
Apiary: Easy-to-Use Desktop Application Fault Containment on Commodity
Operating Systems

Shaya Potter Jason Nieh
Computer Science Department

Columbia University
{spotter, nieh}@cs.columbia.edu

Columbia University Technical Report CUCS-034-09, August 2009

Abstract
Desktop computers are often compromised by the inter-
action of untrusted data and buggy software. To address
this problem, we present Apiary, a system that provides
transparent application fault containment while retaining
the ease of use of a traditional integrated desktop envi-
ronment. Apiary accomplishes this with three key mech-
anisms. It isolates applications in containers that inte-
grate in a controlled manner at the display and file sys-
tem. It introduces ephemeral containers that are quickly
instantiated for single application execution and then re-
moved, to prevent any exploit that occurs from persisting
and to protect user privacy. It introduces the virtual lay-
ered file system to make instantiating containers fast and
space efficient, and to make managing many containers
no more complex than having a single traditional desk-
top. We have implemented Apiary on Linux without any
application or operating system kernel changes. Our re-
sults from running real applications, known exploits, and
a 24-person user study show that Apiary has modest per-
formance overhead, is effective in limiting the damage
from real vulnerabilities to enable quick recovery, and is
as easy to use as a traditional desktop while improving
desktop computer security and privacy.

1 Introduction

In today’s world of highly connected computers, desk-
top security and privacy are major issues. Desktop users
interact constantly with untrusted data they receive from
the Internet. Users visit new web sites, download files,
and email with strangers, all in the course of a regular
day. All these activities involve making use of informa-
tion that the user has no way to verify for safety. Un-
trusted data can be constructed in a malicious way to take
advantage of bugs and vulnerabilities in application soft-
ware to enable an attacker to subvert and take control of
users’ desktops. For example, a major flaw was recently
discovered in Adobe’s Acrobat products that enables an

attacker to take control of a desktop when a maliciously
constructed PDF file is viewed [2]. Adobe’s estimate to
release a fix is nearly a month after the exploit was re-
leased into the wild. Even in the absence of bugs, un-
trusted data can be constructed to invade users’ privacy.
For example, cookies are often stored when visiting web
sites that allow advertisers to track user behavior across
multiple web sites while web surfing.

The prevalence of untrusted data and buggy software
has made application fault containment increasingly im-
portant. To address this important problem, many ap-
proaches have been proposed to isolate applications from
one another using mechanisms such as process contain-
ers [26, 22] or virtual machines [32]. Faults are confined
so that if an application is compromised, only that appli-
cation and the data it can access become available to an
attacker, not the entire system. By having one application
per container, each individual container becomes a sim-
pler system, making it easier to determine if unwanted
processes are running within it.

However, existing approaches to isolating applications
suffer from an unresolved tension between ease of use
and degree of fault containment. On the one hand, there
are approaches [19, 13] that provide a more integrated
desktop feel but only provide partial isolation of appli-
cations. These approaches are relatively easy to use, but
do not prevent vulnerable applications from compromis-
ing the system itself. On the other hand, there are ap-
proaches [24, 29] that have a less integrated desktop feel
but full isolation of applications typically by using sepa-
rate virtual machines. These approaches effectively limit
the impact of compromised applications, but are harder
to use since users are forced to deal with and manage
multiple separate desktops. Virtual machine (VM) ap-
proaches also require the complexity of managing mul-
tiple machine instances, incur high overhead from sup-
porting multiple operating system instances, and are too
expensive to support more than a couple fault contain-
ment units for a user’s desktop.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To address these problems, we introduce Apiary, a
system that provides strong isolation for robust appli-
cation fault containment while retaining the integrated
look, feel, and ease of use of a traditional desktop en-
vironment. Apiary accomplishes this by combining three
key mechanisms. First, it decomposes a desktop’s appli-
cations into isolated containers. Each application con-
tainer is an independent software appliance that provides
all the system services the application needs to execute.
To retain traditional desktop semantics, Apiary integrates
these containers in a controlled manner at the display and
file system. Apiary’s containerized desktop prevents an
application exploit from compromising the user’s entire
desktop. For example, by having separate web browser
and personal finance containers, any compromise from
web browsing would not be able to access or corrupt per-
sonal financial information. At the same time, Apiary
makes the web browser and personal finance containers
look and feel like part of the same integrated desktop,
with all normal windowing functions and cut-and-paste
operations operating seamlessly across containers.

Second, it introduces the concept of ephemeral con-
tainers. An ephemeral container is an execution environ-
ment that has no access to user data and is instantiated
from a clean state for only a single application execution.
Once the application is finished execution, the container
is disposed of and never used again. Apiary uses eph-
emeral containers as a fundamental building block that
enables the integrated desktop look and feel while pre-
venting cross-contamination across containers. For ex-
ample, users often expect to view PDF documents from
the web, but should have separate web browser and PDF
viewer containers for fault containment. If a user would
always view the PDF documents in the same PDF viewer
container, a single malicious document could exploit the
container and have access to future documents the user
desires to remain secret, such as bank and billing state-
ments. Instead, Apiary enables the web browser to auto-
matically instantiate an ephemeral PDF viewer contain-
ers to view individual PDF documents. Even if the PDF
file is malicious, it will have no effect on the viewing of
other PDF files as the container instance it exploited will
never be used again.

As illustrated by this PDF example, ephemeral con-
tainers provide three benefits. First, ephemeral con-
tainers prevent compromises even when used with un-
trusted data that trigger application exploits because ex-
ploits cannot persist. Second, ephemeral containers pro-
tect users from compromised applications. Even when
an application has been compromised due to usage with
untrusted data, a new ephemeral container running that
application in parallel will remain uncompromised be-
cause it is guaranteed to start from a clean state. Third,
ephemeral containers protect user privacy when using the

Internet. For example, while cookies must be accepted to
use many web sites, web browsers in separate ephemeral
containers can be used for different web sites to prevent
cookies from tracking user behavior across web sites.

Apiary third mechanism is the Virtual Layered File
System (VLFS). Apiary introduces the VLFS to effi-
ciently store and instantiate containers. Each software
package or application is stored as a read-only software
file system layer. A VLFS dynamically composes to-
gether a private ready-write layer with a set of software
layers into single file system view. Each container has
its own VLFS. Since VLFS composition requires no data
copying, instantiating containers is fast and space effi-
cient. Since read-only software layers are shared across
containers, multiple containers are centrally managed
and upgraded as a single traditional desktop. By mak-
ing containers so fast to instantiate, space efficient, and
easy to manage, Apiary enables containers to be used in
new ways that make possible an easy-to-use desktop with
strong isolation of applications.

We have implemented an Apiary Linux prototype
without any application or operating system kernel
changes. To evaluate its effectiveness, we have con-
ducted various experiments with real applications, real
vulnerabilities, and real users in a user study. Our re-
sults show that Apiary can instantiate application con-
tainers in under a second, can upgrade a set of containers
in just a few seconds, has scalable storage requirements,
and modest file system performance overhead. Our re-
sults show that Apiary is effective at containing real ex-
ploits and preventing them from compromising a user’s
entire desktop. It quickly returns the desktop to a clean
uncompromised state in cases where the exploit forces a
complete reinstall when it occurs on a traditional desk-
top system. Finally, our results from a blind user study
show that users find Apiary as easy to use as a traditional
desktop, and given its improved security and privacy fea-
tures, would prefer using it over a traditional desktop for
everyday use.

2 Apiary Usage Model

Figure 1 shows the Apiary desktop. It looks like and is
used in the same manner as a regular desktop. Users
launch applications from a menu or from within each
other, switch among all launched applications using a
taskbar, interact with their running applications using
their keyboard and mouse, and have a single display
with integrated window system and clipboard function-
ality that contains all their running applications.

Although Apiary provides a similar look and feel to
a regular desktop, it provides fault containment by iso-
lating applications into separate containers. Containers
enforce namespace isolation so that applications running

2

Figure 1: Apiary screenshot showing a user’s desktop session.
At the the topmost left, (1) An application menu that provides
access to all the applications available to the desktop. Just be-
low it, the window list (2) allows users to easily switch among
running applications and the composited display view (3) of all
the visible running applications.

inside cannot get out, and applications running outside
cannot get in. Apiary isolates individual applications, not
individual programs. An Application in Apiary can be
viewed as a software appliance that is made up of mul-
tiple programs that are used together in a single envi-
ronment to accomplish a specific task. For instance, a
user’s web browser and word processor would be con-
sidered separate applications and isolated from one an-
other. This software appliance model means that users
can install separate applications that contain many or all
of the same programs but are used for different purposes
and isolated from one another. For example, a user could
have a banking application that contains a web browser
for accessing a bank’s website, and a web surfing appli-
cation that also contains a web browser but is for general
web browsing. While both appliances would make use
of the same web browser program, they would be listed
as different applications in the user’s application menu.

Apiary provides two types of application containers,
ephemeral and persistent. An ephemeral container is cre-
ated fresh for each application execution. A persistent
container maintains its state across application execu-
tions, like a traditional desktop. Apiary provides users
with an option when launching an application from the
menu to select whether it should be launched within an
ephemeral or persistent container. Windows belonging
to ephemeral applications are, by default, given distinct
border colors so that users can quickly identify based on
appearance in which mode an application is executing.

Ephemeral containers provide a powerful mechanism
for providing desktop security and protecting user pri-
vacy. Users will typically run multiple ephemeral con-

tainers at the same time, and in some cases, multiple eph-
emeral containers for the same application at the same
time. They provide important benefits for a wide range
of usage scenarios.

Ephemeral containers prevent compromises when
used with untrusted data that trigger application exploits
because exploits cannot persist. For example, a malicious
PDF document that exploits an ephemeral PDF viewer
will have no persistent effect on the system as the exploit
is isolated in the container, and the exploit will disappear
when the container finishes execution.

Ephemeral containers provide an easy-to-use mecha-
nism for protecting user privacy when using the Internet.
For example, many web sites require that web browsers
store cookies for them to function correctly. Many cook-
ies are delivered by advertisers or other large companies
such as Google that provide content across many web
sites, allowing such organizations to track user behavior
and compromise user privacy. Although web browsers
provide mechanisms such as selective cookie rejection,
this is typically too burdensome to use as the user must
repeatedly respond to multiple dialog boxes concern-
ing cookies for each web page visited. Similarly, web
browsers that provide a privacy mode, must have applica-
tion specific modifications made to them to provide this
functionality. Apiary makes it easy to simply launch mul-
tiple ephemeral web browser containers simultaneously,
each using separate cookies, making it much harder to
track users across web sites.

Ephemeral containers provide a mechanism for pro-
tecting users from compromises that may have already
occurred on a user’s desktop. For example, if a web
browser has been compromised due to its interaction with
untrusted data during usage, parallel and future uses of
the web browser could allow an attacker to steal sensitive
information when the user accesses important web sites
such as those for online banking. Ephemeral contain-
ers are guaranteed to launch from clean slate and not be
affected by previous application usage. By using a sep-
arate ephemeral web browser container for accessing an
online banking site, Apiary ensures that even an already
exploited web browser installation does not compromise
user privacy since the ephemeral web browser container
will not have been exploited and will be isolated from
other exploits.

Ephemeral containers provide a mechanism for allow-
ing applications to launch other applications safely. For
example, users often receive email attachments such as
PDF documents that they would like to view. To avoid
compromising an email container, Apiary creates a sep-
arate ephemeral PDF viewer container to view the PDF
when the user selects it for viewing. Even if the PDF file
is malicious, it will have no effect on the user’s email
as the PDF is isolated in a separate container. Simi-

3

larly, ephemeral Word or Excel containers will be cre-
ated for viewing Word or Excel email attachments to
prevent malicious Word or Excel files from compromis-
ing the system. In general, Apiary allows applications to
cause other applications to be safely launched in ephem-
eral containers by default to support usage scenarios that
involve multiple applications.

Persistent containers are a necessary mechanism for
supporting applications that maintain persistent state
across executions while preventing any compromises in
such applications from affecting the entire system. In
contrast to having many ephemeral containers on a desk-
top, we expect that users will typically run one per-
sistent container for each application to avoid the need
to track which persistent application container contains
which pieces of persistent information. Some applica-
tions will be run only in persistent containers while other
applications may be run in both persistent and ephemeral
containers. For example, an email application will typi-
cally be used in a persistent container to maintain email
state across application executions. On the other hand,
a word processing application will be used in a persis-
tent container to access a user’s local trusted documents,
but may also be used in an ephemeral container to view
documents downloaded from the Web. Similarly, a web
browser application may be used in a persistent container
to remember browsing history, plugins, and bookmarks,
but may also be used in an ephemeral container when ac-
cessing untrusted web sites. Note that files stored in each
container are by default private and not accessible outside
their respective container.

Persistent and ephemeral containers work together to
provide a security system that is fundamentally differ-
ent that common security schemes that attempt to lock
down applications within a restricted privilege environ-
ment. First, in Apiary each application container is a
fully independent entity that is fully isolated from ev-
ery other application container within the Apiary desk-
top. As it is the only application that can access these
files, one does not have to apply any security analysis or
complex isolation rules to determine which files a spe-
cific application should be able to access. Second, in
most other schemes, an application that gets exploited
will remain exploited, even if the exploited application is
restricted from accessing the data of other applications.
By leveraging ephemeral containers, this is no longer a
danger due to an exploits inability to persist between ex-
ecution instances.

Apiary enables users to manage the files in all of their
containers, by providing every desktop with a special per-
sistent container that provides a file explorer with access
to all of a user’s containers. This container is special in
that it can access all of the file systems in a read-write
manner, enabling a user to move files between contain-

ers. This is useful if a user decides they want to preserve
a file from an ephemeral container, or move a file from
one persistent container to another so that it can be used
by it. For instance, to email a set of files. This container
cannot be used in an ephemeral manner, and its function-
ality cannot be invoked by any other application on the
system. This prevents an exploited container from pro-
gramatically propagating files it has corrupted into other
containers.

3 Architecture

To support its containerized application model, Apiary
must enable four abilities. First, Apiary must be able to
run applications within secure containers to isolate ap-
plications from each other. Second, to provide a normal
desktop display, Apiary must provide a single integrated
display view that contains all of one’s running applica-
tions. Third, Apiary must provide the ability for individ-
ual containers to be instantiated quickly and efficiently,
as well as to manage them to enable the efficient cre-
ation of ephemeral containers. Finally, for the containers
to provide a cohesive desktop experience, Apiary must
provide the ability for applications within different con-
tainers to interact in a controlled manner

Apiary provides these abilities by using a virtualiza-
tion architecture that consists of three main components:
an operating system container that provides a virtual ex-
ecution environment, a virtual display system that pro-
vides a virtual display server and viewer, and the Vir-
tual Layered File System. Additionally, Apiary provides
a desktop daemon that runs on the host, outside of any
container. This daemon instantiates containers, manages
their life times and ensures that they are correctly inte-
grated together.

3.1 Process Container
Apiary’s containers are essential to supporting Apiary’s
ability to isolate applications from one another. By pro-
viding isolated containers, individual applications can
run in parallel within separate containers, and have no
conception that there are other applications running. This
enforces fault containment in the presence of an exploited
application, as the exploited process will only have ac-
cess to whatever files are available within the container
itself.

Apiary’s containers leverage modern operating sys-
tem abilities, such as provided by Solaris’s zones [22],
FreeBSD’s jails [14] and Linux’s containers [17], to cre-
ate isolated and independent execution environment con-
tainers. Apiary provides each container with its own pri-
vate kernel namespace, FS and display server to provide
total isolation at the process, file system and display lev-

4

els. Programs within separate containers can only inter-
act with each other using normal network communica-
tion mechanisms. In addition, each container is provided
with an application control daemon that enables the vir-
tual display viewer to query the container for its contents
and interact with it.

3.2 Display

Apiary’s virtual display system is vital to ensuring the
complete isolation of processes, as well as enabling the
creation of a cohesive desktop experience for two rea-
sons. First, if all the containers directly shared a single
display, malicious and exploited applications can lever-
age built in mechanisms in commodity display architec-
tures [9] to insert events and messages into other appli-
cations sharing the display. This enables the malicious
application to remotely control the other applications, ef-
fectively exploiting them as well. Existing commodity
security systems do not attempt to isolate applications at
the display level, providing an easy mechanism for at-
tackers to further exploit the desktop once a single ap-
plication is compromised. Second, while providing each
application with its own display will isolate the appli-
cations from each other, it does not provide the single
coherent display users expect from their desktop. Pro-
viding this cohesive display has two elements. First, the
actual display views have to be integrated into a single
view. Second, Apiary has to provide the normal desktop
usage metaphors that users expect. This includes a single
menu structure for launching applications and an inte-
grated task switcher that lets one switch focus between
every running application.

Apiary’s virtual display system solves both of these
issues. First, Apiary’s virtual display provides each con-
tainer with its own virtual display similar to existing sys-
tems [8, 30, 3, 25]. This virtual display operates by
decoupling the display state from the underlying hard-
ware and enabling the display output to be redirected
anywhere. Apiary’s virtual display system operates as
a client-server architecture and transparently provides a
virtual display by leveraging the standard video driver in-
terface, a well-defined, low-level, device-dependent layer
that exposes the video hardware to the display system.
Instead of providing a real driver for a particular display
hardware, Apiary introduces a virtual display driver that
intercepts drawing commands and redirects them to the
Apiary client for display. All persistent display state is
maintained by the display server within each indepen-
dent container; the client is simple and stateless. This
provides complete isolation at the display level, prevent-
ing an application within one container from leveraging
the display to exploit applications in separate containers.

Second, Apiary enables these independent displays to

be integrated into a single display view. While a regular
remote framework provides all the information needed to
display each desktop, they expect that they will be the
only display in use, and therefore expect to be able to
draw the entire display area. In Apiary, where one wants
to use multiple containers, this expectation does not hold.
Therefore, to enable multiple displays to be integrated
into a single view, Apiary requires each display to pro-
vide an alpha channel color for its desktop background,
so that the Apiary viewer can do Porter-Duff composit-
ing [21] of the displays using the over compositing op-
eration. This operation views object composition as a
series of layers in a stack where objects higher in the
stack will obscure elements of objects lower in the stack.
Apiary uses this operation to stack the container displays
and display all the windows associated with each dis-
play view. Apiary stacks the display views based on the
currently used application and reorders the display view
stack as one switches between applications. As each dis-
play provides the same resolution, and the displays are
completely overlayed, this enables windows to appear
anywhere in the composited desktop display.

As each container provides its own set of applications,
Apiary must provide an integrated menu system that lists
all the applications users are able to launch. Apiary
achieves this by leveraging the application control dae-
mon running within each container. This daemon uses
the built in menu specification of the system to enumerate
all the available applications within the container, much
like a regular menu application in a traditional desktop.
However, instead of providing the menu in the screen,
it transmits the collected data back to the viewer, which
integrates this information into its own menu, associat-
ing the menu entry with the container it came from. The
viewer is able to communicate with every container and
provide a single complete application menu. When a user
selects a program from the viewer’s menu, the viewer in-
structs the appropriate daemon to execute the program
within its container. This causes it to be displayed on the
correct container’s display, while the Apiary viewer re-
orders the display stack, bringing that container’s display
to the top.

Similarly, to enable the effective management of run-
ning applications, Apiary provides a single taskbar that
enables one to switch between all applications running
within one’s integrated desktop. Apiary leverages the
system’s ability to enumerate windows and switch ap-
plication to have the daemon enumerate all the windows
provided by its container and transmit this information
to the viewer. The viewer is then able to integrate this
information into a single taskbar that provides buttons
that correspond to application windows. When the user
uses the taskbar to switch which window is focused, the
viewer communicates with the daemon and instructs it to

5

bring the correct window the foreground.
It should be noted that by stacking the independent dis-

plays, the windowing semantic is slightly changed from
a traditional desktop. In a traditional desktop one can
have multiple windows and when one raises a window to
the foreground, only that single window will be raised.
Similarly, in Apiary, each display supports the ability to
display multiple windows that can be raised to the fore-
ground. However, in Apiary, raising a window also in-
volves raising its entire display layer to the foreground.
Consequently, all the other windows provided by its dis-
play will be raised above the windows provided by other
displays as well.

3.3 Virtual Layered File System

Apiary requires containers to be efficient in storage space
and in instantiating time. Containers have to be effi-
cient in storage space to enable regular desktops to sup-
port the large number of application containers that will
be used within the Apiary desktop. Containers have to
be efficient in being instantiated to provide fast interac-
tive response time, especially for launching ephemeral
containers. Both of these would be difficult to meet us-
ing traditional independent file systems (FSs) for each
container. Each container’s FS would be using its own
storage space, which would be inefficient with a large
number of containers, as there will be many duplicated
files. More importantly, this would make a desktop much
harder to maintain, as each independent FS will have
to be updated individually. Similarly, instantiating the
container involves making a copy of the FS, which can
include many megabytes or gigabytes of storage space.
This time to copy prevents the container from being in-
stantiated in a timely manner. While any FS that supports
a branching semantic [27, 4] can be used to quickly pro-
vision a new container FS from a template image, each
template image will still be independent and therefore
still be inefficient in space and in regards to upgrades and
maintenance.

Apiary introduces the concept of a virtual layered file-
system to meet these requirements. The VLFS enables
FSs to be created by composing layers together into a sin-
gle FS namespace view. VLFSs are built by combining a
set of shared software layers together in a read-only man-
ner with a per container private read-write layer. Mul-
tiple VLFSs providing multiple applications are as effi-
cient as a single regular FS as all files that are common
between them will be stored once in the set of shared lay-
ers. Therefore, Apiary is able to store the FSs needed by
its containers in an efficient manner. This also enables
Apiary to manage its containers easily, as all one has to
do is replace the single layer that contains the files that
have to be updated to update each VLFS that uses it. The

VLFS also enables Apiary to efficiently instantiate each
container’s FS. As no data has to be copied into place,
as each of the software layers is shared in a read-only
manner, instantiating a FS is a nearly instantaneous, and
occurs transparently to the end-user.

Layers are the primary building block of a VLFS. Lay-
ers are composed of three elements: the metadata files
that describe the layers, configuration scripts that enable
the layer to be added and removed from the VLFS cor-
rectly, and the primary component, its FS namespace.
The layer’s FS namespace is a self-contained set of files
providing a specific set of functionality. The files are
the individual items in the layer that are composed into a
larger VLFS. There are no restrictions on the type of files.
They can be regular files, symbolic links, hard links or
device nodes. The layer’s FS namespace can be viewed
as a directory stored on the shared FS that contains the
same file and directory structure that would be created
if the individual items were installed into a traditional
FS. On a traditional UNIX system, the directory structure
would typically contain directories such as /usr, /bin
and /etc. Symbolic links work as expected between
layers since they work on path names, but a limitation is
that hard links cannot exist between layers.

Layers are stored on disk, as a directory tree that is
named by the layer’s name and its version. For in-
stance, version 3.0.6 of the Firefox web browser, with
a layer version of 1 would be stored under the directory
firefox 3.0.6-1. Within this directory, VLFSs de-
fines a filesystem directory that stores this layer’s
FS namespace, as well as a metadata file and scripts di-
rectory that stores those components. Each machine that
hosts Apiary, stores its layers within a repository direc-
tory on its local FS. This repository’s contents are just the
individual layers that make up each container’s VLFS.

To support the VLFS, Apiary must solve a number of
FS related problems. First, to enable quick instantiation,
the VLFS must support the ability to quickly compose
numerous distinct FS layers into a single static view. Sec-
ond, as users expect to be able to interact with the VLFS
as a normal FS, such as by creating and modifying files,
Apiary has to enable an instantiated VLFS to be fully
modifiable, while enforcing the read-only semantics for
the software layers. Finally, Apiary has to support the
ability to dynamically add and remove layers without
taking the FS off-line. This is equivalent to installing,
removing or upgrading a software package that can be
done while a monolithic FS is online.

To solve these problems, Apiary leverages and ex-
pands upon unioning file systems [33]. Unioning file
systems enable Apiary to solve the first problem as they
allow the system to join multiple distinct FS names-
paces into a single namespace view. These directories
are unioned by layering directories on top of one another,

6

joining all the files provide by all the layers into a single
FS namespace view. As unioning requires no copying, it
occurs quickly, enabling Apiary to be efficient in terms
of provisioning.

To solve the second problem, the union semantic is ex-
tended [33] to enable the assignment of properties to the
layers, defining some layers to be read only, while oth-
ers are read-write. This results in a model that borrows
from copy-on-write (COW) FSs, where modifying a file
on a lower read-only layer will cause it to be copied to
the topmost writable layer in a COW fashion. The VLFS
leverages this property to enable multiple VLFSs to share
a set of software layers in a read-only manner, while pro-
viding each instantiated VLFS with its own read-write
private layer to store FS modifications. This enables Api-
ary to be efficient in terms of storage.

This layering model also provides a semantic that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels. To
provide a consistent semantic, if a file is deleted, a white-
out mark is also created to ensure that files existing on a
lower layer are not revealed. The white-out mechanism
enables obscuring files on the read only lower layers, by
just creating the white-out file on the topmost read-write
private layer.

However, this creates a problem where a file deleted
from a read-only share will never be able to reappear.
Unlike a traditional FS, where a deleted system file can
be recovered by simply reinstalling the package that pro-
vided that file, in a VLFS, white-outs that exist in the
private layer will persist and continue to obscure the file
even if the layer is replaced. The VLFS solves this prob-
lem by providing a private writable layer associated with
each shared read-only layer in the VLFS for the storage
of white-outs. Instead of writing a white-out file to the
top-most layer, the white-out will be stored in the associ-
ated white-out layer. When a layer from which a file was
deleted is replaced, its associated white-out layer will be
replaced with an empty white-out layer as well, enabling
it to be revealed.

Similarly, the VLFS has to handle the case where a
file belonging to a shared read-only layer was modified
and therefore copied up to the VLFS’s private read-write
layer. Apiary provides a revert command that enables the
owner of a file that has been modified to revert the file’s
state to its original pristine state. While a regular VLFS
unlink operation would remove the modified file from the
private layer and create a white-out mark to obscure the
original file, revert only removes the copy in the private
layer thereby revealing the original copy below it.

Finally, VLFSs also have to support being managed
while they are in use. In a traditional FS, an adminis-
trator can remove a package containing files in use, as
deleting a file does not remove its contents from the FS

until the file is no longer in use. However, if a layer is
removed from a union, the data is effectively removed as
well as unions only operate on FS namespaces and not on
the date the underlying files contain. If an administrator
wanted to modify the VLFS by removing a layer due to
deletion or upgrade maintenance, one would be forced to
perform the maintenance off-line due to not being able to
remove layers that are in use.

The VLFS solves this problem by emulating what the
unlink operation does on a single files and applies it to
layer removal. Unlink operates in two steps. It first
deletes the file name from the FS’s namespace, while
only freeing up the space taken up by the file’s contents
when its no longer in use. Traditional package manage-
ment systems rely on this semantic to enable them to
upgrade packages, even if files are in use, by unlinking
and then recreating them instead of directly overwriting
the files. Apiary applies this same semantic to layers.
When a layer is removed from a VLFS, Apiary marks
the layer as unlinked, removing it from the FS names-
pace. While this layer is no longer part of the FS names-
pace and therefore cannot be used by any operations that
work on the FS namespace, such as open, it remains part
of the VLFS enabling data operations, such as read and
write, to continue to work correctly for files that were
previously opened.

3.4 Inter-Application Integration

Apiary provides independent containers for fault contain-
ment, but must also ensure that they do not limit the abil-
ity of users to effectively use their desktops. For instance,
if Firefox is totally isolated from the PDF viewer, how
would users view a PDF file? While the PDF viewer can
be included within the Firefox container, this breaks the
isolation that should exist between Firefox and a PDF
viewer that is viewing untrusted content. Similarly, users
can copy the file from the Firefox container to the PDF
viewer container to view it. However, this breaks the in-
tegrated feel users expect from their desktop as the appli-
cation can no longer automatically launch.

Apiary solves this problem by enabling applications
in one container to cause the instantiation of ephem-
eral containers and to cause the execution of a program
within that new ephemeral container. Every container
that is used within Apiary, is preconfigured with a list
of programs that it enables other applications to use in
an ephemeral manner. Apiary refers to these as global
programs. For instance, a Firefox container can spec-
ify /usr/bin/firefox and a Xpdf container can
specify /usr/bin/xpdf as global programs. Program
paths that are marked global exist in all containers. Api-
ary accomplishes this by populating a single global layer,
shared by all the container’s VLFSs, with a wrapper pro-

7

gram for each global program. This wrapper program is
used to instantiate a new ephemeral container and exe-
cute the requested process within it. Apiary only allows
for the execution in a new ephemeral container and not
in a preexisting persistent or ephemeral container, as that
would break Apiary isolation constraints, and cannot be
done in a safe manner to the preexisting container.

When executed, the wrapper program determines how
it was executed and what options were passed to it. It
connects over the network to the Apiary desktop dae-
mon on the same host and passes this information to it.
The daemon maintains a mapping of global programs to
containers and determines which container is being re-
quested to be instantiated in an ephemeral manner. This
ensures that only the specified global programs’ contain-
ers will be instantiated. preventing an attacker from in-
stantiating and executing arbitrary programs. Apiary is
then able to instantiate the correct fresh ephemeral con-
tainer, along with all the required desktop services, in-
cluding a display server. The display server is then au-
tomatically connected to the viewer. Finally, the daemon
executes the program as it was initially called in the new
ephemeral container.

To ensure that ephemeral containers are disposed of
when they are no longer needed, Apiary desktop daemon
monitors the process executed within the container, when
it terminates, Apiary terminates the container. Similarly,
as the Apiary viewer knows which containers are provid-
ing windows to it, if it determines that no more windows
are being provided by the container, it will instruct the
desktop daemon to terminate the container. This is to
ensure that an exploited process does not stick around
running in the background.

However, just running a new program in a fresh con-
tainer is not enough to integrate applications correctly.
When Firefox downloads a PDF and executes a PDF
viewer, it has to enable the PDF viewer to view the file.
As the Firefox and ephemeral PDF viewer containers
do not share the same FS, this will fail. To enable this
functionality, Apiary enables small private read-only file
shares between a parent container and the child ephem-
eral container it instantiated. As well behaved applica-
tions, such as Firefox, Thunderbird and OpenOffice only
use the system’s temp directory to pass files between
them, Apiary restricts this automatic file sharing ability
to files located under /tmp. To ensure that there is no
namespace conflicts between containers, Apiary provides
containers with their own private directory under /tmp
to use to store temporary files, and they are preconfigured
to use that directory as their temp directory.

However, providing a fully shared temp directory will
allow an exploited container to access private files that
are placed there when passed to an ephemeral container.
For instance, if a user downloads a malicious PDF and

a bank statement in close succession, they will both ex-
ist in the temp directory at the same time. To prevent
this, Apiary provides a special FS that enhances the read-
only shares with an access control list (ACL) that deter-
mines which containers can access which files. By de-
fault, these directories will appear empty of files to the
rest of the containers, as they do not have access to any
of the files. This prevents an exploited container from ac-
cessing data that was not explicitly given to it. A file will
only be visible within the directories if the Apiary desk-
top daemon instructs the FS to reveal that file by adding
the container to the file’s ACL. This occurs when a global
program’s wrapper is executed and the daemon deter-
mines that a file was passed to it as an option. The dae-
mon then adds the ephemeral container to the file’s ACL.
As the directory structure is consistent between contain-
ers, simply executing the requested program in the new
ephemeral container with the same options works with-
out any modifications to the program.

Apiary enables its file explorer container discussed in
Section 2 in a similar way. The file explorer container
is set up like all other containers in Apiary. It is fully
isolated from the rest of the containers and one interacts
with it via the regular display viewer. It differs from the
rest of the containers in that they are not fully isolated
from it. Every container has two primary areas where
the users files are written, the container’s temporary di-
rectory under /tmp, and the container’s version of the
user’s home directory. Apiary’s file explorer provides
two unique views of the these container directories. Each
of these areas, from every container, is made available as
a file share within the file explorer’s FS namespace. Api-
ary provides this container with read-write access to each
container, but prevents the explorer from executing any
program provided within these FS. Users are able to use
normal copy/paste file semantics to copy and move files
between containers. While this is more difficult than a
normal desktop that maintains only a single namespace,
in general users do not have to move files between con-
tainers.

The primary situation where users might desire to
move files between containers is when they are interact-
ing with an ephemeral container, as a user might desire
to preserve a file from that ephemeral container. For in-
stance, a user can run their web browser in an ephemeral
container to maintain privacy, but also downloaded a file
they desire to keep. While the ephemeral container is
active, a user can just use the file explorer to view all
active containers. To avoid situations where one only re-
members after one terminated the ephemeral application
that there were files they desired to keep, Apiary also
maintains access to the ephemeral container’s FS for a
user defined period after the ephemeral container is ter-
minated, which by default it sets to be 30 minutes. This

8

gives the user enough time, even after they quit the appli-
cation running within the ephemeral container, to access
its FS and move the files they desire to preserve. After
the time has elapsed and the FS share is no longer in use,
Apiary removes the share that is associated with it from
the file explorer’s container FS namespace, and deletes it
contents.

Apiary also turns the desktop viewer into an inter-
process communication (IPC) proxy that can enable IPC
state to be shared among containers in a controlled man-
ner. For example, one of the most basic ways desktop
applications share state is via the shared desktop clip-
board. To handle the clipboard, each container’s desktop
daemon monitors the clipboard for changes. Whenever
a change is made to one container’s clipboard, this up-
date is sent to the Apiary viewer, and then propagated to
all the other containers. The Apiary viewer also keeps a
copy of the clipboard so that any future container can be
initialized with the current clipboard state. This enables
users to continue to use the clipboard with applications in
different containers in a manner that is consistent with a
traditional desktop. This model can be extended to other
IPC state and operations that one wants to share between
containers in a controlled manner.

4 Experimental Results

We have implemented a remote desktop Apiary proto-
type system for Linux desktop environments. The pro-
totype consists of a virtual display driver for the X win-
dow system that provides a virtual display for individual
containers based on MetaVNC [25], a set of user space
utilities that enable container integration and a loadable
kernel module for the Linux 2.6 kernel that provides the
ability to create and mount VLFSs. Apiary uses a Linux
containers like mechanism to provide the isolated con-
tainers. [20]. The VLFS is implemented as an in-kernel
stackable file system that implements the architecture de-
scribed in Section 3.3.

Using this prototype, we use real exploits to evalu-
ate Apiary’s ability to contain and recover from attacks.
We conduct a user study to evaluate Apiary’s ease-of-use
compared to a traditional desktop. We also measure Api-
ary’s performance with real applications in terms of run-
time overhead, startup time and storage efficiency. For
our experiments, we compare a plain Linux desktop with
common applications installed against an Apiary desktop
that has the applications available to be used in persistent
and ephemeral containers. The applications we used are
the Pidgin instant messenger, the Firefox web browser,
the Thunderbird email client, the OpenOffice.org office
suite, the MPlayer media player and the Xpdf PDF view-
ing program. All experiments were conducted on an
IBM HS20 eServer blade with dual 3.06 GHz Intel Xeon

CPUs and 2.5 GB RAM. Participants in the usage study
connected to the BladeCenter via a Thinkpad T42p lap-
top, with a 1.8 Ghz Intel Pentium-M CPU and 2GB of
RAM.

4.1 Handling Exploits
We tested two scenarios that illustrate Apiary’s ability to
contain and recover from a desktop application exploit,
as well as explore how different decisions can affect the
security of Apiary’s containers.

4.1.1 Malicious Files

Many desktop applications have been shown to be vul-
nerable to maliciously created files, that enable an at-
tacker to subvert one’s machine, as well as destroy a
user’s data. These attacks are prevalent on the Internet,
as many users will download and view whatever files are
sent to them. To demonstrate this problem, we use 2 ma-
licious files [10, 11] that exploit old versions of Xpdf and
mpg123 respectively. The mpg123 program was stored
within the MPlayer container. The mpg123 exploit works
by creating an invalid mp3 file that triggers a buffer over-
flow in old versions of mpg123 enabling the exploit to
execute any program it desires. The Xpdf exploit works
by exploiting a behavior of how Xpdf launched helper
programs, namely by passing a string to sh -c. By in-
cluding a back-tick (‘ ‘) string within a URL embed-
ded in the PDF file, an attacker could get Xpdf to launch
unknown programs. Both of these exploits are able to
leverage sudo to perform privileged tasks, in this case,
deleting the entire file system. Sudo is leveraged, as pop-
ular distributions require users to use it to gain root privi-
leges, and have it configured to run any applications. Ad-
ditionally, sudo, by default, caches the user’s credentials
to avoid having to authenticate the user each time they
are required to perform a privileged action. However, this
enables local exploits to leverage the cached credentials
to also gain root privileges.

In the plain Linux system, recovering from these ex-
ploits required us to spend a significant amount of time
reinstalling the system from scratch, as we had to install
many individual programs, not just the one that was ex-
ploited. Additionally, we have to recover a user’s 23GB
home directory from backup. Reinstalling a basic De-
bian installation took 19 minutes. However, reinstalling
the complete desktop environment took a total of 50 min-
utes. Recovering the user’s home directory, which in-
cluded many multimedia files, research papers, email and
many other assorted files, took an additional 88 minutes
when transfered over a 1Gbps LAN.

Apiary protected the desktop as well as enabled easier
recovery. It protected the desktop by letting the malicious
files be viewed within an ephemeral container. Even

9

though the exploit proceeded as expected and deleted
the container’s entire file system, the damage it caused
is invisible to the user, as this ephemeral container will
never be used again. Even when we let the exploit ex-
ecute within a persistent container, Apiary enabled sig-
nificantly easier recovery from the exploit. As shown in
Table 2, Apiary can provision a file system in just a few
milliseconds. This is nearly 6 orders of magnitude faster
than the traditional method for recovering a system by re-
installation. Furthermore, Apiary’s persistent containers
divide up home directory content between them, elimi-
nating the need to recover the entire home directory if
one application gets exploited.

This also shows how persistent containers can be con-
structed in a more secure manner, to prevent exploits
from harming the user. As a large amount of this user’s
data is only accessed in a read-only manner, such as mul-
timedia files, the data can be stored on FS shares. This
enables the user to allow the different containers to have
different levels of access to the share. The file explorer
container can access it in a read-write manner, enabling
a user to manage the contents of the FS share, while the
actual applications that view these files can be restricted
to accessing them in a read-only manner, protecting the
files from any exploit to the application.

4.1.2 Malicious Plugins

Applications are also exploited via malware that users
are tricked into downloading and installing. This can be
an independent program, or a plugin that integrates with
an application a user already has installed. For example,
malicious attackers try to convince users to download a
“codec” they need to view a video. Recently, a malicious
Firefox extension was discovered [6] that leveraged Fire-
fox’s extension and plugin mechanism to extract a user’s
banking username and password from the browser when
the user visited their bank’s website, and send the in-
formation to the attacker. These attacks are common as
users are badly conditioned to allow a browser to install
what it needs when it asks to install something. When
installed into a traditional environment, this malicious
extension persists until the user, or the user’s anti-virus
software discovers and removes it. As it does not impact
the regular use of the browser, there is very little to tip
off users that they have been attacked. As this exploit
is not readily available to the public, we simulated its
presence with the non-malicious Greasemonkey Firefox
extension. Much like the malicious file example, Apiary
prevented the extension from persisting when installed
into an ephemeral container. Even when a user allowed
the installation of the extension, it did not persist to future
executions of Firefox.

However, this exploit poses a significant risk if it enters
the user’s persistent web browser container. While one

might think that Firefox extensions should be uninstal-
lable through Firefox’s extension manager, this is only
for extensions that are installed through it. If an extension
is installed directly into the FS, it cannot be uninstalled
this way, though it can be disabled, and one has to remove
it from the file-system. This applies equally to Apiary
and traditional machines. While users can quickly recre-
ate the entire persistent Firefox container, that involves
knowing that the installation was exploited. Apiary en-
ables us to handle this situation in a more elegant manner
by enabling a user to use the Firefox program in mul-
tiple web browsing application containers. In this case,
we created a general purpose web browsing container for
regular usage, as well as a financial web browsing con-
tainer to only use to access our bank’s website. By refus-
ing to install any addons into the financial web browsing
container, it remained isolated and secure, even when we
exploited our general purpose web browsing container.

This scenario indicates how one does not need to be
stuck in the mode of having only a single application for
all types of actions that fall within a specific type of task.
Apiary enables the creation of multiple independent ap-
plication containers, that contain all of the same appli-
cation, but are meant to perform different tasks, such as
visiting one’s bank website in this example. As the large
majority of the VLFS’s layers are shared, there is very
little cost to the user for enabling these multiple indepen-
dent containers. This can be extended to other related
but independent tasks, for instance using a media player
to listen to one’s personal collection of music, as opposed
to listening to Internet radio from an untrusted source.

4.2 Usage Study

We performed a usage study that evaluated the abil-
ity of users to use Apiary’s containerized application
model with our prototype environment. Participants were
mostly recruited from within our local university, includ-
ing faculty, staff and students. All of the users were expe-
rienced computer users. 24 participants took part in the
study.

For our study, we created three distinct environments:
A plain Linux environment running the Xfce4 desktop,
A full Apiary desktop, and a neutered Apiary desktop
that did not launch child applications in ephemeral con-
tainers but within a preexisting containers. These three
environments enable us to compare the participants ex-
perience along two axis. First, we can compare the plain
Linux environment where each application is only in-
stalled once and always run from the same environment
against the neutered Apiary desktop where each applica-
tion is also only installed once and run from the same
environment. This enables us to measure the cost of us-
ing the Apiary viewer with its built in taskbar and appli-

10

cation menu against plain Linux where the taskbar and
application menu are regular applications within the en-
vironment. Second, the full and neutered Apiary desk-
tops enable us to isolate the actual and perceived cost to
the participants of instantiating ephemeral containers for
application execution. We presented the environments to
the participants in random order and iterated through all
6 permutations equally.

We timed the participants as they performed a number
of specific multi-step tasks in each environment that in
summary are: (1) Download and view a PDF file with
Firefox and Xpdf and follow a link embedded in the PDF
back to the web. (2) Read an email in Thunderbird that
contains an attachment that is to be edited in OpenOf-
fice and returned to the sender. (3) Create a document in
OpenOffice that contains text copied and pasted from the
web and sent by e-mail as a PDF file. (4) Create and pre-
view a web page in OpenOffice and Firefox. (5) Launch
a link received in the Pidgin IM client in Firefox.

As Figure 2 shows, the average time to complete each
task when averaged over all the users doing the tasks in
random order only differed by a few seconds in any dif-
ferent direction for all tasks in all environments. Fig-
ure 2 shows that in all cases users performed their tasks
quicker in the neutered Apiary environment than in the
plain Linux environment. This indicates that Apiary’s
simpler environment is actually faster to use than the
plain Linux environment that contains bells and whis-
tles that make it friendlier to the user, such as application
launchers and running applets within their taskbar pan-
els. Furthermore, even though users were a little slower
in the full Apiary environment compared to the neutered
version, they were still generally faster than plain Linux
environment. This indicates that while the fully environ-
ment has a small amount of overhead, in practice users
are just as effective in it as in a plain Linux environment.

We also asked to rate their perceived ease of use of
each environment. Most users perceived the prototype
environments to be as easy to use as the plain Linux en-
vironment. While some users preferred the polish of the
plain Linux environment, more preferred the simplicity
of the environment provided by Apiary. Most users could
not determine a difference between the full and neutered
Apiary’s desktops.

We also asked the participants a number of questions
including, would the Apiary environment be an environ-
ment they could imagine using full time and would it be
an environment they would prefer to use full time if it
would keep their desktop secure. All of the participants
expressed a willingness to use this environment as their
full time environment, and a large majority indicated that
they would prefer to use Apiary over the plain Linux en-
vironment if it would keep their applications more se-
cure. The majority of those who would not prefer to use

Test Description
Untar Extract Linux 2.6.19 kernel source archive
Gzip Compress a 250MB Linux kernel source archive
Octave Octave 3.0.1 running a numerical benchmark
Kernel Build the 2.6.19 kernel

Table 1: Application Benchmarks

Apiary, indicated it was because of bugs they perceived
in their interaction with the prototype.

4.3 Performance Measurements
4.3.1 Application Performance

To measure the performance overhead of Apiary on real
applications, we compare the runtime performance of a
number of applications within the Apiary environment
against the performance in a traditional environment.

Table 1 lists our application tests. We focus mostly on
FS benchmarks as others have shown [20, 3] that display
and operating system virtualization have little overhead.
The untar tests file creation and throughput, while the
gzip tests file system throughput and computation. The
Octave benchmark is a pure computation benchmarks.
The kernel build benchmark tests both computation, as
well as stresses the FS due to the large amount of lookups
that occur due to the large size of the kernel source tree
and the repeated execution of the preprocessor, compiler
and linker. To stress the system with many containers
and to provide a conservative measure of performance
each test was run in parallel with 25 instances. To avoid
out of memory conditions, as the Octave benchmark re-
quires 100-200MB of memory at various points during
its execution, we ran the benchmarks staggered 5s apart
to ensure they kept their high memory usage areas iso-
lated to avoid the benchmark being killed by Linux’s out-
of-memory handler. As is shown in Figure 3, Apiary
imposes almost no overhead in most cases, with about
10% overhead in the kernel build case due to the con-
stant need to perform lookups on the FS which the VLFS
imposes an extra cost. This demonstrates that Apiary is
able to scale to a large number of concurrent containers
with minimal overhead.

4.3.2 Container Creation

For ephemeral containers to be useful, container instanti-
ation must be quick. We measured this cost in two ways.
First, how long does it takes to instantiate its VLFS. Sec-
ond, how long does it take the application to start up
within the container. We quantify how long it takes to
instantiate a container and compare Apiary against other
common approaches. We compare how long it takes to
setup a VLFS against how long it takes to setup a con-

11

0.0

20.0

40.0

60.0

80.0

100.0

Task 1 Task 2 Task 3 Task 4 Task 5

T
im

e
(s

)

Plain Linux
Persistent

Ephemeral

Figure 2: Usage Study Task Times

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

Untar Gzip Octave Kernel

T
im

e
(s

)

Plain
Apiary

Figure 3: Overhead at Scale

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Pidgin Firefox T-bird OOffice Mplayer Xpdf

T
im

e
(s

)

Plain (C)
Persistent (C)

Plain (W)
Persisent (W)

Ephemeral

Figure 4: Application Startup Time

P F T O X M
Create 317s 276s 294s 365s 291s 294s
Extract 82s 86s 87s 150s 81s 81s
FS-Snap .016s .015s .016s .020s .009s .010s
Apiary .005s .005s .005s .005s .005s .005s

Table 2: FS Instantiating Times for (P)idgin, (F)irefox,
(T)hunderbird, (O)penOffice, (X)pdf and (M)Player

tainer FS using Debian’s traditional bootstrapping tools
(Create), how long it would take to extract the same
file system from a tar archive (Extract), and how long it
takes a FS with a snapshot operation to create a new snap-
shot and branch of a preexisting file system namespace
(FS-Snap as shown in Table 2. To minimize network
affects with the bootstrapping tools, we used a local De-
bian mirror on the local 100Mbps campus network, and
we were able to saturate the connection while fetching
the packages that were to be installed.

Table 2 shows that Apiary instantiates containers with
a VLFS composed of nearly 200 layers nearly instanta-
neously. This compares very positively with traditional
ways of setting up a system. Table 2 show that it takes
a significant amount of time to create a FS for the appli-
cation container using Debian’s bootstrapping tool and
even extracting a tar archive takes a significant amount
of time. This would prevent one from creating ephemeral
application containers as users will not want to wait min-
utes for their applications to start. Tar archives also suf-
fer from the fact that they have to be actively maintained
and rebuilt whenever fixes need to be applied to them.
Therefore, the amount of administrative work increases
linearly with the number of applications in use. As Api-
ary creates the FS nearly instantaneously, it is able to
support the creation of ephemeral application containers
with no noticeable overhead to the users. While Table 2
shows that file systems, in this case Btrfs, with a snap-
shot and branch operation can also perform it quickly,
the user would have to manage each of the application’s
independent file-systems separately.

To quantify startup time, we measured how long it
takes for the application to open and then be automati-
cally closed. In the case of Firefox, Xpdf and OpenOf-
fice.org, this includes the time it takes to display the
initial page of a document, while Pidgin, MPlayer and

Thunderbird are all just loading the program. For ephem-
eral containers, we measure the complete time it takes to
setup the container and execute the application within it.
We compare these results against cold and warm cache
application startup times for both plain Linux and Api-
ary’s persistent containers. We include cold cache re-
sults for benchmarking purposes and warm cache results
to demonstrate the results users would normally see.

As Figure 4, shows, while running within a container
induced some overhead on startup, it’s generally under
25% in both cold and warm cache scenarios. This over-
head is mostly due to the added overhead of opening
the many files needed by today’s complex applications.
The most complex application, OpenOffice, requires the
most, while the least complex application, Xpdf, is al-
most equivalent to the plain Linux case. In addition,
while the maximum absolute extra time spent in the cold
cache case was nearly 5s for OpenOffice, in the warm
cache case it dropped to under .5s. In addition, Ephem-
eral containers provide an interesting result. Even though
they have a fresh new FS and would be thought to be
equivalent to a cold cache startup, they are nearly equiv-
alent to the warm cache case. This is due to the fact that
their underlying layers are already cached by the system.
The ephemeral case has a slightly higher overhead due
to the need to create the container and execute a display
server inside of it in addition to the regular application
startup time, but this takes under 10ms and adds only
a minimal amount to the ephemeral application startup
time.

4.4 File-System Efficiency

To support a large number of containers, Apiary must
store and manage its FS efficiently. This means, that stor-
age space should not significantly increase with an in-
creasing number of instantiated containers, as well as be
easily manageable in terms of application updates. For
each application’s VLFS, Table 3 shows its size, its num-
ber of layers, and the amount of state shared with the
other application VLFSs and the amount of state unique
to it. For instance, the 129 layers that make up Firefox’s
VLFS require 353MB of which 330MB are shared with
other applications in this scenario and 23MB are unique

12

P F T O X M
Size (MB) 394 353 367 645 339 355
Layers 147 129 125 186 130 162
Shared (MB) 322 330 335 329 330 326
Unique (MB) 72 23 32 316 9 29

Table 3: VLFS Layer Storage Breakdown for (P)idgin,
(F)irefox, (T)hunderbird, (O)penOffice, (X)pdf and (M)Player

Single FS Multiple FSs VLFSs
Size 743MB 2.1GB 743MB

Table 4: Single Desktop vs. Multiple Container FSs

to the Firefox VLFS. In general, Table 3 shows, there is
a lot of duplication among the containers, as the layer
repository of 214 distinct layers, needed to build the dif-
ferent VLFSs for the different applications, is the same
magnitude as the largest application.

Table 4 shows that using individual VLFSs for each
application container consumes approximately the same
amount of FS space as a regular desktop FS containing all
the applications, as each layer only has to be stored once.
This is comparison to the traditional method of provi-
sioning multiple independent FSs for each application
container which consumes a significantly larger amount
of disk space. Similarly, if one would provide multiple
desktops on a server, the VLFS usage would remain con-
stant to the size of the repository, while the other cases
would grow linearly with the number of desktops.

To demonstrate how Apiary improves the ability of
users to maintain their many containers, we instantiated
one container for each of the five applications previously
mentioned. When a security update was necessary, we
iterated through each container applying the security up-
date. Table 5 shows the average times for the five appli-
cation container FSs. This demonstrates that while in-
dividual updates by themselves are not too long, when
one has multiple container FSs for each individual user,
the amount of time one spends applying common updates
will rise lineraly, and as the traditional method is two or-
ders of magnitude greater than Apiary, will impact to a
much greater extent.

5 Related Work

Isolation mechanism, such as VMs [28, 32] and OS con-
tainers [22, 26], have long been used to increase the secu-
rity of applications. As it is confined to a virtualized en-
vironment, it is isolated from the rest of a user’s applica-
tions and data. However, this means the applications are
not integrated into the user’s desktop experience. For in-
stance, each application is totally independent and cannot
leverage each other. VMs also suffer high overhead due

Traditional Apiary
Avg. Time 18 s 0.12s

Table 5: Update Times

to running independent operating systems. This impacts
performance, as well as making them unsuitable for eph-
emeral usage due to their long startup times. Products,
like VMware’s Unity [29], attempt to solve part of this
issue by combining the applications from multiple VMs
into a single display, with a single menu and taskbar, as
well as providing file-system sharing between the host
and the VMs. However, the applications are still fully
isolated from one another, preventing them from lever-
aging other applications installed into separate VMs.

Tahoma [24] is similar to Apiary in that it creates fully
isolated application environments that remain part of a
single desktop environment. Tahoma lets one create a
browser applications that are limited to what resources,
such as URLs they are allowed to access and that are
fully isolated from each other. Tahoma is similar to Api-
ary in that it enables the creation of isolated application
environment. However, it only provides these isolated
application environments for web browsers. It does not
provide any way for these isolated environments to be
integrated together and does not provide for ephemeral
application environments.

Google’s Chrome web browser [12] builds upon some
of these ideas to provide isolation between web browser
pages within a single browser. However the browser as
a whole does not offer any isolation from the system, al-
lowing an exploit that can escape the browser to become
unrestricted. Chrome also provides an incognito mode,
to provide additional privacy by preventing browser state
from being committed to disk. While it serves a sim-
ilar to ephemeral containers, incognito mode had to be
written into the program itself and only provide basic
means of privacy. For instance, it cannot prevent a plugin
from writing state to disk. Apiary’s ephemeral containers
make the entire execution private and support any appli-
cation with state a user desires to remain private without
any application modifications.

Apiary’s ability to run multiple applications in par-
allel resembles Lampson’s Red/Green isolation [15].
Red/Green isolation involves users running two sepa-
rate environments, a red environment for regular usage,
and a green environment for environments they require
a trusted environment. However, unlike Apiary’s eph-
emeral containers, if an exploit can enter the green con-
tainer, it will persist. Furthermore, by requiring two sep-
arate virtual machines, one increases the amount of work
a user has to do to manage their machines. Apiary, by
leveraging the VLFS minimizes the overhead required
required to manage multiple machines.

FSs with a branching semantic [27, 4] can be used to
quickly create a fresh FS namespace for a new container.
However, these FSs do not help manage the large num-
ber of containers that will exist within Apiary. As each
container has a unique FS, with differing sets of appli-

13

cations, administrators will have to create individual FSs
tailored to each application. They cannot create a single
template FS with all applications as applications can have
conflicting dependency requirements or desire to use the
same FS path locations. Furthermore, by putting all the
applications into a single FS, they will no longer be iso-
lated from each other. This results in a set of FSs that are
inefficient in space, as each FS will have an independent
copy of many files common to other. This inefficiency
also makes management harder. When security holes are
discovered and fixed, one will have to update each indi-
vidual FS independently.

Many systems have been created that attempt to pro-
vide security through isolation mechanisms [18, 31, 23,
1, 5, 7, 16]. All these systems differ from Apiary in
that they try to isolate the many different components
that make up a standard fully integrated single system
using sets of rules to determine which of the machine’s
resources the application should be able to access. This
many times results in two outcomes. First, a policy is cre-
ated that is too strict and does not let the application run
correctly. Second, a policy is created that is too lenient
and lets an exploited application interact with data and
applications it should not have access to. Apiary, on the
other hand, forces each components to be fully isolated
within its own container before determining on what lev-
els it should be integrated. As each container provides all
the resources that the application needs to execute in an
isolated environment, no complicated rule sets have to be
created to determine what it needs access to.

Solitude [13] provides isolation via its Isolation FS
(IFS) which a user can throw away. This is similar to Api-
ary’s ephemeral containers. However, the IFSs are not
fully isolated. First, Solitude does not create a new IFS
for each application execution. Second, the IFS is built
on top of a base file system which it can share data with,
breaking the isolation. To handle this, Solitude imple-
ments taint tracking on files shared with the underlying
base file system. This helps determine, post-facto, what
other applications may have been corrupted by a mali-
ciously constructed file. Similarly, Solitude only pro-
vides isolation at the file system level. As each applica-
tion shares a single display, malicious and exploited ap-
plications can leverage built in mechanisms in commod-
ity display architectures [9] to insert events and messages
into other applications sharing the display.

6 Conclusions

Apiary introduces a new compartmentalized application
desktop paradigm. Instead of running one’s applications
in a single environment with complex rules to isolate
the applications from each other, Apiary enables them
to be easily and completely isolated while retaining the

integrated feel users expect from their desktop computer.
The key innovations that make this possible are the intro-
duction of virtual layered file-systems and the ephemeral
containers they enable. The VLFS enables the multiple
containers to be stored as efficiently as a single regular
desktop, while also allowing containers to be instantiated
almost instantly. This functionality enables the creation
of the ephemeral containers that provide an always fresh
and clean environment for applications to run in. Ephem-
eral containers prevent malicious data from having any
persistent effect on the system and isolate the fault to only
that single application instance.

We have implemented Apiary on Linux without requir-
ing any operating system kernel or application changes.
Our results demonstrate that Apiary’s containerized
desktop severely reduces the threat posed by malicious
files and plugins by isolating them in ephemeral contain-
ers and enabling users to quickly recover if they pene-
trate a persistent container. Our 24 person usage-study
demonstrates that Apiary is as easy to use as a regular
Linux desktop by both measuring the time it took users
to perform their tasks and their subjective opinions. Fur-
thermore, we demonstrate that Apiary add minimal over-
head to application performance, is as efficient as a reg-
ular desktop in its use of storage space and instantiates
ephemeral containers in less than .5s.

References

[1] A. Acharya and M. Raje. MAPbox: Using parame-
terized behavior classes to confine applications. In
Proceedings of the 2000 USENIX Security Sympo-
sium, August 2000.

[2] Adobe Systems Incorporated. Buffer over-
flow issue in versions 9.0 and earlier
of Adobe Reader and Acrobat. http:
//www.adobe.com/support/security/
advisories/apsa09-01.html, Feb 2009.

[3] R. Baratto, L. Kim, and J. Nieh. THINC: A Vir-
tual Display Architecture for Thin-Client Comput-
ing. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles, Oct. 2005.

[4] M. R. Ben Pfaff, Tal Garfinkel. Virtualization aware
file systems: Getting beyond the limitations of vir-
tual disks. In 3rd Symposium of Networked Systems
Design and Implementation, May 2006.

[5] A. Berman, V. Bourassa, and E. Selberg. TRON:
Process-specific file protection for the UNIX op-
erating system. In Proc. of 1995 USENIX Winter
Technical Conference, pages 165–175, 1995.

14

http://www.adobe.com/support/security/advisories/apsa09-01.html
http://www.adobe.com/support/security/advisories/apsa09-01.html
http://www.adobe.com/support/security/advisories/apsa09-01.html

[6] bitdefender. Trojan.pws.chromeinject.b.
http://www.bitdefender.com/
VIRUS-1000451-en--Trojan.PWS.
ChromeInject.B.html, Nov 2008.

[7] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu,
P. Wagle, and V. Gligor. SubDomain: Parsimonious
Server Security. In 14th USENIX Systems Adminis-
tration Conference, New Orleans, LA, Dec. 2000.

[8] B. Cumberland, G. Carius, and A. Muir. Microsoft
Windows NT Server 4.0, Terminal Server Edition:
Technical Reference. Microsoft Press, Redmond,
WA, Aug. 1999.

[9] J. Gettys and R. W. Scheifler. Xlib - C Language X
Interface. X Consortium, Inc., 1996. p. 224.

[10] M. Gilmore. 10day cert advisory on
pdf files. http://seclists.org/
fulldisclosure/2003/Jun/0463.html,
Jun 2003.

[11] GOBBLES Security. Local/remote mpg123
exploit. http://www.opennet.ru/base/
exploits/1042565884_668.txt.html.

[12] Google. Google Chrome - Features.
http://www.google.com/chrome/intl/
en/features.html.

[13] S. Jain, F. Shafique, V. Djeric, and A. Goel.
Application-level Isolation and Recovery with
Solitude. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems, pages 95–107, 2008.

[14] P.-H. Kamp and R. N. M. Watson. Jails: Confining
the omnipotent root. In 2nd International SANE
Conference, MECC, Maastricht, The Netherlands,
May 2000.

[15] B. Lampson. Accountability and Freedom.
http://research.microsoft.com/
en-us/um/people/blampson/slides/
accountabilityandfreedom.ppt, Sept.
2005.

[16] Z. Liang, V. Venkatakrishnan, and R. Sekar. Iso-
lated program execution: An application transpar-
ent approach for executing untrusted programs. In
19th Annual Computer Security Applications Con-
ference, December 2003.

[17] Linux Containers. http://lxc.
sourceforge.net/.

[18] P. Loscocco and S. Smalley. Integrating Flexible
Support for Security Policies into the Linux Operat-
ing System. In Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, June
2001.

[19] Microsoft. Microsoft Application Virtualiza-
tion. http://www.microsoft.com/
systemcenter/appv/default.mspx.

[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proceed-
ings of the Fifth Symposium on Operating Systems
Design and Implementation, Boston, MA, Dec.
2002.

[21] T. Porter and T. Duff. Compositing digital images.
Computer Graphics, 18(3):253–259, July 1984.

[22] D. Price and A. Tucker. Solaris zones: Operating
system support for consolidating commercial work-
loads. In 18th Large Installation System Adminis-
tration Conference, November 2004.

[23] N. Provos. Improving Host Security with System
Call Policies. In 12th USENIX Security Symposium,
Washington, DC, Aug. 2003.

[24] C. Reis and S. D. Gribble. Isolating web programs
in modern browser architectures. In 4th ACM Eu-
ropean Conference on Computer Systems (EuroSys
2009), Nuremberg, Germany, Mar 2009.

[25] U. Satoshi. Metavnc - a window aware vnc. http:
//metavnc.sourceforge.net/.

[26] S. Soltesz, H. Pötzl, M. e. Fiuczynski, A. Bavier,
and L. Peterson. Container-based operating system
virtualization: a scalable, high-performance alter-
native to hypervisors. SIGOPS Oper. Syst. Rev.,
41(3):275–287, 2007.

[27] Sun Microsystems, Inc. Solariz ZFS Administration
Guide. 2009.

[28] VMware, Inc. http://www.vmware.com.

[29] VMware Inc. VMware Worksation 6.5 Re-
lease Notes. http://www.vmware.com/
support/ws65/doc/releasenotes_
ws65.html, Oct 2008.

[30] Virtual Network Computing. http://www.
realvnc.com/.

[31] D. Wagner. Janus: an approach for confinement of
untrusted applications. Master’s thesis, University
of California, Berkeley, 1999.

15

http://www.bitdefender.com/VIRUS-1000451-en--Trojan.PWS.ChromeInject.B.html
http://www.bitdefender.com/VIRUS-1000451-en--Trojan.PWS.ChromeInject.B.html
http://www.bitdefender.com/VIRUS-1000451-en--Trojan.PWS.ChromeInject.B.html
http://seclists.org/fulldisclosure/2003/Jun/0463.html
http://seclists.org/fulldisclosure/2003/Jun/0463.html
http://www.opennet.ru/base/exploits/1042565884_668.txt.html
http://www.opennet.ru/base/exploits/1042565884_668.txt.html
http://www.google.com/chrome/intl/en/features.html
http://www.google.com/chrome/intl/en/features.html
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedom.ppt
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedom.ppt
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedom.ppt
http://lxc.sourceforge.net/
http://lxc.sourceforge.net/
http://www.microsoft.com/systemcenter/appv/default.mspx
http://www.microsoft.com/systemcenter/appv/default.mspx
http://metavnc.sourceforge.net/
http://metavnc.sourceforge.net/
http://www.vmware.com
http://www.vmware.com/support/ws65/doc/releasenotes_ws65.html
http://www.vmware.com/support/ws65/doc/releasenotes_ws65.html
http://www.vmware.com/support/ws65/doc/releasenotes_ws65.html
http://www.realvnc.com/
http://www.realvnc.com/

[32] A. Whitaker, M. Shaw, and S. D. Gribble. Scale
and Performance in the Denali Isolation Kernel. In
Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA,
Dec. 2002.

[33] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatil-
ity and unix semantics in namespace unification.
ACM Transactions on Storage, 2(1):1–32, February
2006.

16

	Introduction
	Apiary Usage Model
	Architecture
	Process Container
	Display
	Virtual Layered File System
	Inter-Application Integration

	Experimental Results
	Handling Exploits
	Malicious Files
	Malicious Plugins

	Usage Study
	Performance Measurements
	Application Performance
	Container Creation

	File-System Efficiency

	Related Work
	Conclusions

