e.g., Mary has little interest in
the 2-bedroom apartments that cost $3500, but would like to

see the 1-bedrooms that cost $1800). Even when the density
of a region is high, as is the case with 2-bedroom apartments
for $3500, Mary would probably have less interest in them
than in cheaper apartments. Therefore, we propose to ex-
plore rank-aware clustering quality measures which account
for item scores and ranks in assessing cluster quality.

1.4 Paper Outline
In the remainder of this paper we present BARAC: a

Bottom-up Algorithm for Rank-Aware Clustering of struc-
tured datasets. We start by formalizing new clustering qual-
ity measures for rank-aware data exploration in Section 2,
and develop an adaptation of a bottom-up APRIORI-style
subspace clustering algorithm for this setting in Section 3.
In Section 4 we present an extensive evaluation of the ef-
ficiency of BARAC on datasets from Yahoo! Personals,
and show that our algorithm is efficient and scalable. We
experimentally validate the effectiveness of our approach in
Section 5, using both qualitative analysis, and results of a
large-scale user study with a subset of Yahoo! Personals
users.

2. FORMALISM
In this section we formalize rank-aware data exploration

for structured datasets. We start by introducing the notion
of a clustering quality measure, and then give the problem
statement.

2.1 Regions and Clusters
We are given a dataset D where items are described by

attribute-value pairs, including a special attribute id which
uniquely identifies each item. Attributes belong to a set A.

Definition 2.1 (Regions). A region G is a set of items
labeled with a conjunction of predicates over attributes in A,
which, if evaluated on the dataset D, results in all items
in the region. The dimensionality of a region is simply the
number of predicates that describe that region.

A predicate specifies a value, or a range of values, for
an attributes. Note that a region may be described by the
predicate P = >, in which case it evaluates to the entire
dataset.

The predicates that describe a region are the region de-
scription. We will often use region and region description
interchangeably. The following conjunction of predicates
specifies a two-dimensional region:

G : age ∈ [25, 30] ∧ education = Bachelor′s

Any subset of predicates that define a region G is a sub-
region of G (G is a super-region of its sub-regions.) A cluster
is a region that satisfies a clustering quality measure.

Definition 2.2 (Clustering Quality Measure). A
clustering quality measure Q is a predicate over the distri-
bution of items in a region G that makes G interesting to a
user for the purpose of data exploration.

In this paper we consider clustering quality measures that
compare some statistic associated with the region to a thresh-
old θ. Let us now give some examples of measures that were
developed in data mining. Given a region G = P1 ∧ . . .∧Pn,
we denote by p(Pi) the proportion of items satisfying Pi

w.r.t. the entire dataset D, i.e. |Pi|/|D|.

A clustering quality measure may be stated with respect
to the number of items in the region, as is the case with the
density measure in CLIQUE [1], e.g., “a cluster is a region
that contains at least θ% of the total number of items”:

QDENSE : p(G) ≥ θ (1)

A clustering quality measure may encode attribute corre-
lation,1 i.e., higher-than-expected density of points, where
the fraction of the observed number of items to the expected
number is compared to a threshold θ.

QCORR :
p(P1 ∧ . . . ∧ Pn)

p(P1) × . . . × p(Pn)
≥ θ (2)

A clustering quality measure may specify entropy, with
the intuition that regions with lower entropy have higher
density and higher attribute correlation, as was shown in
ENCLUS [7]:

QENT : H(G) = H(P1, . . . Pn) ≤ θ (3)

Given a dataset D, a clustering algorithm returns a set of
regions that satisfy a clustering quality measure.

2.2 Rank-Aware Clusters
In an on-line data exploration scenario, a user specifies a

profile composed of filtering and ranking criteria. We as-
sume that the user’s filtering conditions result in a dataset
D (and can thus take users out of the notation since we are
interested in one user at a time). Ranking is expressed by
a scoring function S which assigns a score i.score to each
item i ∈ D. We denote by S(D) the set of all items from D
augmented with i.score. Typically, items are presented to
the user as a single ranked list sorted by score.

We first argue that rank-unaware clustering measures (see
Section 2.1) are inappropriate when users are interested in
exploring ranked datasets.

Example 2.1. Consider user Mary from Example 1.2.
Mary is interested in seeing apartments ranked by price in
increasing order. Ann, another user who shares Mary’s
filtering conditions, may be interested in seeing the same
apartments sorted by size in decreasing order. Which clus-
ters are best for which user depends on the user’s ranking
preferences. One reasonable option is to cluster apartments
based on the scoring attribute. In particular, Ann may ap-
preciate seeing the 950-ft2 apartments which cost $2900 in
the same cluster as the same-size apartments for $3500,
while Mary may prefer to see 950-ft2 apartments grouped to-
gether with the same-priced 750-ft2 apartments. A subspace
clustering measure that does not account for item scores
would not distinguish between these two users, and would
therefore be inappropriate for rank-aware data exploration.

The score of each item can be treated as an additional
attribute and can thus be used for clustering. Items can be
clustered using a quality measure of the kind described in
Section 2.1. However, as we argue in the following example,
using scores as an additional clustering dimension still fails
to effectively address data exploration for ranked datasets.

1Here and in the remainder of this paper we use “correla-
tion” loosely, in the sense of “departure from independence”
(http://en.wikipedia.org/wiki/Correlation); we do not ac-
count for the direction of the relationship between random
variables.

Example 2.2. Consider again Example 1.2, where Mary
wants to sort apartments by price. If item price is used as
a clustering dimension, in the same way as other attributes,
then Mary may see a high number of clusters, not all of
which are of potential interest to her: e.g. a cluster of ex-
pensive 2-bedroom apartments may appear alongside a clus-
ter of cheap 2-bedrooms. If many clusters are discovered by
the algorithm, the potentially more interesting ones may go
unnoticed. Worse yet, the algorithm may decide to merge to-
gether intervals that are of high interest to Mary with those
of low interest, resulting in a potentially large heterogeneous
cluster with homogeneous results dominating the top ranks.

Hence, we explore new clustering quality measures that
use item scores and ranks to assess region quality.

Definition 2.3 (Rank-Aware Clustering Quality).
A rank-aware clustering quality measure is a predicate over
S(G) for a region G and a scoring function S.

Here, S(G) denotes the set of all items from G augmented
with i.score. We explore different types of rank-aware qual-
ity measures, building on the assumption that users are more
interested in clusters that contain items with high scores,
and that they will only explore the best items in those clus-
ters. We use S(G,N) to denote N highest scoring items in
S(G). N is a parameter in our formalism that models the
user’s attention span – the number of items the user is likely
to explore sequentially [15]. This parameter can be cus-
tomized per user, or it can be set to reflect the preferences
of an average user.

The first measure, QtopN , states that a multi-dimensional
region G is a cluster if it contains enough items that are in
the top-N of each of its one-dimensional sub-regions.

QtopN :
|S(G,N) ∩ S(P1, N) ∩ . . . ∩ S(Pm, N)|

|N |
≥ θ (4)

QtopN aims to discover attribute correlations among the
high-scoring items in the dataset. We illustrate how this
measure compares to density using Example 1.2. Recall that
user Mary specified price as the ranking condition.

The join of the 700-ft2 cluster with the (2000, 2500] price
range cluster preserves the lower-priced 1-bedrooms, since
the top-N items in the join correspond to the high-scoring
items in the (2000, 2500] cluster (one of the sub-regions) and
to the high-scoring items in the 700-ft2 cluster (its other
sub-region). On the other hand, the join of 2-bathroom
apartments with 950-ft2 apartments would not contain any
of the cheapest 2-bathroom apartments in its top-N and
would thus not qualify as a cluster.

QtopN is a generalization of density from CLIQUE [1],
where N is substituted by |D|, making the numerator equal
to |S(G)|, or simply |G|.

The next measure, QSCORE, states that a region is in-
teresting if it contains high-scoring items in its top-N . G
will have the highest-scoring items in its top-N if the same
high-scoring items are present in the top-N lists of all of its
one-dimensional sub-regions P1 . . . Pk. In the best case, the
top-N of the intersection of these regions will coincide with
the top-N of their union, which gives rise to the formula:

QSCORE :
Σi∈S(G,N)i.score

Σi∈S(∪kPk,N)i.score
≥ θ (5)

QSCORE can be used to compare regions with a different
number of items in their top-N lists: a region with few high-
scoring items in the top-N may be of equal interest to the
user as one with many lower-scoring items. Suppose that
Mary’s scoring function is SMary : i.score = 3500−i.price

3500−1800
.

Then, under QSCORE, the region formed by the five 600-ft2

1-bedrooms has a quality score of five and is more interesting
than the region formed by the ten 1000-ft2 3-bedrooms with
a score of 1.76.

Finally, we present a measure that models the relation-
ship between item scores and ranks. The intuition is that
a region with exceptionally high-scoring items in high ranks
may be just as interesting to the user as a region in which
items have intermediate scores. We define this measure us-
ing NDCG (Normalized Discounted Cumulated Gain) [10],
with S(∪kPk, N) as the ideal vector.

QSCORE&RANK : AV Gr≤NNDCG(S(G, N),S(∪kPk, N))[r]
(6)

Consider again Example 1.2 and Mary’s scoring function
SMary, and let us take N = 5. Let us compute the NDCG for
the 1.5-bathroom apartments with the size of 950-ft2. The
ideal gain vector consists of scores of the 5 best items that
either have 1.5 bathrooms or are 950-ft2 in size, namely,
the 1.5-bath 700-ft2 apartments that cost $2100 per month
(i.score = 0.82). With b = 2 we derive: DCGIdeal =
[0.82 1.64 1.55 1.64 1.77].

Let us now compute the NDCG for the 950-ft2 1.5-bath
apartments. The top-5 list of this region consists of five 3-
bedroom apartments at $2900 (i.score = 0.35). We derive
DCG = [0.35 0.7 0.66 0.7 0.75]. We now normalize each po-
sition in DCG by the corresponding position in DCGIdeal,
average the values, and arrive at NDCG = 0.43.

2.3 Problem Statement

Definition 2.4 (Rank-Aware Clustering). Given a
dataset D, a scoring function S, a rank-aware clustering
quality measure Q and an integer N , find all clusters in
D, i.e. regions of any dimensionality that satisfy Q.

3. RANK-AWARE SUBSPACE CLUSTERING
In this section, we give a brief overview of subspace clus-

tering, formalize properties of our rank-aware subspace clus-
tering algorithm, and finally present the algorithm.

3.1 Overview of Subspace Clusterings
We now give a general description of density-based bottom-

up subspace clustering algorithms. The reader is referred
to [17, 11] for comprehensive surveys.

Subspace clustering is a feature selection technique that
aims to uncover structure in high-dimensional datasets [17].
Unlike Principal Component Analysis (PCA), where the goal
is to identify the single best subset of features in which the
dataset is then clustered, subspace clustering looks for mul-
tiple, possibly overlapping, subsets of features that are used
to cluster different portions of the dataset.

Subspace clustering algorithms use several related quality
measures, also referred to as clustering objectives, to guide
the search. CLIQUE [1], one of the first algorithms in this
family, relies on a global notion of density, which is sim-
ply the percentage of the overall dataset that falls within

a particular region. A later algorithm, ENCLUS [7], uses
information entropy as the clustering objective.

CLIQUE operates in three steps to which we refer as
BuildGrid, Merge and Join.

1. BuildGrid builds a histogram in each dimension, count-
ing the number of points that fall within each bucket.
For example, if the dimension is age, the outcome of
this phase is a set of non-overlapping age intervals and
the number of matches in each interval.

2. Merge neighboring histogram buckets (within the same
dimension) that pass the density threshold; discard
buckets that do not pass the threshold.

3. Join dimensions APRIORI-style. This step computes
clusters in higher dimensions by joining lower-dimensional
clusters (e.g., age ∈ [25 − 30] with income ∈ [50K −
80K]), and only keeping higher-dimensional clusters
that pass the density threshold. This step relies on
the downward closure property of the clustering qual-
ity metric to prune the search space.

Several extensions of the original algorithm were devel-
oped: MAFIA [16] creates an adaptive grid that takes into
account the data distribution, CLTree [14] uses a decision-
tree approach to identify high-density regions, while Cell-
Based Clustering (CBF) [5] improves scalability by parti-
tioning the data so as to produce fewer clusters.

3.2 Algorithm Properties
The Merge phase of our algorithm is different from the

corresponding phase of density-based algorithms, and it re-
lies on the notion of interval dominance with respect to a
scoring function.

Definition 3.1 (Interval Dominance). Given a scor-
ing function S, an integer N , an attribute ai, and any two
consecutive value intervals I1 and I2 in the set of values
from domain(ai), we say that I1 dominates I2 w.r.t. S
at top-N iff S(I1, N) = S(I1 + I2, N). We denote this as
I1 ≺S,N I2.

Here, + is simply the concatenation of two consecutive
intervals. The intuition is that the top-N items from the
dominating interval are strictly better, w.r.t. the scoring
function S, than the items in the the top-N of the dominated
interval. For example, if S ranks items in increasing order
of age, then I1 : age ∈ [25, 29] dominates I2 : age ∈ [30, 34].

We refine this definition further. We say that I1 domi-
nates I2 up-to a factor θ ∈ (0.5, 1], w.r.t. S at top-N iff

|S(I1, N) ∩ S(I1 + I2, N)|

N
≥ θ

We denote this by I1 ≺S,N,θ I2.
Consider again the intervals I1 : age ∈ [25, 29] and I2 :

age ∈ [30, 34], and a scoring function that orders items on a
combination of income and education: S = 0.25 ∗ income +
0.75 ∗ education (higher values of attributes income and ed-
ucation correspond to higher income and education levels,
respectively). Because age positively correlates with income
and with education, it is likely that I1 ≺S,N=10,θ=0.75 I2.

We are interested in bottom-up clustering algorithms which
build clusters in higher dimensions from lower-dimensional
clusters. Such algorithms rely on the downward closure

property, which allows for pruning of the search space, re-
sulting in better runtime performance.

Definition 3.2 (Downward Closure). We say that
downward closure holds for a clustering quality metric Q iff,
for any region G, if Q holds over G, then it also holds over
every sub-region of G.

The fact that downward closure holds for QtopN follows
directly from the definition of QtopN and from set properties,
namely, that |A∩B| ≤ min(|A|, |B|). For a one-dimensional
group Pk with N or more items, QtopN = 1. As dimension-
ality of the group increases, new sets are added to the inter-
section in the numerator of the expression. Thus the value of
Q is strictly non-increasing with increasing dimensionality.

Downward closure holds for QSCORE and QSCORE&RANK.
This is because the top-N of any region S(G,N) consists of
items that are either in the top-N of all its one-dimensional
sub-regions (i ∈ ∩kS(Pk, N)), or of items that have lower
scores (j ∈ ∩k(S(Pk)\S(Pk, N))). The portion of ∩kS(Pk, N)
in S(G,N) does not increase as more one-dimensional groups
are added to the intersection. Thus, the value of the nu-
merator of the QSCORE expression, and the DCG values
in QSCORE&RANK are non-increasing in dimensionality of
the group. At the same time, the denominator of QSCORE,
and the values of DCGIdeal for QSCORE&RANK are non-
decreasing in the size of the union. Thus the values of
QSCORE and QSCORE&RANK are strictly non-increasing
with increasing dimensionality.

3.3 Our Approach
Our proposed algorithm BARAC, Bottom-up Algorithm

for Rank-Aware Clustering, is an APRIORI-style algorithm
with a flow that is similar to CLIQUE (Algorithm 1).

Algorithm 1 BARAC: Bottom-up Algorithm for Rank-
Aware Clustering

Require: dataset D, scoring function S, N , θQ, θdom,
maxBuckets

1: grid = BuildGrid(S,D, N, maxBuckets);
2: mergedGrid = Merge(grid,N,S, θdom);
3: clusters = Join(mergedGrid,N,S, θQ);
4: return clusters

The procedure BuildGrid (Algorithm 2) starts by com-
puting a score for each item i ∈ D, and then sorts the items
in decreasing order of score. As the dataset is scanned, all
distinct values for each attribute ai ∈ A are recorded as
domain(ai). Next, we consider each attribute ai with a cor-
responding domain(ai), and compute a grid data structure
that is an array of one-dimensional histograms. If ai is a
categorical attribute with no natural ordering on its values
(e.g. religion), a histogram bucket is created for each value
vj ∈ domain(ai). If ai is numerical (e.g., age) or ordinal cat-
egorical (e.g., body type), domain(ai) is broken down into
at most maxBuckets intervals of consecutive values. Bucket
j for attribute i is denoted by grid[i][j]. Having established
interval boundaries for attribute ai (lines 3-12), we assign
to each interval the best N items in S(D) from among those
that fall within the range of the interval (lines 13-15).

Merge runs multiple passes of the procedure OnePass-
Merge (Algorithm 3). OnePassMerge takes the grid as
input and expands the search space of the algorithm by

Algorithm 2 Procedure BuildGrid

Require: S(D), S, N, maxBuckets
1: compute a list of items S(D), sorted by i.score;
2: init grid, a matrix with one row per attribute ai ∈ A;
3: for ai ∈ A, where |domain(ai)| > 1 do
4: if ai is an unordered categorical attribute then
5: for valj ∈ domain(ai) do
6: {allocate 1 column in grid[i] per value valj}
7: grid[i][j].range = [valj , valj];
8: end for
9: else

10: divide domain(ai) into at most maxBuckets con-
secutive intervals;

11: set grid[i][j].range per interval;
12: end if
13: for each interval j do
14: grid[i][j].items = S(σgrid[i][j].range(D), N);
15: end for
16: end for
17: return grid

considering, and possibly merging, runs of neighboring his-
togram buckets along the same dimension. Once the first
run of OnePassMerge is done, it is invoked again on the
output grid, and explores merging additional intervals.

The idea is that, for an attribute ai, if neither of the two
neighboring one-dimensional intervals grid[i][j] and grid[i][k]
dominates the other (Definition 3.1), then it may be benefi-
cial to consider their concatenation in the subsequent Join
phase, in addition to considering both of them separately.
This is because the top-N items of the concatenated interval
are sufficiently different from the top-N items of the individ-
ual intervals, presenting additional clustering opportunities.
If, however, one of the intervals dominates the other, then,
by definition, the set of top-N items of the concatenated
interval is very similar (or exactly the same) as the top-N
items of the dominating interval, and so adding the concate-
nated interval to the search space is not helpful. We make
two observations about Merge. First, the output grid is
typically much larger than the original grid since all input
intervals are also preserved in the result. Second, the lower
the threshold θdom, the fewer intervals are generated. We
explore the impact of θdom on efficiency in Section 4.

Algorithm 3 Procedure OnePassMerge

Require: grid, N,S, θdom

1: mergedGrid = cloneGrid(grid);
2: for ai ∈ A do
3: for j = 1 to grid[i].length − 1 do
4: {Check dominance among consecutive intervals.}
5: k = j + 1;
6: if not (grid[i][j] ≺S,N,θdom grid[i][k]) ∧ not

(grid[i][k] ≺S,N,θdom grid[i][j]) then
7: {+ denotes interval concatenation.}
8: grid[i][j+k].items = S(grid[i][j].items ∪

grid[i][k].items, N);
9: addToGrid(mergedGrid[i], grid[i][j + k];

10: end if
11: end for
12: end for
13: return mergedGrid

The procedure Merge returns the mergedGrid, which
contains all one-dimensional clusters. The procedure Join,
which is invoked next, computes clusters in higher dimen-
sions by progressively joining together lower-dimensional clus-
ters. This procedure is the same as the corresponding proce-
dure in CLIQUE [1], and we describe it here for completeness
using our terminology.

Algorithm 4 Procedure doJoin

Require: ClustersK−1, θQ
1: RegionsK = ∅;
2: for C1 ∈ ClustersK−1 do
3: for C2 ∈ ClustersK−1 do
4: if compatible(C1, C2) then
5: append(RegionsK, joinClusters(C1, C2));
6: end if
7: end for
8: end for
9: ClustersK = prune(RegionsK, θQ);

10: return ClustersK ;

Join repeatedly invokes the sub-routine doJoin and ter-
minates when no more clusters are identified. Procedure
doJoin, presented in Algorithm 4, takes (k−1)-dimensional
clusters and a quality threshold as input, and returns a set
of k-dimensional clusters. This is done by first identifying a
candidate set of k-dimensional regions (lines 2-8), and then
pruning the set by removing all regions that do not pass the
quality threshold θQ (line 9). We omit pseudo-code for some
of the subroutines, but describe them verbally below.

Assume that the relation < represents a lexicographic or-
dering on attribute names. Assume also that a cluster C is
represented by a set of intervals, with the number of intervals
in the set corresponding to the dimensionality of the clus-
ter. Each interval records the attribute name (e.g., age or
income), and the low and high values that specify the range.
So, an interval age ∈ [25, 29] has attribute = age, low = 25,
and high = 29. Two intervals are considered equal if they
reference the same attribute name and the same range of
values.

Two (k− 1)-dimensional clusters C1 and C2 are said to be
compatible if they contain k − 2 equal intervals, and if the
(k−1)st interval of C1 is lexicographically lower than the (k−
1)st interval of C2. The result of joinClusters(C1, C2) is a
k-dimensional region described by the union of the intervals
of C1 and C2.

The quality measure Q can be any one of the measures
defined in Definition 2.3. During the Join step, all measures
are applied to S(G,N), the top-N items of each region G.
We compute the top-N lists for each grid interval in line 14
of Algorithm 2. As intervals are merged, and as clusters are
joined to produce higher-dimensional clusters, top-N lists
are re-computed (line 9 of Algorithm 3).

In the worst case Join will explore all combinations of
dimensions. However, this worst case is very coarse. Ac-
tual run-time performance is highly data-dependent, as we
show in the next section. Join terminates when there are
no more pairs of compatible clusters which satisfy the qual-
ity threshold. This is guaranteed by the downward closure
property (see Definition 3.2). The lower the value of θQ, the
higher the number of clusters generated by our algorithm.
We explore the impact of different threshold values on the
run time performance in the next section.

users 100
filtering attrs 3-15, median 5
ranking attrs 1-6, median 3
dataset size 1,107 - 489,090, median 102,492

Table 2: Characteristics of target profiles.

4. EVALUATION OF PERFORMANCE
We implemented BARAC with our three clustering qual-

ity measures (Section 2.2.) Since QSCORE behaved sim-
ilarly to QtopN , we only report results with the latter and
QSCORE&RANK . Our prototype is implemented in Java and
operates on memory-resident data. All experiments were
executed on a 64-bit machine with two Intel Xeon 2.13GHz
processors and 4GB of RAM, running RedHat EL AS 4.

4.1 The Yahoo! Personals Dataset
Dataset. We evaluated the performance of BARAC on

a dataset from a leading on-line dating service with millions
of registered users. Users of the service create a personal
profile in which they describe themselves using 30 structured
attributes, e.g., age, height, occupation, education, income,
etc. Users also commonly store one or several target profiles,
expressed in terms of the same structured attributes. When
specifying that profile, users designate attributes as required
and desirable. Required attributes are used as filtering con-
ditions for exact matching against personal profiles, while
desirable attributes are used for ranking exact matches.

For the purpose of our experiments we focus on comput-
ing matches for male users, as there are at least one order
of magnitude more males searching for females. We store a
snapshot of target profiles of male users whom we call seek-
ers, and of personal profiles of female users. The snapshot is
as of a recent month in 2008, and contains all profiles that
were registered with the dating service up to and including
that month. We use 19 of the total 30 attributes, because
there was no meaningful correlation between the ignored at-
tributes (e.g. astrological sign) and other attributes, making
them less suitable for clustering. Two of the 19 attributes,
has photo and gender, have only two distinct values, and
we use them for filtering, but not for clustering. So, there
are 19 filtering attributes and 17 clustering attributes in our
dataset. Therefore, for any given query, the number of clus-
tering dimensions is at most 17.

User Sampling. We evaluated the performance for 100
target profiles. We chose a representative sample of pro-
files that cover a range of filtering and ranking attributes,
as well as different number of matches. Table 2 summa-
rizes the characteristics of the selected target profiles. The
chosen target profiles specify between 3 and 15 filtering at-
tributes, and between 1 and 6 ranking attributes. Because
data exploration is most meaningful for large datasets, we
selected profiles with at least 1,000 matches for our evalua-
tion. Our prototype operates on memory-resident data, and
does all processing in memory. Due to a limitation in avail-
able RAM, we restrict our attention to users whose target
profiles match up to 500,000 profiles. Note that the size of
the result set will often be reduced in practice by applying
additional filtering criteria such as geographic distance be-
tween the seeker and the match, the freshness of the profile
of the match etc.

Ranking. The ranking functions we consider use 6 at-

filtering numerical: age, height.
ordinal categorical: body type, education level,
income, religious services (attendance frequency).
categorical: gender, sexual orientation, ethnicity,
eye color, hair color, smoking, drinking,
marital status, have kids, want more kids,
employment status, profession, personality type,
religion, political views.

ranking age, height, body type, education level, income,
religious services.

ignored location, living situation, social personality,
TV watching habits, languages, sense of humor,
interests, love style, astrological sign.

Table 3: Structured attributes in the dating dataset.

tributes: age, height, body type, education, income, and re-
ligious services (the frequency with which the user attends
religious services). We chose these attributes because they
are either continuous or ordinal categorical, thus inducing a
natural order on their values. Which of the 6 attributes are
included in the scoring function depends on which attributes
are marked as desirable in the target profile.

The first scoring function we used, attribute-rank, assigns
equal weights to each ranking attribute, and computes the
score of an item as the sum of distances between the item
and the ideal item along each attribute dimension. Here, an
ideal item has the best possible value for each ranking at-
tribute from among items in the filtered dataset. Distances
along each dimension are normalized by the difference be-
tween extreme values for the corresponding attribute found
in the filtered dataset. Note that this function is personal-
ized in two ways. First, the user specifies which attributes
are included in the scoring function. Second, the value of
each ranking attribute contributes to the score based on how
it compares to the best and worst values for that attribute,
from among items that pass the filtering conditions of the
target profile.

The second function, geo-rank, scales the value returned
by attribute-rank by the geographic distance between the
seeker and his match.

geo rank =
attribute rank

1 + (geo distance/100)
(7)

We will discuss in detail in Section 5.3 that, because the
clustering outcome depends on the combination of a user’s
filtering condition and the distribution of scores imposed by
a particular scoring function, it is not always possible to find
a meaningful clustering. The intuition is that rank-aware
clustering does not apply if ranking does not discriminate
well between high-quality and low-quality results, that is,
if all, or most, of the items in the result set are tied for
the same score. For example, selecting users with income
= 50K, and then ranking on income, is not helpful, since
all users will share the same score. Users whose scoring
function assigned the top score to more than 30% of their
profile matches were excluded from our evaluation.

4.2 Scalability
In the first part of our experiments, we study the behav-

ior of BARAC with the QtopN quality measure, and the

Execution time(ms)
med avg min max

BuildGrid 1756 2317 336 7814
Merge 13 23 6 119
Join 862 2912 258 37442
Total 3102 5499 600 40015

Table 4: Median, average, max and min processing
times for QtopN for 100 users, with θdom = θQ = 0.5.

attribute-rank scoring function. We analyze performance in
terms of three distinct stages: BuildGrid, Merge, and
Join. See Section 3.3 for a description of these stages.

BARAC takes several parameters as input. The param-
eter N models the user’s attention span – the number of
items the user is likely to explore sequentially [15]. We used
N = 100 for all experiments in this section. maxBuckets,
used by the procedure BuildGrid (see Algorithm 2), spec-
ifies an upper bound on the number of intervals per dimen-
sion. We set it to 5. This value is chosen according to age,
the attribute with highest cardinality, and is set so that the
values falling into a particular age interval are perceived as
similar by a typical user. For most other dimensions, the
domain cardinality is lower than 5, and so the upper bound
is never reached, and the actual domain cardinality is used
instead. We study the scalability of BARAC as a func-
tion of the dominance and quality thresholds θdom and θQ.
There are no additional parameters in our formalism.

In the first experiment, we ran BARAC for 100 users
in the full space of 19 filtering attributes and 17 clustering
attributes. Values of the dominance and quality thresholds
were fixed at θdom = θQ = 0.5 for this experiment. Table 4
summarizes the median, average, minimum, and maximum
run times of BARAC, with all times listed in milliseconds.

According to Table 4, the median run time of BARAC
is 3.1 seconds, and the average run time is 5.5 seconds. The
run time of BARAC is dominated by BuildGrid and Join,
while the execution time of Merge is negligible even in the
worst case. While the maximum value for Join is quite
high, motivating future performance optimizations, the run
time reported in Table 4 may be unrealistically high. This
is because, as discussed in Section 4.1, the actual clustering
dimensionality is far lower than 17 for specific queries.

Figure 1 presents the run time of BARAC as the per-
centage of cases that completed under a certain time limit.
BARAC completes in under 5 seconds in most cases, and
takes longer than 10 seconds in only a handful of cases. In
the remainder of this section we analyze the factors that
contribute to the performance of BuildGrid and Join, and
explore scalability as we vary the size of the dataset and the
clustering dimensionality.

4.2.1 Varying Dataset Size
Figure 2 shows the performance of BuildGrid for 100

users as a function of dataset size – the number of items that
pass the filtering conditions of the target profile. The data
presented in this figure is the same as was used in Table 4
and Figure 1. Each data point corresponds to a particular
target profile, and thus to a particular dataset size. All time
measurements are in milliseconds. As before, the dominance
and quality thresholds θdom and θQ were both set to 0.5.

Figure 1: Performance of BARAC as percentage of
cases that completed under a certain time limit.

Figure 2: Runtime performance of the BuildGrid

stage as a function of dataset size.

During BuildGrid, the seeker’s filtering conditions are
applied to memory-resident data in a single linear scan of
the data, matches are identified, and a score is computed for
every match. Items are then sorted on score in decreasing
order. Finally, a data grid of matches is computed. We
determined experimentally that score computation is the
dominant factor in the execution time of BuildGrid. As
Figure 2 demonstrates, the execution time of this stage in-
creases linearly with the number of matches.

4.2.2 Varying Clustering Dimensionality
We now explore the impact of dimensionality on the per-

formance of Join. For this experiment, we fix θdom = θQ =
0.5 and vary the dimensionality of the clustering space from
3 to 17. The first 3 clustering attributes are selected, and
attributes are added one at a time in subsequent rounds.
Attributes are added in the same order for all users, but
this order was chosen randomly. We have attempted several
orders of adding attributes, and noticed no difference with
respect to the performance trends of Join. We thus report
our results with one particular order of adding attributes.
Note that the filtering criteria and the scoring function are
specified by the user’s target profile, and are applied as be-
fore.

Figure 3: Execution time of Join as a function of
clustering dimensionality.

Figure 3 presents the execution time of Join as a func-
tion of clustering dimensionality. Each point is an aver-
age of execution times for the fixed dimensionality across
all users. We observe that the average execution time of
Join increases as the dimensionality increases, but that it
increases more significantly in some cases than in others.
The general trend, with the exception of attributes 12, 13,
and 17, which we discuss below, seems to be that the exe-
cution time on Join increases approximately quadratically
with increasing dimensionality.

Adding a clustering dimension to the set of dimensions
for a particular user may or may not have an effect on the
run time of the algorithm. For example, if we are adding
the dimension drinking, but the user’s filtering conditions
are specifying a single value for this attribute, drinking =
no, the attribute will not be added to the data grid, and
so clustering will proceed as it did before the dimension was
added. Attributes 12, 13 and 17 happen to be marital status,
wants more kids, and drinking. These are all low-cardinality
attributes, which users commonly restrict to a single value
in their filtering conditions.

4.2.3 Varying Parameters of the Algorithm
Let us now see how the dominance and quality thresh-

olds impact runtime performance. The dominance thresh-
old θdom is used in Merge; the lower the threshold, the
fewer intervals will Merge produce, and pass along to Join.
Consequently, the run time of Join should increase as θdom

increases. Figure 4 demonstrates that this trend holds for
datasets of different dimensionality. Here, we fix θQ = 0.5,
and report the average run time of Join for each value of
θdom, and for most dimensionality settings.

Varying the quality threshold θQ has the opposite effect
on the run time of Join. This is because the higher the
threshold, the fewer clusters are generated by Join, and the
sooner it terminates. This intuition is supported by our
experimental findings in Figure 5. Here, we set θdom = 0.5
and present the average run time of Join for each value of
θQ, and for most dimensionality settings.

In fact, for higher values of the quality thresholds it is
often the case that no clusters at all exist of sufficiently high
quality. When this happens, Join terminates after its initial
round of processing, in which it attempts to join 1D intervals

into 2D clusters. In Figure 6 we plot the percentage of users
for whom clusters were identified, as a function of the quality
threshold θQ. We plot the same data here as in Figure 5,
with the same dominance threshold setting, θdom = 0.5.

5. EVALUATION OF EFFECTIVENESS
5.1 Qualitative Evaluation

We now give a qualitative intuition of the kinds of clusters
that are discovered by BARAC. We use the QtopN qual-
ity metric, and the attribute-rank ranking function for the
purpose of this evaluation. We focus our attention on the
following set of filtering conditions that are in-line with our
motivating example in Section 1: age ∈ [25,35], height ∈
[160cm, 175cm], education ≥ Bachelor’s, ethnicity = Cau-
casian, body type ∈ {slim, slender, average, athletic, fit}.

This set of filtering conditions returns over 30,000 matches.
We rank the matches on a combination of income and edu-
cation, both from higher to lower. There are about 100 top-
matches: women with post-graduate education who make
more than $150K. About two thirds of the top matches are
over 29 years old, and so younger matches would not be
easily accessible if results were returned as a ranked list.

Let us now cluster the results of BARAC, using the
QtopN quality metric. The following are some of the clusters
that are returned and that deal directly with the correla-
tion between income and age, and income and education:
age ∈ [25, 27] ∧ income ∈ [$35K, $75K], age ∈ [28, 33] ∧
income ∈ [$75K, $150K], age ∈ [28, 33] ∧ income ≥ $150K,
age ∈ [31, 35]∧income ≥ $75K, age ∈ [28, 33]∧education =
post graduate, age ∈ [31, 35] ∧ education = post graduate.

Note that two clusters are returned that contain different
sets of matches with age between 28 and 33. Note also that
the younger matches, aged between 25 and 27, are returned
as a cluster with relatively lower income. These matches
would not have been easily accessible in a single ranked list.
BARAC also returned several clusters that are not directly
related to the ranking conditions, but for which a correlation
was detected among attributes at top ranks. So, there was
a cluster of matches who are politically very conservative
or conservative and who attend religious services more than
once a week or weekly. Another cluster consisted of matches
who are politically middle of the road or liberal and who
attend religious services no more often than monthly.

5.2 User Study
We evaluated the effectiveness of BARAC on the Ya-

hoo! Personals dataset, by inviting a subset of registered
users to participate in the experiment. Our experiment
was implemented as part of Yahoo! Research Sandbox,
and is available to registered Yahoo! Personals users at
findlove.sandbox.yahoo.com. Like Yahoo! Personals, we
use location-based filtering (e.g., find matches who live within
250 miles of Austin, TX), and provide sub-second response
times for most searches.

User Study Design. Our user study ran for a period of
five weeks. 454 users participated in our study and executed
861 searches. Section 4.1 describes the dataset. In our study
we implemented the attribute-rank ranking function.

Our users are accustomed to ranked lists, which differ
from BARAC groups in two ways. First, the set of results
may be different. Secondly, results are presented in labeled
groups. Our user study was designed so as to isolate the

Figure 4: Execution time of Join as a function of θdom.

Figure 5: Average execution time of Join as a function of θQ.

Figure 7: User study design matrix.

effects of these two aspects. Figure 7 summarizes the design
of our study, in which we compare four treatments.

The top list treatment shows the top-100 matches in a
traditional ranked list. Figure 8 presents a screenshot of the
top list interface.

The same interface was used for the BARAC list treat-
ment. Figure 9 shows the BARAC groups interface. The
interface for the top groups treatments is similar, but with
group labels of the kind Top 1-10, Top 11-20, etc.

BARAC groups is our rank-aware clustering, see Figure 9
for a screenshot. Matches are clustered and 10 groups are
chosen and presented. The user may expand a group to see
its content.

BARAC will often generate more than 10 groups, which
requires group selection. We considered several group selec-
tion heuristics, and decided to choose groups so as to max-
imize diversity of group descriptions. Other heuristic, such
as maximizing total items score, or minimizing item overlap
between groups, are also possible, and we leave an in-depth

Figure 8: The top list and BARAC list interface.

Figure 6: Percentage of users for whom BARAC identified clusters, as a function of θQ.

Figure 9: The BARAC groups interface.

study of group selection to future work. Our group selec-
tion algorithm uses K-means to identify 10 clusters of groups
with similar descriptions. Similarity between groups ac-
counts for both attribute names and attribute value ranges.
Having identified 10 clusters, we select a representative from
each cluster that has the highest total score up to top-10.
The chosen representatives are presented to the user.

top groups isolates the effect of grouping, with data com-
ing from the ranked list. The user is presented with 10
groups of 10 results each. The first group correspond to the
first 10 matches, followed by a group containing the next
10, etc. The interface is similar to that for BARAC groups
(see Figure 9), with the exception that group labels are Top
1-10, Top 11-20, etc.

BARAC list presents a ranked list of matches produced
by BARAC groups. The list is generated by taking the top-
10 results from each group, then the next best results are
added in a round-robin fashion from each group, until a total
of 100 results are selected. The interface is the same as for
top list, see Figure 8.

Users are randomly assigned to one of the four treatments.
However, as we discussed in Section 4.1, rank-aware cluster-
ing is not always applicable. In cases where BARAC groups

treatment total searches prod. searches

top list 331 17%
top groups 304 14%
BARAC list 100 15%
BARAC groups 126 20%

Table 5: Productive searches by treatment.

treatment faves per search faves per prod. search

top list 0.84 5.05
top groups 0.87 7.33
BARAC list 0.74 4.93
BARAC groups 1.55 12.38

Table 6: Number of faves per search.

or BARAC list do not apply due to too-few results or scores
which are too uniform, the system defaults to top groups
and top list, respectively.

We evaluate the effectiveness of treatments using an intu-
itive rating mechanism. Users are asked to fave an individual
match or a group, by clicking on a star next to the match
or group (see Figures 8 and 9).

Results. The first metric we use to compare our treat-
ments is the percentage of productive searches – searches that
resulted in the user faving at least one match or group. Of
861 searches, 140, or 16%, were productive. Table 5 presents
break-down by treatment. We observe that BARAC groups
has the highest percentage of productive searches, followed
by top list. However, the difference between any two treat-
ments is not statistically significant.

We next consider the effect of content and of group de-
scriptions on the user experience. For top groups and BARAC
groups, we compare the percentage of searches where users
faved one or more groups, and the total number of faved
groups. Of 304 total top groups searches, 12 resulted in
faved groups. A total of 14 groups were faved in these 12
searches. The group Top 1-10 was faved 11 times, and Top
11-20 was faved 3 times. No other groups were faved, sug-
gesting that user preference is guided by global ranking.

For BARAC groups, of 126 searches, 11 resulted in faved
groups, and a total of 21 groups were faved. Groups with
diverse descriptions were faved, indicating that preference
is based on group descriptions and content rather than on
global ranking. BARAC groups outperforms top groups, and

the difference in the number of searches with faved groups
is statistically significant (Pearson’s p < 0.05).

Finally, let us compare the four treatments according to
a quality score that computes the average number of faves
per search. We denote by F the number of distinct results
that were faved by the user, either directly, or because the
match was in the top-10 of a faved group. When a group
is faved, all matches within the group are faved. Indeed,
with the exception of one case, when users faved an entire
group, they did not fave matches in that group, thereby
implying that all matches in the group are faved. Note that
top-10 lists of groups do not overlap in top groups, but may
overlap in BARAC groups. We focus on the top-10 results
for each group because this is the number of results that is
accessible in top groups. More results may be accessed in
BARAC groups, but we use 10 as the common denominator
to make the methods comparable.

Table 6 presents the ratio of F to the total number of
searches, and to the number of productive searches. We
observe that BARAC groups significantly outperforms other
methods, with an average of 1.55 faves per search, and 12.38
faves per productive search.

In summary, users are more engaged with BARAC groups,
where they explore and fave more matches.

5.3 Choosing a Clustering Quality Metric
We now demonstrate the qualitative difference between

two proposed quality measures, QtopN and QSCORE&RANK .
We use the profile of one particular user, whom we call
user1, as an example in this section. user1 is a representa-
tive user with about 60,000 profile matches.

As we discussed in Section 2, QtopN favors regions that
contain many items that are in the top-N lists of their sub-
regions, irrespective of the scores and ranks of those items in
top-N lists of the sub-regions. Conversely, QSCORE&RANK

assigns a higher quality score to a region in which top-N
lists of the sub-regions intersect at top ranks, particularly if
top-ranked items have significantly higher scores.

Ideally, a rank-aware clustering quality measure should be
rich enough to capture the distribution of scores imposed by
the scoring function. QtopN treats all items with N highest
scores equally, and is thus appropriate for scoring functions
where the best N items have higher scores than the rest
of the items, but where there is no significant variability in
scores among the top-N . The scoring function attribute-rank
is one such function.

Conversely, QSCORE&RANK is most meaningful if there is
a significant variability in scores among items in the top-N .
For example, for N = 100 it should hold that the first 10
items have much higher average scores than the following
10 items etc. The scoring function geo-rank is one such
function. We plot the distribution of the top-100 scores of
user1’s items for the two ranking function in Figure 10.

We now demonstrate that QSCORE&RANK is more ap-
propriate to use in conjunction with the geo-rank scoring
function for user1. We fix θdom = 0.5 and θQ = 0.7, and
compare the sets of clusters that were identified by QtopN

and QSCORE&RANK. QtopN identified 11 clusters, while
QSCORE&RANK identified 33 clusters. One of the clusters
returned by QtopN was not returned by QSCORE&RANK ,
we call it GtopN . QSCORE&RANK found 23 clusters that
were not found by QtopN . We refer to the highest- and
lowest-quality clusters from this set as G+

SCORE&RANK and

Figure 10: Top-100 scores for attribute-rank and geo-

rank for user1.

Figure 11: Top-100 scores for geo-rank for 3 users.

G−
SCORE&RANK. We summarize some properties of GtopN ,

G+
SCORE&RANK and G−

SCORE&RANK in Table 7, where we
compare the top-N list of each cluster to the ideal top-N
list in terms of ranks and scores. The value in the column
“score loss at 10” contains the difference between the total
scores of the top-10 items from the ideal (the union of top-N
items of the individual predicates forming each cluster), and
the top-10 items for the cluster.

GtopN is a two-dimensional cluster on attributes height and
income. The top-N list of GtopN contains items that were
in ranks 1 through 47 in the top-N list on height (median
rank 27), but in ranks 8 through 100 on income (median
rank 70). So, while the intersection happens at the top of
the top-N on height, it is closer to the bottom of the top-N
on income. This cluster seems less valuable than the other
two clusters in the table, based on both the lower score loss,
and the lower (worse) median rank.

QSCORE&RANK is sensitive to the distribution of scores.
The same scoring function, e.g. geo-rank, may not generate a
distribution of scores that is appropriate for QSCORE&RANK

for all users because their filtering conditions may differ. For
users who live in sparsely-populated areas this function may
produce very few high-scoring items. Consider the distribu-
tion of top 100 scores for three users in Figure 11. Users
user1 and user2 have similar distributions, while user3 only
has four high-scoring items in his top-100, followed by 96
items with similar low scores. user3 is not a good candidate

best worst median score
rank rank rank loss at 10

GtopN 8 100 70 1.77
G+

SCORE&RANK 1 98 40 5.61
G−

SCORE&RANK 1 99 40 5.42

Table 7: Characteristics of some groups that were
identified using QtopN and QSCORE&RANK.

for QSCORE&RANK, and a score-insensitive quality measure
like QtopN should be used instead.

6. RELATED WORK
Clustering Web Documents: The motivation for this

work is similar to ours, namely, that grouping results and
generating descriptions for these groups greatly improves the
user’s ability to understand vast datasets. Clustering of text
documents has been explored extensively in Information Re-
trieval [12, 8, 4]. Leuski [12] experimentally demonstrates
that presenting clusters of documents can be significantly
more effective than presenting a ranked list. He also shows
that clustering can be as effective as the interactive rele-
vance feedback approach based on query expansion. In [8]
the authors combine an offline (query-independent) docu-
ment clustering method and an online (query-dependent)
method to generate multi-document summaries of clustered
news articles. Bonchi et al [4] use search query logs to clus-
ter search results into coherent well-separated sets for pre-
sentation purposes. In contrast, our work focuses on the
interaction between structure and ranking in clustering.

Clustering Relational Data: Li et al [13] argue for
native support of clustering and ranking operators in rela-
tional databases. The authors demonstrate how clustering
can be implemented by means of a bitmap index over a sum-
mary grid. In their framework, the grouping (clustering)
and ordering attributes, as well as the number of clusters,
are specified by the user, and the focus of the work is on effi-
ciency. The focus of our work is, in addition to efficiency, on
automatically determining which clustering attributes are
meaningful given a scoring function.

Faceted Navigation: This methods facilitates informa-
tion discovery over large datasets. Faceted classification
defines items using mutually exclusive, collectively exhaus-
tive properties [21], and has been used in faceted naviga-
tion, where items are classified simultaneously along multi-
ple facets, and item counts are presented per facet. A strong
limitation is that a facet is a single attribute, and no at-
tribute correlations are captured. Several extensions of the
faceted data model were proposed. Ross and Janevski [18]
developed entity algebra, a faceted query language that sup-
ports operators such as selection and semi-join. Ben-Yitzhak
et al [3] extended faceted navigation to include quantitative
summary information other than item counts, e.g. average
price and rating, and developed methods for efficient com-
putation of such statistics over correlated facets.

Roy et al [19] proposed techniques which dynamically sug-
gest facets for database exploration, with the goal of min-
imizing navigation time. At every step, the system asks
the user a set of questions about his information need, and
dynamically fetches the next most promising set of facets.
In [9], the authors extend Solr, a popular search engine,

with dynamic faceted search for exploring data with both
textual content and structured attributes. Given a keyword
query, the system selects a small set of interesting attributes,
where interestingness measures the difference between ex-
pected and actual attribute values.

Our work is complementary to faceted navigation. While
we focus on attribute correlations, our analysis can be used
to propose to the user which, among many attributes, may
be more interesting to explore in a particular dataset.

The Many-Answers Problem: In [6] the authors state
the Many-Answers Problem and show how correlations among
attribute values in a structured datasets can be used to au-
tomatically derive a suitable ranking function. To this end,
the authors develop a comprehensive probabilistic informa-
tion retrieval ranking model and present efficient processing
techniques. A related Empty-Answers Problem is discussed
in [2]. Here, the authors present an adaptation of inverse
document frequency (IDF) that is used for automatic ranking
of results. The authors also propose to incorporate workload
information into the ranking.

Integrating Ranking with Clustering: Sun et al [20]
recently presented RankClus, a framework that integrates
ranking with clustering in a heterogeneous information net-
work such as DBLP. RankClus is based on a mixture model
that uses mutual reinforcement between clustering and rank-
ing. Our high-level motivation is also to treat clustering and
ranking as parts of a unified framework. However, our appli-
cation domain (structured datasets with user-defined rank-
ing functions) and technical approach are very different.

7. CONCLUSION
In this paper we introduced rank-aware clustering, a novel

result presentation method for large structured datasets.
We developed rank-aware clustering quality measures, and
proposed BARAC: a Bottom-up Algorithm for Rank-Aware
Clustering, an Apriori-style algorithm geared specifically at
such quality measures. We presented an extensive exper-
imental evaluation of the scalability of our approach, and
demonstrated its effectiveness with a large-scale user study.

8. ACKNOWLEDGMENTS
We would like to thank Duncan Watts and Jake Hoff-

man for valuable discussions during various stages of this
project. We also thank Janet George, Tejaswi Kasturi, Tom
Gulik, Prasenjit Sarkar, George Levchenko, Jacob Leather-
man, and Tom Maher for their help with the implementation
and release of the Yahoo! Find Love prototype. Finally, we
thank Mor Naaman for his advise on user study design.

9. REFERENCES
[1] R. Agrawal et al. Automatic subspace clustering of

high dimensional data for data mining applications. In
SIGMOD, 1998.

[2] S. Agrawal et al. Automated ranking of database
query results. In CIDR, 2003.

[3] O. Ben-Yitzhak et al. Beyond basic faceted search. In
WSDM, 2008.

[4] F. Bonchi et al. Topical query decomposition. In
CIKM, 2008.

[5] J.-W. Chang and D.-S. Jin. A new cell-based
clustering method for large, high-dimensional data in
data mining applications. In SAC, 2002.

[6] S. Chaudhuri et al. Probabilistic ranking of database
query resuls. In VLDB, 2004.

[7] C. H. Cheng et al. Entropy-based subspace clustering
for mining numerical data. In KDD, 1999.

[8] W. Dakka and L. Gravano. Efficient
summarization-aware search for online news articles.
In JCDL, 2007.

[9] D. Debabrata et al. Dynamic faceted search for
discovery-driven analysis. In CIKM, 2008.

[10] K. Järvelin and K. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM TOIS, 20(4), 2002.

[11] H.-P. Kriegel et al. Detecting clusters in
moderate-to-high dimensional data: Subspace
clustering, pattern-based clustering, and correlation
clustering. In VLDB, 2008.

[12] A. Leuski. Evaluating document clustering for
interactive information retrieval. In CIKM, 2001.

[13] C. Li et al. Supporting ranking and clustering as
generalized order-by and group-by. In SIGMOD, 2007.

[14] B. Liu et al. Clustering through decision tree
construction. In CIKM, 2000.

[15] U. Manber et al. Experience with personalization of
Yahoo! Commun. ACM, 43(8), 2000.

[16] H. S. Nagesh. High performance subspace clustering
for massive data sets. In Master’s thesis. 1999.

[17] L. Parsons et al. Subspace clustering for high
dimensional data: a review. SIGKDD Explorations,
6(1), 2004.

[18] K. A. Ross and A. Janevski. Querying faceted
databases. In SWDB, 2004.

[19] S. B. Roy et al. Minimum effort driven dynamic
faceted search in structured databases. In CIKM,
2008.

[20] Y. Sun et al. RankClus: integrating clustering with
ranking for heterogeneous information network
analysis. In EDBT, 2009.

[21] B. Wynar. Introduction to Cataloging and
Classification. Libraries Unlimited, 1992.

