
The Impact of TLS on SIP Server Performance
Charles Shen∗, Erich Nahum†, Henning Schulzrinne∗, Charles P. Wright†

∗Columbia University Computer Science Department
†IBM T.J. Watson Research Center

Columbia University Department of Computer Science Technical Report CUCS-022-09

Abstract

This report studies the performance impact of using TLS as a transport protocol for SIP servers. We evaluate the cost of TLS
experimentally using a testbed with OpenSIPS, OpenSSL, andLinux running on an Intel-based server. We analyze TLS costs
using application, library, and kernel profiling, and use the profiles to illustrate when and how different costs are incurred, such
as bulk data encryption, public key encryption, private keydecryption, and MAC-based verification.

We show that using TLS can reduce performance by up to a factorof nearly 20 compared to the typical case of SIP over
UDP. The primary factor in determining performance is whether and how TLS connection establishment is performed, due tothe
heavy costs of RSA operations used for session negotiation.This depends both on how the SIP proxy is deployed (e.g., as an
inbound or outbound proxy) and what TLS options are used (e.g., mutual authentication, session reuse). The cost of symmetric
key operations such as AES or 3DES, in contrast, tends to be small.

Network operators deploying SIP over TLS should attempt to maximize the persistence of secure connections, and will need
to assess the server resources required. To aid them, we provide a measurement-driven cost model for use in provisioningSIP
servers using TLS. Our cost model predicts performance within 15 percent on average.

I. I NTRODUCTION

Session Initiation Protocol (SIP) [34] is an application layer signaling protocol for creating, modifying, and terminating media
sessions in the Internet. Major standards bodies including3GPP, ITU-T, and ETSI have all adopted SIP as the core signaling
protocol for services such as VoIP, conferencing, Video on Demand (VoD), presence, and Instant Messaging (IM). Like other
Internet services, SIP-based services may be susceptible to a wide variety of security threats including social threats, traffic
attacks, denial of services, service abuse [2], [17], [7]. One of the main reasons that permit for these threats is the common use
of insecure SIP signaling such as SIP-over-UDP, which provides no signaling confidentiality, integrity, or authenticity. Given
a trace of SIP traffic, one can see who is communicating with whom, when, for how long, and sometimes even what is being
said (e.g., in SIMPLE [4]). It has also been shown that even commercial VoIP services may be prone to large-scale voice
pharming [40], where victims are directed to fake interactive voice response systems or human representatives for sensitive
information.

Transport Layer Security (TLS) [8], [9] is a widely used Internet security protocol occupying a layer between the application
and the reliable TCP transport. There is also a Datagram TLS (DTLS) [31] protocol that provides similar security functionalities
but runs over the unreliable UDP transport. The current SIP specification [34] lists TLS as a standard method to secure SIP
signaling. Various other organizations and industrial consortiums have also suggested or mandated the use of TLS for SIP
signaling. For example, the SIP Forum [1] mandated TLS for interconnecting enterprise and service provider SIP networks in
its specification document.

However, while interest in securing SIP is growing [28], actual large scale deployment of SIP-over-TLS has not yet occurred.
One important reason is the common perception that running an application over TLS is costly compared to running directly
over TCP (or UDP in the case of SIP). VoIP providers will be hesitant to deploy TLS until they understand the resource
provisioning and capacity planning required. Thus we need to understand how much using TLS with SIP actually costs.

This report makes the following contributions:

• We present an experimental performance study of the impact of using TLS on SIP servers. Our study is conducted using
OpenSIPS with OpenSSL on Linux on an Intel-based server. We evaluate the cost of TLS under four SIP proxy usage
scenarios: proxy chain, outbound proxy, inbound proxy, andlocal proxy. We show that using TLS can reduce performance
by up to a factor of nearly 20 compared to the typical case of SIP over UDP.

• We use application, library, and kernel profiles to examine,analyze, and explain performance differences. The profiles
illustrate how costs are incurred under different scenarios (e.g., extra RSA [33] overheads when mutual authentication is
used) and how they can be reduced (e.g., RSA costs disappear when session reuse is performed). They also show some
results unique to SIP (e.g., bulk crypto costs of AES [22] or 3DES [19] are small), and how some overheads are due to
mechanisms (e.g., kernel overhead, SSL state management) rather than simply crypto algorithms such as RSA or AES.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• We provide a cost model to aid network administrators that are considering transitioning to SIP over TLS. The cost model
estimates server resource costs of TLS to help provisioningand dimensioning of servers. Our cost model accurately
predicts performance within 15 percent on average.

Previous studies on TLS performance have either focused on TLS for Web servers [3], [5], [15], [42] or policy-based network
management (COPS) [41]. SIP protocol behavior is differentfrom these protocols in several ways. SIP messages tend to be
small, whereas Web downloads can be quite large. SIP proxiescan incur client-side TLS costs since they can act as clientsto
other servers. Finally, SIP servers have a much wider range of connection management behavior than other servers, and this
connection management is the primary issue in determining TLS overheads, due to the heavy costs of RSA operations used
for session negotiation. Symmetric key operations such as AES or 3DES are trivial in comparison. Implementation issuescan
also be significant; we found several performance problems in OpenSIPS and OpenSSL, despite the fact that they are widely
used and relatively mature.

The net result is that the performance cost of deploying SIP over TLS instead of UDP can be significant, depending on
how the SIP proxy is deployed (e.g., as an inbound or outboundproxy) and how TLS is configured (e.g., with or without
mutual authentication or session reuse). Network operators can minimize this cost by attempting to maximize the persistence
of secure sessions, but still need to be aware of the overheadof utilizing TLS.

The remainder of this paper is structured as follows. Section II provides some background on TLS and SIP. Section III
describes the experimental testbed used for our experiments. Section IV presents our results in detail. Section V develops our
cost model. Section VI describes related work and we conclude in Section VII. Appendix A provides additional background
on security and cryptography in TLS. Appendix B provides a few more operating system configuration modifications. Appendix
C presents the mapping tables between function names and oprofile results used in our profiling analysis. Appendix D discusses
a performance fix for the proxy software in establishing TLS connections.

TLS

client

TLS

Server

ClientHello

Normal TLS Handshake

time

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

Finished (encrypted)

ChangeCipherSpec

ChangeCipherSpec

Finished (encrypted)

(a) normal

TLS

client

TLS

Server

ClientHello

Mutual TLS Handshake

time

ServerHello

Certificate

CertificateRequest

Certificate

CertificateVerify

ChangeCipherSpec

ClientKeyExchange

Finished (encrypted)

ServerHelloDone

Finished (encrypted)

ChangeCipherSpec

(b) w/mutual authentication

TLS

client

TLS

Server

ClientHello

Resumed TLS Handshake

time

ServerHello

ChangeCipherSpec

Finished (encrypted)

Finished (encrypted)

ChangeCipherSpec

(c) with session reuse

Fig. 1. TLS Handshake Message Flows

II. BACKGROUND

For space reasons, we assume the reader is familiar with basic security concepts of confidentiality, integrity, and authenticity,
and how they are provided using public key and symmetric key cryptography. We assume the reader is generally aware of
public key algorithms such as RSA; symmetric key ciphers such as AES, and 3DES; and signed message authentication codes
such as MD5 and SHA-1. More detail on cryptography can be found in appendix A and [36].

A. TLS Operation Overview

For space reasons, we provide a very brief description of theTLS protocol. For more details, please see [9], [30]. We focus
on the aspects relevant to our study, namely session establishment and its attendant RSA public key costs.

TLS operation consists of two phases: the handshake phase and the bulk data encryption phase. The handshake phase allows
the parties to negotiate the algorithms to be used during this TLS session, authenticate the other party and prepare the shared
secret for the bulk data encryption phase.

All the algorithms used in a TLS session, including those forkey exchange, bulk data encryption and message digest, are
specified by a cipher suite. As an example, TLSRSA WITH AES 128 CBC SHA is one cipher suite indicating that RSA

public key algorithm is used for shared secret key exchange and authentication; 128-bit AES in CBC mode is used for bulk
data encryption; and SHA-1 is used as the message digest algorithm to compute the message authentication code (MAC).

The normal message flow in the TLS handshake phase is illustrated in Figure 1(a). First the client initiates the handshake
with a ClientHello message. This message contains the protocol version, the cipher suite and compression methods that
the client supports and a random number and timestamp to prevent replay attacks. The server responds with aServerHello
message, which specifies the protocol version and the ciphersuite and compression methods that the server chooses to use
among those proposed by the client. TheServerHello message also contains a timestamp and random number as part of the
keying material, and optionally asession_id which the client can later use to resume the session. The server then sends the
Certificate message which is the server’s X.509 certificate containing its public key and optionally a chain of certificates
belonging to the authorities in the certificate hierarchy. The followingServerHelloDone message indicates the server has
sent all message in this stage. Upon receiving the server’s certificate, the client authenticates the server by verifying its certificate
using the CA’s public key. The client then generates apre_master_secret, and encrypts it using the server’s public
key obtained from the server’s certificate. This encryptedpre_master_secret is sent in theClientKeyExchange
message to the server. The server decrypts thepre_master_secret using its own private key. Both the server and client
then compute amaster_secret they share based on the samepre_master_secret. Themaster_secret is further
used to generate the shared symmetric keys for bulk data encryption and message authentication. In addition, the clientand
server also exchange theChangeCipherSpec message, which indicates that the sender has switched to thenewly negotiated
algorithms. Finally, theFinished message contains a MAC digest of the negotiatedmaster_secret and the concatenated
handshake message that have been sent to the other party. TheFinished message is used to ensure the integrity of the
handshake.

In the normal TLS handshake, only the client authenticates the server. In situations where the server also wishes to authenticate
the client, TLS provides a mutual authentication mode, shown in Figure 1(b), which allows what is called mutual authentication.
In the mutual authentication mode, after the server sends its own certificate to the client, the server sends an additional
CertificateRequest message to request the client’s certificate. The client responds with two additional messages, a
Certificate message containing the client certificate with the client public key, and aCertificateVerify message
containing a digest signature of the handshake messages signed by the client’s private key. Since only a client holding the
correct private key can sign the message, the server can authenticate the client using the client’s public key.

Cryptographic operations can be costly. In general, publickey cryptographic operations such as RSA are much more
expensive than shared key cryptography. This is why TLS usespublic key cryptography to establish the shared secret key in
the handshake phase, and then uses symmetric key cryptography with the negotiated shared secret as the key. TLS offers a
session reuse mode where the two parties can avoid negotiating thepre_master_secret if it has been done previously
within some time threshold. It is important to distinguish the notion of aconnection versus asession in TLS. A TLS connection
corresponds to one specific communication channel which is typically a TCP connection; while a TLSsession is associated
with a negotiated set of algorithms and the establishedmaster_secret based on thepre_master_secret. Multiple
connections may be mapped to the same session, all share the same set of algorithms and themaster_secret, but each with
a different symmetric key for bulk data encryption. The notion of session reuse indicates the reuse of a previously negotiated
set of cryptographic algorithms and themaster_secret. The handshake message flow for TLS session reuse is shown in
Figure 1(c). The first time the client and server communicate, they establish a new connection and a new session. The server
stores the session information including the algorithm choice and themaster_secret for later reference. The session is
identified by asession_id which is conveyed to the client during the initial handshakein theServerHello message. The
next time the client needs to establish a connection, it can include the previoussession_id in theClientHello message.
The server agrees to session reuse by specifying the samesession_id in the respondingServerHello message. The TLS
handshake will then proceed toChangeCipherSpec message andFinished message directly, avoiding the re-computation
of a pre_master_secret. The session reuse timeout is configurable based on the security assumptions of how long it
takes to break the key by brute-force.

B. SIP Overview

SIP defines two basic types of entities: User Agents (UAs) andservers. UAs represent SIP end points. SIP servers consist of
registrar servers for location management, and proxy servers for message forwarding. SIP messages are divided into requests
(e.g.,INVITE andBYE to create and terminate a SIP session, respectively) and responses (e.g.,200 OK for confirming a
session setup). The set of messages including a request and all its associated responses is called a SIP transaction.

SIP message forwarding, known as proxying, is a critical function of the SIP infrastructure. This forwarding process is
provided by proxy servers and can be either stateless or stateful. Stateless proxy servers do not maintain state information
about the SIP session and therefore tend to be more scalable.However, many standard application functionalities, suchas
authentication, authorization, accounting, and call forking, require the proxy server to operate in a stateful mode bykeeping

Fig. 2. SIP Stateful Proxying with Authentication

different levels of session state information. Therefore,we focus on stateful SIP proxying in this report. Figure 2 shows a
typical message flow of stateful SIP proxying with authentication enabled.

Two SIP UAs, designated by User Agent Client (UAC) and User Agent Server (UAS) represent the caller and callee of a
multimedia session. The hashed circle around the proxy indicates that this is the server that we are measuring (“system under
test”). In this example, the UAC wishes to establish a session with the UAS and sends anINVITE message to the proxy.
The proxy server enforces an optional proxy authenticationfeature and responds with a407 Proxy Authentication
Required message, challenging the UAC to provide credentials that verify its claimed identity (e.g., based on MD5 digest
algorithm). The UAC then retransmits theINVITE message with the generated credentials in theAuthorization header.
After receiving and verify the UAC credential, the proxy sends a100 TRYING message to inform the UAC that the message
has been received and that it needs not worry about hop-by-hop retransmissions. The proxy then looks up the contact address
for the SIP URI of the UAS and, assuming it is available, forwards the message. The UAS, in turn, acknowledges receipt
of the INVITE message with a180 RINGING message and ring the callee’s phone. When the callee actually picks up the
phone, the UAS sends out a200 OK. Both the180 RINGING and200 OK messages make their way back to the UAC
through the proxy. The UAC then generates anACK message for the200 OK message. Having established the session, the
two endpoints communicate directly, peer-to-peer, using amedia protocol such as RTP [38]. However, this media sessiondoes
not traverse the proxy, by design. When the conversation is finished, the UAC “hangs up” and generates aBYE message that
the proxy forwards to the UAS. The UAS then responds with a200 OK which is forwarded back to the UAC.

SIP proxy authentication is an optional operation, typically done between a UA and its first hop SIP proxy server. While
the example above shows a single SIP proxy along the path, in practice it is common to have multiple proxy servers in the
signaling path. The message flow with multiple proxies will be similar, except that the proxy authentication is usually only
applicable to the first hop.

C. Connection Management with SIP/TLS

SIP can operate over different transport protocols, both reliable and unreliable. Since TLS requires a reliable transport and
TCP is the dominant reliable transport protocol in the Internet, all our evaluations use TCP. A TCP connection is first established
between endpoints, and then a TLS handshake occurs to negotiate the TLS session. Once the TLS session is established, the
SIP signaling messages will be passed to the TLS layer and encrypted.

When a connection oriented transport such as TCP is used, theconnection management policy needs to be defined. In a
multi-hop SIP server network scenario, it is generally preferable to maintain a single long-lasting connection between two
interconnected proxy servers. All SIP messages between thetwo proxy servers that go through the same existing connection
can avoid the per-session connection handshake overhead. In contrast, if the proxy server is connected with a SIP UAC or
UAS directly, the proxy typically has to establish separateconnections with each of them since they are located on separate
hosts. Given these observations, we group the possible SIP server connection management configurations into four different

(a) proxy chain (b) outbound proxy

(c) inbound proxy (d) local proxy

Fig. 3. SIP Proxy Operation Modes

modes as shown in Figure II-C. Figure 3(a) shows theproxy chain mode, where the proxy server interconnects two other proxy
servers in a chain fashion. Only one connection is needed foreach neighboring proxy server in this case. Figure 3(b) shows
the outbound proxy scenario, where the proxy accepts multiple connections from UACs but only establishes a single outgoing
connection with another proxy server. Figure 3(c) is theinbound proxy scenario, where the proxy server under test accepts a
single connection from an upstream proxy server and establishes multiple connections to individual UASes. In Figure 3(d),
the proxy server under test connects UACs and UASes directly, and therefore accepts both incoming connections and creates
outgoing connections simultaneously.

SIP proxies usually support all these four modes of operation, thus this characterization is somewhat logical rather than
physical. For example, a SIP proxy operating in the middle ofa proxy chain does not necessarily interconnect only a single
pair of proxy servers; it could well connect a number of different proxy pairs. Similarly, an outbound proxy might connect
to more than one upstream proxy. The four modes thus describethe full range of connection management behavior for SIP
proxies, from completely persistent connections to a smallset of nodes (the proxy chain mode) to non-persistent connections
where each call requires a connection setup and teardown (the local proxy mode). In addition, the inbound and outbound cases
distinguish where connections are passively accepted (theinbound case) vs. those that are created (the outbound case). While
in practice real proxy behavior will lie somewhere in the middle of these extremes, the characterization lets us explorethe
design space fully.

Since we run TLS over TCP, the connection management scenarios described for TCP is equally applicable to the TLS case,
but with one addition: the session reuse case. Thus there arethree possible options for TLS. First is creating a new session
from scratch, requiring both a new TCP connection and a new TLS session. Second is using a persistent existing session, with
an established TLS session and TCP connection. Third is re-using an earlier TLS session, requiring a new TCP connection
but performing TLS session reuse rather than a full new TLS session.

III. E XPERIMENTAL METHODOLOGY

Here we discuss the software and hardware utilized in our experiments. We also present any software tuning performed.
Several subtle software bugs were exposed by driving the system with high loads that had a large number of TCP or TLS
connections. We also describe the necessary changes and fixes we made where appropriate. Additional information about
operating system parameter configuration is provided in Appendix B.

A. Test Matrix and Evaluated Test Cases

The biggest advantage of differentiating the four SIP server connection modes (chain, outbound, inbound, local proxy)as
in Section II-C is to reduce the complexity and reveal actualcontributing components of the system in different scenarios.
Indeed, each of the first three connection modes allows us to examine a different aspect of the system in terms of TLS cost
evaluation. For the proxy chain scenario, since there is no additional connection establishment cost once the signaling has
started, it allows us to solely evaluate the cost impact incurred in TLS bulk data encryption. The outbound and inbound proxy
scenarios include per-session connection management, therefore allowing us to assess the additional cost impact associated
with the TLS handshake phase, where the proxy server acts as the TLS client side and the TLS server side, respectively.
Finally, the forth connection mode, local proxy mode, givesus an overall view combining all the aspects involved in the first
three scenarios.

TABLE I
OVERALL TEST MATRIX

TCP/TLS TLS TLS TLS SIP
Multiple Session Mutual Cipher UAC

Configuration Connections Reuse Authentication Suite Auth.
Left Right Left Right Left Right

Proxy Chain N N N N N N any B
Outbound Proxy Y N B N B N any B
Inbound Proxy N Y N B N B any B
Local Proxy Y Y B B B B any B

Given the four connection management mode characterization, we can obtain the whole test scenario space by enumerating
all the configuration variables. To better understand the possible test cases, we show a unified logical component graph of the
testbed in Figure 4. The proxy server in the middle represents the server under test. Its function is logically split to a UAS-like
component (UASL), which interacts with the UAC in the left (UACL), and a UAC-like component (UACR) which interacts
with the UAS in right side (UASR). The whole testbed is split into the left path and the right path, which consists of the left
pair and the right pair of the UAC and UAS, respectively.

In proxy chain and local proxy modes, the UACL and UASR represent the actual UAC and UAS. In outbound proxy mode,
the UACL represents the actual UAC but the UASR represents the UAS-like component of the incoming proxy server that
is connected to the proxy server under test. In inbound proxymode, the UACL represents the UAC-like component of the
outgoing proxy server that is connected to the proxy server under test, and the UASR represents the actual UAS.

UACL UASRUASL UACR

Left
Path

Right
Path

Fig. 4. Logical component graph of the SIP testbed

Different number of configuration variables is available for different scenarios. When UDP is used as the transport protocol,
the only configuration variable we concern about is whether SIP proxy authentication is enabled. The cases with TCP and
TLS transport are much more complicated because of the connection management possibilities as discussed in Section II-C.
TCP and TLS tests may use single connection or multiple connection mode, and may have SIP proxy authentication enabled
or disabled. If TLS is used, there are also the TLS session reuse, TLS mutual authentication, TLS cipher suite as configuration
variables. In Table I we list the mapping between the configuration options and the four proxy connection modes for the TCP
and TLS cases.

The “Left” and “Right” in the table represents the “Left Path” and “Right Path” as in Figure 4. The content entry value “N”
means “No”, value “Y” means “Yes”, and B means both “Yes” and “No” are applicable. The only options applicable for TCP in
Table I are the multiple connections option and the SIP proxyauthentication option. For TLS, we can summarize three simple
configuration rules for all scenarios from Table I: first, when a path (either the left or the right one) is in single connection
mode (meaning value “N” for the “Multiple Connections” entry), connection handshake specific options do not apply. When
a path (either the left or the right one) is in multiple connections mode (meaning value “Y” for the “Multiple Connections”
entry), all connection handshake specific options apply. Second, the TLS cipher suite options apply to all scenarios. Third, the
SIP proxy authentication options apply to left path multiple connections mode only (corresponding to multiple UAs connecting
to their first hop SIP proxy server).

Expanding the whole test space in Table I results in numerousconfiguration scenarios which are both intractable and
unnecessary. We make the following decisions to narrow downthe cases towards a workable test space. First, for TLS cipher
suite, since the SIP standard [34] already specifies the mandatory TLS RSA WITH AES 128 CBC SHA cipher suite and a
recommended TLSRSA WITH 3DES EDE CBC SHA cipher suite, we focus on these two cipher suites only. Inparticular,
since the impact differences of these two cipher suites are mainly on the bulk data encryption phase, we test both cipher

suites only in the proxy chain mode which is specifically meant to examine the impact of TLS bulk data encryption. For all
other three proxy modes, we test the mandatory TLSRSA WITH AES 128 CBC SHA only. Second, we enable SIP proxy
authentication only in the outbound proxy and local proxy scenario, which is a common setting. Third, we test the TLS session
reuse and TLS mutual authentication separately to understand each of their impacts. Fourth, when both the left path and the
right path can apply TLS session reuse or TLS mutual authentication, both paths have the same setting. These decisions reduce
our test space to16 test configurations for TCP and TLS. Adding the two UDP configurations, we have a total of18 test
configurations.

B. OpenSIPS SIP Server

The SIP server we evaluated is Open SIP Server (OpenSIPS) version 1.4.2 [25], a freely-available, open source SIP proxy
server. OpenSIPS is a fork of OpenSER, which in turn was a forkof SIP Express Router (SER)[14]. All these proxy servers
are written in the C language, use standard process-based concurrency with shared memory segments for sharing state, and
are considered to be highly efficient. In configurations involving proxy authentication where a user database is required, we
use MySQL-5.0.67 [24], which we populated with10, 000 unique user names and passwords.

We made several modifications to OpenSIPS in order to supportall of our identified test cases in Section III-A. In particular,
we added a connection mode where OpenSIPS will establish a new connection to a UAS upon a new call, even if the UAS has
the same IP address. This is needed to test the multiple connection mode between the proxy server and UAS using a limited
number of UAS machines. We also added options to OpenSIPS to request TLS session reuse when acting as a TLS client,
and to request for TLS mutual authentication when it is acting as a TLS server.

The OpenSIPS “maximum number of TCP connections” parameterlimits the number of TCP connections the server can
handle. This value must be large enough so that new incoming TCP connections will not be dropped due to TCP connection
number overflow. Although the server default value of2, 048 is sufficient in most of our test cases, in high load test cases
involving multiple connections between the proxy server and the UAS, we need to increase the value to8, 192. We also increased
the sizes of the TCP connection hash tables in OpenSIPS (TCPID HASH SIZE and TCPALIAS HASH SIZE) from1, 024

to 2, 048. One unexpected parameter that initially prevented us fromrunning high load tests with SIP proxy authentication
is the “Nonce index” value in OpenSIPS. It turns out that the default MAX NONCE INDEX value used to create nonce
for proxy authentication is too small and could exhaust easily at high load. When the nonce could no longer be generated
authentication cannot proceed and the server will simply reject calls. We increased the default MAXNONCE INDEX value
from 100, 000 to 10, 000, 000. This change alone increased the throughput results dramatically, e.g., in the proxy chain scenario
the peak throughput with SIP proxy authentication increased by close to an order of magnitude.

OpenSIPS has a children parameter that specifies the number of child processes that should be forked to simultaneously
handle signaling messages. We started our evaluation with the default setting of children=4. When we compare the results with
another setting children=1, we found that surprisingly thelatter consistently performs equally well or better than the former. A
detailed profile and Cycles Per Instruction (CPI) analysis on selected scenarios reveals that in the TCP case, although the CPI
is indeed higher in the children=1 case, the number of instructions is significantly higher in the children=4 case, particularly
in the kernel, so much so that it is more significant than the CPI. This suggests context-switching overhead in terms of code
paths is the dominant cause leading to the difference. The trends still hold in the TLS case, although less pronounced. For this
reason, we set children=1 in our test evaluations below.

C. SIPp Client Load Generator

We use another freely available open-source tool, SIPp [13]to generate SIP traffic. SIPp allows a wide range of SIP scenarios
to be tested, such as UAC, UAS and third-party call control (3PCC). SIPp is also extensible by writing third-party XML
scripts that define new call flows; we wrote new flows that were not included with SIPp to handle authentication. SIPp has
many run-time options we took advantage of, such as multipletransport (UDP/TCP/TLS) support; MD5-based hash digest
authentication, and scriptable support to allow calls to begenerated from a list of users. We use the SIPp release from August
26th, 2008. We also added additional functionality to SIPp to accommodate all our test cases. Specifically, we added options
to SIPp to request TLS session reuse when acting as the TLS client and to request TLS mutual authentication when acting as
the TLS server. SIPp has a maxsocket option which sets the maximum allowed number of simultaneously open sockets. In
test cases where each SIP call will create a new connection, we set maxsocket=65535. The TLS support library for SIPp is
a statically-compiled version based on OpenSSL [26] release 0.9.8i (which is the latest release at the time of the compilation).

D. Hardware and Connectivity

The server hardware we use has2 Intel Xeon 3.06 GHz processors with4 GB RAM and 34 GB disk drives. However,
for our experiments, we only use one processor. We use10 client machines, six of which have 2 Intel Pentium 43.00GHz
processors with1 GB RAM and80GB hard drives. The other four have 2 Intel Xeon3.06GHz processors with4 GB RAM
and36 GB hard drives. The server and client machines communicate over copper Gigabit or 100Mbit Ethernet. The round trip
time measured by theping command from the client to the server is around0.15ms.

E. Operating System Software

The server uses Ubuntu 8.04 with Linux kernel 2.6.24-19, OpenSSL 0.9.8.g, and oprofile 0.9.3. The clients use Ubuntu
with either a 2.6.22 kernel or a 2.6.24 kernel. To support large numbers of TCP connections, we modified the runtime Linux
kernel configurations via the sysctl command to increase thenumber of available ephemeral ports to55, 000 and to increase
the maximum number of open file descriptors to1, 000, 000. We encountered an SSL library failure at the SIPp load generator
side when generating high loads. After examining the OpenSSL error queue in more detail, the ERRerror string is found to
be error:1409F07F:SSLroutines:SSL3WRITE PENDING:badwriteretry. A bug fix is found at [12]. This fix wassubmitted
in 2003 but had not yet been incorporated into the OpenSSL release. We therefore recompile SIPp using OpenSSL version
0.9.8i source with this fix included. The OpenSIPS server machine uses the existing OpenSSL version 0.9.8g. The bug does
not manifest itself there and keeping the original OpenSSL on the server makes profiling more convenient.

F. Workload and Performance Metrics

The workload is a standard SIP call flow provided by SIPp illustrated in Figure 2. There is no call hold time. Our main
metrics are server throughput in calls per second as reported by SIPp and server profile CPU events as reported by oprofile.
We also measure server CPU utilization. All our test runs last for 120 seconds after a 30 second warm-up time. All metrics
are the average of three consecutive test runs.

IV. RESULTS AND ANALYSIS

Fig. 5. Peak Throughput: Proxy Chain

Different proxy scenarios and configurations can incur significantly different overheads and result in very different limits on
throughput. In order to understand and compare the component costs in different scenarios, we start with the relativelysimple
proxy chain scenario and then examine the more complex scenarios of outbound proxy, inbound proxy, and local proxy. For
each scenario, we measure peak throughput and then use the CPU profiles to understand and explain the performance costs.

A. Proxy Chain

Figure 5 shows the peak throughput in calls per second (cps) for the proxy chain scenario using several configurations. Each
bar shows the performance for a different configuration. Thefirst four bars have SIP proxy authentication disabled and the next
four have SIP proxy authentication enabled. The tests include TCP only, TLS with the TLSRSA WITH AES 128 CBC SHA
cipher suite (abbreviated as TLS-AES), and TLS with the TLSRSA WITH 3DES EDE CBC SHA cipher suite (abbreviated
as TLS-3DES). Recall that in this scenario, no connection setup overheads are incurred. The average CPU utilization ranges
from 95% to 100% in all the peak test cases except for the UDP and TCP without authentication cases, which is about70%

and 85%, respectively. Note that not all the tests could reach full CPU utilization because there is not always quite enough
number of client machines to fully load the testbed. We take this factor into account in our cost model analysis in SectionV
by scaling by CPU utilization appropriately.

We see from Figure 5 that the peak throughput using TCP achieves about47% of the throughput using UDP, when SIP proxy
authentication is not used. When authentication is enabled, TCP provides78% of the corresponding UDP performance. Adding
TLS to the scenario results in even more substantial performance reductions. When SIP proxy authentication is not enabled,
TLS-AES achieves60% of the corresponding TCP throughput, and TLS-3DES achieves47% of the TCP throughput. When
proxy authentication is enabled, TLS-AES achieves76% of the corresponding TCP throughput and TLS-3DES achieves68%

of the TCP throughput. While it would be convenient to simplyattribute the extra overheads to the corresponding encryption
algorithms, it turns out the reality is more complex. To better understand the overheads, we turn to the CPU profiles generated
by oprofile.

Fig. 6. CPU Profile Cycle Costs: Proxy Chain (50 cps)

Our approach is to obtain a CPU profile of each configuration run at the same load level of 50 calls per second so that results
across configurations can be compared meaningfully. As components are added (e.g., TLS vs. no TLS) or changed (AES vs.
3DES), the attendant CPU costs will manifest themselves in the profiles. This assumes costs scale relatively linearly with load
and exhibit the same proportions at the peak as they do at 50 cps, which is not always the case. To test the accuracy of this
assumption, we compare the observed peak throughputs with ones extrapolated based on the CPU cycle costs observed. On
average, the estimates match the observed peaks within 15 percent . Those are presented in Section V-B.

Figure 6 shows the number of non-idle CPU cycles consumed by the server in the proxy chain scenario for each configuration
during the duration of the test. The mapping between the oprofile reported functions and the categories shown in the figureis
listed in Appendix VII. We see that the total cost of the baseline UDP case without SIP authentication is about 144 thousand
CPU cycles. The most significant cost components are kernel (68k) which accounts for47%, and the sum of OpenSIPS-Core
and OpenSIPS-Model (54k), which contributes another38% of the total cost. When TCP is used instead of UDP, the total
costs increase 152k cycles or over100%. Again most of the increase belongs to Kernel (60k) and the sum of OpenSIPS-Core
and OpenSIPS-Module (71k).

We see that adding TLS-AES introduces another50% of additional overhead, roughly 450k cycles vs. 300k cyclesfor the
TCP case. TLS-3DES is similar, with roughly 525K cycles, andas would be expected, the differences in total cost between
TLS-AES and TLS-3DES are almost solely contributed by the cost difference in cryptographic operations.

Half of the 150K increase from TCP to TLS-AES is directly contributed by TLS operations, and most of the remainder
is relatively evenly shared by increases in Kernel and OpenSIPS-Core. Interestingly, AES itself only adds about 19K cycles
in cost; MAC overheads are higher at 25k cycles. MAC overheads are incurred by the bulk encryption algorithm, since each
message is verified for authenticity using the MAC algorithms. MAC overheads are roughly equivalent regardless of the choice
of AES or 3DES. While 3DES is over 4X as expensive as AES (93K vs. 19K cycles), the relative difference between the two
complete software stacks is only about 17% (525K vs. 450K). We expect AES to be faster since it is a more recent cipher
than 3DES and was designed for performance.

Fig. 7. Peak Throughput: Outbound Proxy

Other TLS overheads come from other components in the OpenSSL library. For example, in the TLS-AES case, there are

other libcrypto functions (10K) and libssl (11K). Thus a non-trivial component of SSL overheads is from the using the SSL
mechanisms, such as allocating, freeing, maintaining, andlooking up SSL session state.

Comparing the TCP case and the two TLS cases, the CPU profiles do not show the increases in kernel and OpenSIPS-Core
centering on any specific functions. Between the two TLS cases themselves, the cost of Kernel and OpenSIPS-Core are quite
similar.

The major difference when SIP proxy authentication is enabled is the additional database cost, which ranges from16−29%

of the total cost in each case. When the database overhead is included, TCP will introduce32% overhead over UDP. TLS-AES
and TLS-3DES will incur an additional30% and44% over TCP, respectively. The rest of the cost contributions are similar to
when SIP authentication is not enabled, because the authentication database functions are orthogonal to the TLS functions.

B. Outbound Proxy

Figure 7 shows the peak throughputs of the outbound proxy scenario for several configurations. Recall that in the TCP or
TLS cases of this scenario, each call results in a new connection being established with the server, as opposed to the proxy chain
scenario above. Each bar again indicates a different configuration, namely UDP, TCP (and no TLS); TLS; TLS with mutual
authentication, and TLS where session reuse occurs on each TLS connection. Each configuration has SIP authentication enabled.
Since the choice of AES or 3DES only affects the bulk data encryption overheads, which we examined in Section IV-A, for
simplicity we restrict our experiments with TLS to use only AES for the remainder of this paper. The average CPU utilization

Fig. 8. CPU Profile Cycle Costs: Outbound Proxy (50 cps)

in each case is around90%. We see that the peak throughput in TCP case is around58% of the baseline UDP case. The TLS
case is approximately56% of the TCP case. Within the TLS cases, adding TLS mutual authentication reduces throughput
about20%, while enabling session reuse increases throughput about20%. To explain these differences we again turn to the
profiles.

Figure 8 shows the CPU profiles for the different outbound proxy configurations, again at the 50 calls per second load level.
Using TCP introduces about47% more or 271K of overheads compared to using UDP. Within this increase, Kernel costs
contribute 144K, while OpenSIPS-Core and OpenSIP-Module contribute 102K. The remaining 25K is contributed by libc and
other functions.

The use of TLS introduces75% of additional overhead compared to the TCP case. TCP consumes about 840K cycles whereas
TLS costs about 1,470K cycles. Much of this increase comes from RSA (233K cycles) because in this configuration the proxy
needs to perform one of the most costly operations in the TLS handshake: RSA decryption of thepre_master_secret
using its private key. Another major component of the increase is from MAC processing (65K cycles), which is not only used
to verify the encrypted messages but also to verify the server certificate and construct themaster_secret. Other OpenSSL
overheads such as libssl (34K) and other libcrypto functions (36K) also contribute.

Enabling TLS mutual authentication incurs about 1,790K cycles or an additional 330K over the baseline TLS, most of
which comes from increased RSA costs (160K). Recall in this case the server requests the client’s certificate which the server
verifies using RSA public key decryption. In addition, the server performs another RSA public key decryption for the client’s
certification verification message and also verifies the certificate using the MAC algorithm. Indeed, we see MAC costs increase
by 10K cycles when mutual authentication is used. Kernel costs also increase by 45K cycles, presumably due to additional
socket layer crossings and network packets transmitted.

Fig. 9. Peak Throughput: Inbound Proxy

However, enabling TLS session reuse reduces the overhead by15% compared to the baseline TLS case, or by about 200K
cycles. Most of this overhead is explained by the reduction in RSA costs, which shrink from 233K cycles to only 10K cycles.
This is because in the session reuse case, no key exchange andcertificate verification is required. MAC costs remain, however,
since new cryptographic keys are still computed for data encryption. Since SIP authentication is enabled, we see database cost
of about29% in UDP and20% in TCP and10 − 15% in the TLS case.

It is worth noting that the TLS mutual authentication test above includes SIP proxy authentication at the same time. One
might argue that SIP proxy authentication may not be necessary with TLS mutual authentication where the server authenticates
the client anyway. The point here is that the outbound proxy mode commonly requires not only user authentication, but also
user authorization. The cost of SIP proxy authentication above is mainly attributed to the database operation, which isindeed
for user authorization that is necessary even when TLS mutual authentication is used.

C. Inbound Proxy

Figure 9 shows the peak throughput of the inbound proxy scenarios. The configurations are the same as those in Figure 7 in
Section IV-B, except that SIP authentication is not enabled. The Figure shows two versions of OpenSIPS: the original version
and one with a modification we developed, denoted “with timeout fix” in the graph. We start by explaining the performance
problem we discovered and how we solved it.

We examined the original OpenSIPS CPU profile under the peak throughput for TCP and TLS. Surprisingly, we found that
50% of the CPU cycles in the TCP case and20% percent of the CPU cycles in the TLS case are spent in two functions,
tcp_main_loop and tcp_receive_loop. More detailed profiling reveals that the overhead in the twofunctions are
primarily the cost of two timeout mechanisms used to close the TCP connections which are no longer in use. In the inbound
proxy case, the timeout mechanism becomes prominent because the UAS in our tests does not close the TCP/TLS connection
when the call is over. There can be thousands of simultaneousTCP connections existing in the TCP connection table. The
current server code calls atimeout function every time theepoll mechanism returns when events are detected. During
each call to thetimeout function, the entire TCP connection hash table is traversed. Therefore, at high loads when the hash
table has thousands of entries, the time spent in the timeoutfunction becomes much larger than is the case under lower load.

We applied a fix to the existing OpenSIPS TCP connection timeout mechanism. Observing that the timeout is based on a
time tick with one second resolution, it makes no sense to enter the timeout function more than once per second. We therefore
added a time tick check before calling the timeout function.If the program has called the timeout function during the current
time tick value already, then it will not enter the timeout function until the time tick value is advanced. This simple fix turned
out to have a drastic effect on performance involving TCP andTLS, as shown in Figure 9.

As can be seen, the TCP case and the TLS with session reuse scenario enjoy the most obvious boosts in throughput, by
about200% and 150% respectively. For example, in the TCP inbound proxy test case, the contribution of the two timeout
functions to the total overhead reduces from50% to a negligible0.6%, and the total cost drops by73%. In addition, kernel
costs shrink by43%. CPU utilization at the200 calls per second load level reduces from95% to 20%. The CPU utilizations
at the peak throughput values with the timer fix are in the range of 80% to 90%.

The other two scenarios, TLS and TLS with mutual authentication, also see performance increases but the differences are
less dramatic. The reason is that in the latter two scenarios, the proportion of cryptographic overheads take a greater part of the
total cost, so reducing the OpenSIPS and kernel overheads has a relatively smaller impact. For the remainder of this Section
we focus exclusively on OpenSIPS results where the timeout fix has been applied.

Fig. 10. CPU Profile Cycle Costs: Inbound Proxy (with TimeoutFix)

Fig. 11. Peak Throughput: Local Proxy

From figure 9, we see that the peak throughput with TCP is about24% of the UDP case. The peak throughput of TLS is
approximately28% of the TCP case. Within the TLS cases, adding TLS mutual authentication reduces throughput by29%,
while enabling session reuse increases throughput by100%. We again turn to the profiles for explanation.

Figure 10 shows the CPU profiles for the several inbound proxyconfigurations where the timeout fix has been applied. In
general, using TCP incurs174% (250K) of additional overhead compared to using UDP, 118K ofwhich comes from increase
in Kernel and 94K from increases in OpenSIPS-Model and OpenSIPS-Core. The remainder comes from libc (8K) and other
functions (30K). The use of TLS introduces over233% of additional overhead compared to the TCP case (1,315K cycles vs.
394K). 212K cycles are contributed by RSA, 173K by other libcrypto processing, 93K by MAC processing, 44K by libssl,
and 23K by AES. Kernel overheads increase by 150K and OpenSIPS-Core by 110K.

Enabling mutual authentication incurs an additional42% overhead (550K cycles) over the baseline TLS. The majority of
that increase comes from RSA (260K). MAC processing is also increased by 310K.

Enabling TLS session reuse reduces costs by46% compared to the base TLS case, with total costs falling from 1,315K
to 710K or about 600K cycles. Reduced RSA processing contributes 200K of those reductions; other libcrypto costs drop by
135K; MAC overheads are reduced by 40K; libssl costs shrink by 20K.

In this configuration, the main RSA costs in the normal TLS case come from the proxy verifying the UAS’ certificate and
the proxy encrypting thepre_master_secret to be sent to the UAS. The additional increase in RSA overheads in the
mutual TLS configuration is mainly because the proxy needs tosign the client authentication message using its private key.

An interesting observation from this figure is the cost of MACfunctions, which are substantially higher than in the previous
proxy scenarios. This is because the proxy needs to verify the certificates presented by the UAS, which was not present in
earlier cases. In addition, in the mutual TLS case, the proxyneeds to perform RSA encryption using its own private key and
to sign the certificates using the MAC algorithm. These overheads are exhibited in the profiles. Furthermore, in the TLS with

Fig. 12. CPU Profile Cycle Costs: Local Proxy (with Timeout Fix)

session reuse case, the MAC costs are significantly reduced,indicating that a large amount of the MAC cost is associated with
the RSA key exchange phase, rather than during the bulk data encryption.

D. Local Proxy

Figure 11 shows the peak throughputs of various configurations in the local proxy scenario, both with and without the
timeout fix described in Section IV-C. Configurations are thesame as in Figure 7; SIP authentication is enabled. We see the
timeout fix has a substantial impact on performance for both the baseline TCP case and for TLS when session reuse is enabled,
where TCP overheads are significant. The timeout fix makes less of an impact on the other TLS cases. For the remainder of
this Section, we focus our analysis on the configurations where the timeout fix is applied.

The average CPU utilizations in the four configurations withthe timeout fix are between80% to 90%. We see that the peak
throughput with TCP is around53% of the UDP case, while the peak throughput with TLS is approximately37% of the TCP
case. Within the TLS cases, adding TLS mutual authentication reduces throughput33%, while enabling session reuse increases
throughput66%.

Figure 12 shows the CPU profile results for the local proxy scenario with the timeout fix. In general, the use of TCP incurs
58% of additional overhead compared to the baseline UDP case. 186K of this is contributed by Kernel, 108K by OpenSIPS-
Core and OpenSIPS-Module, 10K by libc and 30K by other functions. Using TLS introduces over166% of additional overhead
compared to the TCP case. Total cycles increase by 1,500K from 900K to 2,400K. RSA contributes 434K to that increase,
kernel overheads 240K, MAC processing 219K, other libcrypto functions 174K, OpenSIPS-Core 140K, libssl 67K, and AES
36K.

Enabling TLS mutual authentication incurs an additional32% overhead over the baseline TLS, increasing total costs about
800K from 2,400K to 3,170K. Additional RSA overheads contribute 375K of the increase, 125K from kernel, 100K from
MAC, 70K from libcrypto, 45K from OpenSIPS-Core, and 5K fromlibssl.

Enabling TLS session reuse reduces the cost relative to the baseline TLS case by38%. Cycles shrink by 900K from 2,400K
to 1,500K. RSA savings contribute 415K to the difference, MAC 130K, other libcrypto functions 110K, kernel 80K, OpenSIPS
50k, libssl 25k.

The MAC cost is significantly reduced in the TLS with session reuse case, indicating that a large amount of the MAC cost
is associated with the RSA public key exchange phase, as discussed in the inbound proxy case in Section IV-C.

V. A COMPONENT COST MODEL

In this section we present a component cost model to help understand where the overheads in deploying SIP over TLS
are and to aid network administrators in provisioning theirsystems. While clearly performance will vary across systems, our
model helps provide guidance on relative performance across a single system. Thus, if an administrator understands howmuch
server resources are required to support a SIP subscriber base using UDP, the cost model helps them estimate the capacity
relative to that required to support TLS.

A. Constructing the Component Cost Model

Our model is based on decomposing the costs from each scenario into basic building blocks. Costs are derived from the
number of CPU events, as measured by oprofile, that a particular proxy scenario configuration incurs at a load of 50 cps as

described in Section IV. We start from the most simple baseline configuration, proxy chain with UDP, and build up from there,
normalizing that cost as one unit. For example, the baselineproxy chain mode with UDP does not include per-call connection
establishment; this is a cost that will be calculated later.Next, we calculate the incremental overhead of TCP data transfer
by subtracting the CPU events cost for the UDP proxy chain mode from the cost from the TCP proxy chain. Similarly, the
TLS case in the proxy chain mode adds TLS bulk data encryptionoverhead to the plain TCP case. By subtracting the cost
in the plain TCP case from the TLS case, we can obtain the cost of bulk data encryption. As long as the same cipher suite
is used, this cost of bulk data encryption should be the same in all other scenarios. Next, if we look at the inbound proxy
mode, the cost difference between the plain TCP inbound proxy mode and the plain TCP proxy chain mode is caused by
the per-call TCP handshake overheads. Subtracting these two, we can calculate the normalized per-call handshake cost,which
would be applicable also in the TLS inbound proxy mode. Following this approach, we can obtain the modular costs of all
other components for the proxy chain, inbound proxy and outbound proxy scenarios. These costs are plotted in Figure 13.

Fig. 13. Functional Components Cost Model

Figure 13 gives a simple model to compute the SIP proxy costs under varying settings. Now we explain in more detail each
of these functional components and compare them in difference scenarios.

The UDP Data Transfer cost represents the base processing cost over UDP transport. Its main components are OpenSIPS-
Core, OpenSIPS-Module, related kernel and libc costs. These costs are the minimum costs that will incur in any other scenarios.
Therefore, it is used as the base for our cost normalization.

The TCP Data Transfer cost stands for the additional processing cost incurred when TCP is used instead of UDP. This cost
is 1.1, a little larger than the base UDP cost. Using TCP thus more than doubles the cost of SIP processing with UDP.

TLS Encryption cost is the cost for bulk data encryption and decryption in any scenario involving TLS. This cost is determined
by the encryption/decryption algorithm in the TLS cipher suite. In the majority of our tests, we used the AES cipher suitethat
the SIP RFC mandates with a 128-bit key size. The normalized cost of bulk data encryption using AES is1.1, representing
a similar amount of cost increase as the additional TCP data transfer cost. Adding bulk data encryption and TCP thus triples
the cost of UDP with non-encrypted data. In section IV-A, we have seen that using the 3DES cipher instead of AES is50%

more costly, resulting in a250% cost increase over the baseline UDP case.
The Authentication cost represents the cost of the SIP proxyMD5-based digest authentication mechanism. The values are

3 for UDP, 3.2 for TCP and3.6 for TLS, respectively, which are over three times the base UDP data transfer cost. The
authentication cost over TLS is more expensive than the costof TCP due to additional TLS overheads. The sheer majority
of the authentication cost is contributed by database lookup for credential verification. It should be possible to significantly
reduce the database cost by replacing it with an in memory database.

The TCP Client Handshake cost represents the overhead when the proxy needs to open a TCP connection to the next hop
on a per-call basis, as is the case in the inbound and local proxy modes. Similarly, the TCP Server Handshake cost represents
the cost when the proxy must accept and establish a new TCP connection from the previous hop. Our experiments show that
the costs at the TCP client and server side are similar, at between0.6 and0.7 of the base UDP transfer cost.

The TLS Client Handshake cost represents the overhead when the proxy needs to open a TLS session for a call, such as in
the inbound and local proxy modes. The TLS Server Handshake cost represents the overhead when the proxy needs to accept a
TLS session, as in the outbound and local proxy modes. The actual overheads depend on how TLS operates. With the normal
TLS handshake, the cost at the client side and server side are5.3 and 2.8 respectively. When TLS mutual authentication is
enabled, the cost at the client and server side nearly doubles at9.2 and5.1 respectively. With TLS session reuse, the TLS client
side cost reduces by80% to 1.1 and the TLS server side cost shrinks by50% to 1.4. A surprising observation is that the TLS
client side cost is actually much higher than the TLS server side cost in both the normal TLS and TLS mutual authentication
scenarios, which is contrary to the common wisdom [30]. We investigated this problem and identified a performance fix which
significantly cuts the client side cost in the TLS, TLS mutualauthentication and TLS session reuse cases by50%, 55% and
73%, respectively. The fix is described in more detail in Appendix D.

B. Validating the Component Cost Model

Our component cost model is derived at a particular load point of 50 cps. Its applicability on higher load values requires
the assumption that the CPU costs scale linearly as load increases. To test this assumption and verify the model, we took two
steps.

Fig. 14. CPU Scaling Error within Each Proxy Configuration

The first step is to verify that, within a particular proxy scenario configuration (e.g., proxy chain with TLS and session
reuse), the peak throughputs are close to what we would “expect” them to be. In other words, given a throughput of 50 cps for
some configuration, we estimate the peak throughput to be a linear extrapolation based on the CPU utilization at the 50 cps
load level. For example, if for a particular configuration, we see 10% CPU at 50 cps, we expect the peak throughput to be close
to 500 cps. Since different peak throughputs exhibit different CPU utilizations, we scale the estimates based on the utilization
seen at the peak. We calculate the percentage error between the extrapolated estimate and the actual observed peak throughput
in Figure 14. Although there are a few cases where the difference is up to35% to 45% percent, the majority of the scenarios
have much smaller errors. The overall average error is less than15% percent. This indicates the CPU scaling assumption is
reasonably effective.

The second step to verify the model is to check that the relationship between CPU events and CPU utilization is also
linear. The reason is that we wish to use the cost model to predict peak throughput relationships across different scenarios.
Our experience is that the number of CPU events is more stableestimate than CPU utilization, which has higher variability,
particularly at low loads. If the event cost and CPU utilization across different scenarios exhibits a linear relationship, and
since we saw above that throughput scales linearly with CPU utilization, we can similarly scale the event cost within each
scenario. This lets us obtain a predicated peak throughput relationship across different scenarios by taking the inverse of the
cost for each scenario at the 50 cps load level. Figure 15 shows the number of CPU events measured vs. CPU utilization across
all 18 of our peak throughput measurements. The Y-axis presents the CPU event cost as measured by oprofile. The X-axis is
the corresponding CPU utilization for that experiment. We also plot a fitted trend line, which shows a clear linear relationship.
There are a few outlier points which are relatively farther away from the trend line, and as was expected, these are exactly the
points which have the largest CPU utilization scaling errorin Figure 14.

Fig. 15. CPU Events vs. CPU Utilization Across Different Proxy Configurations

C. Using the Component Cost Model

The component cost model can be used in at least two ways. First, given the component costs of a baseline scenario on
a target system, the model offers a simple approach to approximate the relative cost of the SIP server operating at different
modes. For example, the local proxy mode can be considered asa combination of the inbound proxy and outbound proxy
mode. Given the costs of the inbound and outbound proxies, wecan then derive the projected cost of the local proxy mode
from this model. Figure 16 compares the model derived costs and the actual measured costs in the local proxy mode. We
found the difference was between3% to 13%, indicating a close match. Similarly, if we choose to use a different bulk data
encryption algorithm in any of the scenario, we can substitute the cost of the encryption component with that of the new
algorithm and keep the remainder the same.

0

5

10

15

20

25

TCP TLS TLS
MutualAuth

TLS
SessionReuse

N
o
r
m
a
li
z
e
d
 C
o
s
t

Model extrapolated

Actual measurement

Fig. 16. Predicted vs. Actual Measured Cost in Local Proxy Mode

The second and more common use of the functional cost model isto approximate the peak throughput of different scenarios.
Assuming that the cost (and CPU utilization) scales relatively linearly according to the load, as shown in Figure 14 in Section

V-B, the peak throughput should be inversely proportional to the cost. Therefore, if we know the peak throughput of the
baseline UDP proxy chain scenario, we are able to project thepeak throughput of other scenarios with different configuration
combinations.

From Figure 13, we see that depending on whether authentication is enabled, the use of TCP reduces throughput by51%

or 81% over UDP in the proxy chain scenario. When the TCP connectionhandshake and maintenance costs are incurred as in
other scenarios, the throughputs drop by64% in the inbound mode and83% in the outbound and local proxy mode compared
to UDP.

When using TLS, if only bulk data encryption is used as in the proxy chain mode, the model suggests that TLS (with
AES) reduces throughput by35% to 25% depending on whether SIP proxy authentication is enabled. When both bulk data
encryption and TLS handshake costs are incurred in the otherproxy modes, the use of TLS reduces throughput by65% to
70% in the inbound proxy and local proxy modes and43% in the outbound proxy mode. Within the TLS cases, TLS mutual
authentication may reduce the throughput from18% to 25% depending on the proxy mode. When TLS session reuse is enabled,
the throughput is increased by16% in the outbound proxy mode and by50 − 70% in the inbound proxy and local proxy
modes. The reason the improvement is much more dramatic in the latter scenarios is that the baseline TLS throughput in these
modes is much smaller than the baseline throughput in the outbound proxy mode. This is due to the higher cost when the SIP
server is acting as a TLS client.

VI. RELATED WORK

The performance cost of SSL/TLS has been studied by a number of researchers, however, almost all these studies are based
on SSL/TLS Web servers. Apostolopoulos et al. [3] found thatthe overhead due to TLS can reduce the number of HTTP
transactions handled by up to two orders of magnitude. Kant et al. [15] investigated the architectural impact of SSL, and
concluded that the use of SSL increases the compositional cost of transactions by a factor of5− 7. Zhao et al. [42] provided
an oprofile-based anatomy of SSL processing for an SSL Web server. They found that about70% of the total processing time
of an HTTP over SSL transaction is spent in SSL processing. The execution breakdown of the individual component costs vary
along the request file size. The RSA public key operations could take up to90% of the total SSL processing cost when the
file size is small. Symmetric (private) key encryption is negligible for small file sizes, but can increase significantly as the file
size become larger. Coarfa et al. [5] measured the difference of server throughput by selectively replacing TLS operations with
no-ops, instead of using a CPU profiler. Their results show that RSA computations are the single most expensive operationin
TLS, which accounts for13−58% of the total time spent under different available server CPUcycles and workload conditions.
Other TLS costs are balanced across the various cryptographic and protocol processing steps. They also determined thateven
if the RSA operation costs can be reduced to zero, there is still a big performance difference between a TLS Web server and
a traditional non-secured Web server.

Zeng and Cherkaoui [41] studied the performance of TLS on a Common Open Policy Service (COPS) over TLS environment.
The results of their study showed that establishing a COPS over TLS session took about1001 times as much as needed for a
pure COPS connection without TLS.

Many researchers have studied SIP server performance, albeit without TLS. Schulzrinne et al. presented SIPstone [39],a
suite of SIP benchmarks for measuring SIP server performance on common tasks. Cortes [6] measured the performance of
four different stateful SIP proxy server implementations over UDP and reported throughput results from90− 700 cps. Nahum
et al. [18] showed experimental performance results of the OpenSER SIP server under different scenarios including stateful
and stateless proxying, TCP and UDP transport, with and without SIP proxy authentication. Their results indicated thatany of
these configurations can affect performance by a factor of2− 4. The SIP over TCP transport scenario in [11] is limited to the
TCP single connection mode which corresponds to the proxy chain scenario in this paper. Oho and Schulzrinne [23] studied
the performance of the SIPd [37] SIP server over UDP and TCP transport. Their TCP tests include the multiple connection
mode between the SIP proxy and the UA similar to the local proxy scenario of this paper. The difference is that in [23]
the UAS closes a TCP connection after each transaction whilein our tests the proxy server is responsible for tearing down
the connection after the SIP session is over. The reported throughput is around900 cps for UDP and700 cps for TCP. Ram
et al. [27] provide more understanding of the impact of TCP onSIP server performance using OpenSER. They show that a
substantial component of the performance loss from using TCP is due to the process architecture in OpenSER and provide
improvements.

Salsano et al. [35] measured the performance of a Java-basedSIP proxy server over UDP, TCP and TLS. This is the only
work we are aware of that explicitly reports SIP over TLS performance. However, their SIP over TLS test is fairly simplified:
they only tested the single connection mode, and the peak throughput of the server is at the order of10 cps, which may
undermine the representativeness of the results.

VII. C ONCLUSIONS

We have evaluated and analyzed the impact of using TLS as a transport on SIP server performance versus the standard
approach of using SIP over UDP. Using an experimental testbed with the OpenSIPS server, OpenSSL, Linux, and an Intel-based

server, we show that performance can be reduced significantly. We use application, library, and kernel profiling to illustrate
where different costs are incurred (e.g., extra RSA overheads when mutual authentication is used) and how they can be avoided
(i.e., RSA costs are nearly eliminated when session reuse iseffective).

In the best case, the baseline UDP performance is about two and half times that with TLS (the outbound proxy scenario with
TLS session reuse); in the worst case, UDP is nearly 20 times the performance than with TLS (the local proxy with TLS and
mutual authentication). The performance results depend primarily on whether and how frequent TLS connection establishment
is performed, since TLS session negotiation incurs expensive RSA public key operations. In turn, session negotiation depends
on how the SIP proxy is deployed (as an inbound, outbound, or local proxy) and how TLS is configured (with mutual
authentication or session reuse). Bulk encryption costs such as 3DES or AES, in contrast, are minimal, typically no morethan
7 percent.

Implementation plays a role as well. We found several performance bugs in OpenSIPS and OpenSSL, despite the fact that
they have mature code bases and large numbers of users. When fixed, performance improved in some cases by up to a factor
of 3.

Network operators considering deploying SIP over TLS will need to consider the extra resources required to provide the same
service quality as would be the case with UDP. Costs can be reduced by maximizing the potential for persistent TLS sessions,
which avoid heavy connection setup costs. These lessons maybe appropriate for other protocols that use TLS, especiallyif
they tend to have short messages. We provide a measurement-driven cost model for operators to use in provisioning SIP
servers with TLS. Our cost model predicts performance within 15 percent on average.

REFERENCES

[1] SIP forum. http://www.sipforum.org.
[2] VoIP security alliance. http://www.voipsa.org.
[3] G. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How much does it really cost? InIEEE InfoCom, New York, NY, March 1999.
[4] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitima, and D. Gurle. Session initiation protocol (SIP) extension for instant messaging. RFC 3428

(Standard), December 2002.
[5] C. Coarfa, P. Druschel, and D. Wallach. Performance analysis of TLS Web servers. InProceedings of the Internet Society Symposium on Network and

Distributed System Security (NDSS), San Diego, CA, February 2002.
[6] M. Cortes, J. Ensor, and J. Esteban. On SIP performance.IEEE Network, 9(3):155–172, Nov 2004.
[7] X. Li D. Butcher and J. Guo. Security challenge and defense in VoIP infrastructures.Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 37(6):1152–1162, Nov. 2007.
[8] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard), January 1999. Obsoleted by RFC 4346, updated by RFC 3546.
[9] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), 2008.

[10] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-22(6):644–654, November 1976.
[11] E. Nahum and J. Tracey and C. Wright. Evaluating SIP server performance. InACM SIGMETRICS Performance Evaluation Review, volume 35, pages

349–350, June 2007.
[12] RT for openssl.org. Ticket no. 598. http://rt.openssl.org/Ticket/Display.html?id=598\&user=guest\&pass=guest.
[13] R. Gayraud and O. Jacques. SIPp. http://sipp.sourceforge.net.
[14] IPTel.org. Sip express router (SER). http://www.iptel.org/ser.
[15] K. Kent, R. Iyer, and P. Mohapatra. Architectural impact of secure socket layer on Internet servers. InInternational Conference on Computer Design

(ICCD), pages 7–14, 2000.
[16] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed Standard), December 2005.
[17] A. Keromytis. Voice over ip: Risks, threats and vulnerabilities. In Proceedings of the Cyber Infrastructure Protection (CIP) Conference, June 2009.
[18] E. Nahum, J. Tracey, and C. Wright. Evaluating SIP proxyserver performance. In17th International Workshop on Networking and Operating Systems

Support for Digital Audio and Video (NOSSDAV), Urbana-Champaign, Illinois, USA, June 2007.
[19] NIST. Data encryption standard DES, December 1993. http://www.itl.nist.gov/fipspubs/fip46-2.htm.
[20] NIST. Digital signature standard DSS, May 1994. http://www.itl.nist.gov/fipspubs/fip186.htm.
[21] NIST. Secure hash standard, federal information processing standards publication 180-1, April 1995. http://www.itl.nist.gov/fipspubs/fip180-1.htm.
[22] NIST. Advanced encryption standard (AES), federal information processing standards publication 197, November 2001. http://www.csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.
[23] K. Ono and H. Schulzrinne. One server per city: Using TCPfor very large SIP servers. InLNCS: Principles, Systems and Applications of IP

Telecommunications. Services and Security for Next Generation Networks, volume 5310/2008, pages 133–148, Oct 2008.
[24] The MySQL Project. MySQL database server. http://www.mysql.org.
[25] The OpenSIPS Project. The open SIP server (OpenSIPS). http://www.opensips.org.
[26] The OpenSSL Project. The OpenSSL library. http://www.openssl.org.
[27] K. Kumar Ram, I. Fedeli, A. Cox, and S. Rixner. Explaining the impact of network transport protocols on SIP proxy performance. InIEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages 75–84, Texas, USA, April 2008.
[28] Light Reading. VoIP security: Vendors prepare for the inevitable. VoIP Services Insider, 5(1), January 2009.
[29] E. Rescorla. openssl-examples. http://www.rtfm.com/openssl-examples.
[30] E. Rescorla.SSL and TLS: Designing and Building Secure Systems. Addison Wesley, 2000.
[31] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347 (Proposed Standard), April 2006.
[32] R. Rivest. The MD5 Message-Digest Algorithm . RFC 1321 (Informational), April 1992.
[33] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.Communications of the ACM, 21(2):120–

126, February 1978.
[34] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC

3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853, 4320.
[35] S. Salsano, L. Veltri, and D. Papalilo. SIP security issues: the SIP authentication procedure and its processing load. Network, IEEE, 16(6):38–44,

Nov/Dec 2002.
[36] B. Schneier.Applied Cryptography (2nd Edition). John Wiley and Sons, Inc., New York, NY, 1996.

[37] H. Schulzrinne. SIPd. http://www.cs.columbia.edu/IRT/cinema.
[38] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003.
[39] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle. Sipstone-benchmarking SIP server performance. April 2002.http://www.sipstone.com.
[40] X. Wang, R. Zhang, X. Yang, X. Jiang, and D. Wijesekera. Voice pharming attack and the trust of voip. InSecureComm ’08: Proceedings of the 4th

international conference on Security and privacy in communication netowrks, pages 1–11, New York, NY, USA, 2008. ACM.
[41] Y. Zeng and O. Cherkaoui. Performance study of COPS overTLS and IPsec secure session. InProceedings of the 13th IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management (DSOM), pages 133–144, London, UK, 2002. Springer-Verlag.
[42] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan. Anatomy andperformance of SSL processing. InInternational Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 197–206, March 2005.

APPENDIX A: SECURITY AND CRYPTOGRAPHY INTLS

Many Internet applications have a pressing need for security. TLS [9] is one of the two major existing Internet security
standards. The other one is Security Architecture for the Internet Protocol (IPSec) [16]. Both TLS and IPSec standards are
transparent to applications. IPSec runs at the network layer and is most commonly used in architectures where a set of
administrative domains or hosts share an existing trust relationship with one another, e.g., in virtual private networks. TLS
occupies a protocol layer between the application and the transport (usually reliable transport such as TCP), and it is widely
used among domains and hosts with no pre-existing trust association, for example, in secure web servers (HTTPS).

The most important security properties of Internet communications can be characterized by confidentiality, integrityand
endpoint authentication. Data confidentiality protects the data from being viewed by unintended listeners; integrityensures that
the data received are exactly the same as the data sent; endpoint authentication guarantees that the communication party is
indeed the one that it claims to be.

TLS uses three categories of cryptographic operations to achieve these desired security properties: symmetric key cryptog-
raphy, asymmetric key cryptography and hashing.

Symmetric Key Cryptography: TLS ensures data transfer confidentiality by using symmetric key encryption techniques such
as RC4 [36], DES and 3DES [19], and AES [22].

RC4 is the best known stream cipher encryption algorithm. Inthis algorithm, a function generates a cryptographically secure
pseudorandom key stream one byte at a time. Each byte of the key stream is then combined (e.g. XOR) with a byte of plain
text to get a byte of cipher text. The key length of RC4 can varybetween 8 and 2048 bits. TLS always uses RC4 with a
128-bit key length. RC4 is very fast compared to other cipheralgorithms.

DES, 3DES and AES are block cipher encryption algorithms. Inthese algorithms, data are encrypted in larger blocks using
methods such as diffusion, substitution and transposition. A popular operation mode for block cipher algorithms is called
Cipher Block Chaining (CBC). This mode creates a dependencybetween the encryption of each plain text block and the cipher
text for the previous block of cipher text, therefore fixing aproblem caused by parallelism across individual blocks of data.
DES is by far the most widely used symmetric cipher and it usesa 64-bit block size with a relatively short 54-bit key space.
3DES is effectively running DES three times to make it more secure, but also about three times slower. AES has a minimum
block size of 128 bits and three key length of 128, 192, and 256bits. AES is newer and faster than DES.

Asymmetric Key Cryptography: The use of symmetric key encryption requires the communications parties to first acquire the
symmetric (shared) key. TLS uses asymmetric key (public key) cryptography algorithms such as RSA [33] and DH[10]/DSS[20]
to protect the exchange and agreement of the symmetric key.

RSA is the best known public key algorithm. In an RSA operation, each party has a pair of keys, one public key and one
private key. The public key is made public and the private keyis kept secret. When the public key is used to encrypt a message,
only the party with the corresponding private key can decrypt the encrypted message and vice versa. In TLS, typically the
client generates a secret and encrypts it using the public key of the server. The server can decrypt the secret because it is the
only one that has the corresponding private key.

TLS also uses the reverse of the above operation to achieve authentication. For example, if the server wants to be authenticated
by the client, the server encrypts a message with its own private key, which produces a digital signature. The client can then
verify the signature by decrypting the message with the server’s public key. The clients know the server is authentic because
only the server has the corresponding private key that couldhave produced the encrypted message.

A remaining issue regarding RSA operation is how one party gets the other party’s real public key. TLS uses X.509 certificates
to associate a public key with an identity. The certificate issigned by a trusted Certificate Authority (CA). It is assumedthat
the party to authenticate the other party at least possessesthe public key of the trusted CA. The CA signs the certificate using
its private key. Therefore, the CA-signed certificate can beverified using the CA’s public key. In the common web scenarios,
the CA certificates are frequently bundled in the browser, thus users typically don’t need to know or configure them.

DH (Dffie-Hellman) is a key agreement algorithm, which is different from a key exchange algorithm like RSA. With DH,
each party combines its own private key with the other party’s public key to collectively generate an agreed key that is private
to both parties. DSS (Digital Signature Standard) is a digital signature only algorithm commonly used together with DH.

Message Digest: TLS provides message integrity through hash functions, also known as digest algorithms, such as MD5 [32]
and SHA [21]. These algorithms take an arbitrary length message and output a fixed length digest string of the message. A
good digest algorithm ensures that two different messages are unlikely to produce the same digest and it is extremely difficult
to reversely compute a message given its digest. In TLS, the message digest algorithm is used to compute a keyed Message
Authentication Code (MAC). The sending and receiving parties both compute the MAC and confirm message integrity by
making sure the MAC computed by one party matches that computed by the other party.

APPENDIX B: SYSTEM CONFIGURATION FORSCALABILITY TEST

We put the following contents in the/etc/sysctl.conf file to increase the system maximum number of file descriptors
to 1,048,576, and the available port range from 10,000 to 65,535.

fs.file-max = 1048576
net.ipv4.ip_local_port_range = 10000 65535

We also edited the/etc/security/limits.conf file to increase the soft and hard limit of the number of open files
for the login “user” to 1,000,000.

user soft nofile 1000000
user hard nofile 1000000

To allow a remote shell to access a large number of file descriptors viassh, we use theulimit command. For example,
ulimit -n 1000000 increases the number of file descriptors available to the shell to 1,000,000. On our Ubuntu 8.04
platform, we found thisulimit command over ssh can only be successfully executed by the “root” account. If a “sudo”
user is to perform a remotessh and try to get a shell with expanded number of file descriptors, we need to edit the
/etc/init.d/ssh file to add a lineulimit -n 1000000, and restartssh by /etc/init.d/ssh restart.

APPENDIX C: OPROFILE FUNCTION MAP DEFINITION

This section lists how we map function names obtained from oprofile results to the specific categories. The first level of
classification is based on the application name shown in oprofile as in Table II.

To study the libcrypto category in more detail, we further classify the functions within the libcrypto library into AES,
3DES, MAC and RSA as listed in Table III through Table V. All other functions in the libcrypto library are grouped into the
libcrypto-other category.

TABLE II
FUNCTION NAME AND APPLICATIONMAPPING

Category Application

Libcrypto libcrypto.so.0.9.8
Libssl libssl.so.0.9.8
Libc libc-2.7.so
Database mysqld, db mysql.so
OpenSIPS-Core opensips
OpenSIPS-Module maxfwd.so, registrar.so, rr.so, sl.so, textops.so, tm.so, uri.so, usrloc.so, uridb.so
Kernel vmlinux-debug-2.6.24-19-server
Other all others

TABLE III
FUNCTIONSCLASSIFIED AS AES AND 3DES

AES 3DES

x86 AES encrypt DES set key unchecked
AES cbc encrypt DES encrypt2
AES set decrypt key DES ede3 cbc encrypt
AES set encrypt key des ede cbc cipher
x86 AES decrypt DES encrypt3

aes init key DES decrypt3
aes 128 cbc cipher

TABLE IV
FUNCTIONSCLASSIFIED AS MAC

ENGINE get digest engine EVP MD CTX cleanup
sha1 block asm host order EVP MD CTX init
HMAC Init ex EVP sha1
MD5 Final sha256block
EVP DigestUpdate SHA1 Final
EVP DigestFinal ex EVP MD CTX set flags
EVP MD CTX copy ex SHA1 Init
MD5 Update SHA1 Update
sha1 block asm data order HMAC Update
EVP MD size EVP MD block size
EVP MD CTX test flags HMAC CTX cleanup
EVP DigestInit ex md5 block asm host order
HMAC Final SHA256 Update
EVP MD CTX clear flags HMAC CTX init
MD5 Init

TABLE V
FUNCTIONSCLASSIFIED AS RSA

RSA free x509 object cmp
x509 name ex i2d RSA size
bn mul comba8 BN num bits word
d2i PublicKey RSA eay public encrypt
ASN1 tag2bit BN hex2bn
BN BLINDING invert ex BN mul
asn1 enc save X509 TRUST get0
BN BLINDING get thread id ASN1 item ex i2d
asn1 ex i2c BN from montgomery
ASN1 put object X509 VERIFY PARAM free
BN CTX new asn1 item combine free
ASN1 item ex d2i bn cmp part words
RSA eay private decrypt BN mod inverse
BN rand BN CTX free
BN clear bnrand
X509 STORE get by subject ASN1 get object
ASN1 template new X509 STORE CTX init
BN set word bn cmp words
X509 get ext d2i BN num bits
X509 OBJECT idx by subject BN CTX get
bn mul recursive BN sub
RSA padding check PKCS1 type 2 bn rand range
BN sqr RSA new method
ASN1 OBJECT free BN mod mul
X509 VERIFY PARAM inherit EVP PKEY size
OPENSSLcleanse X509 NAME oneline
BN rand range BN bn2bin
rsa get blinding BN mod exp
bn expand internal bn mul words
ASN1 primitive new bn sqr comba8
BN sub word BN MONT CTX init
BN nnmod ASN1 primitive free
BN bin2bn X509 VERIFY PARAM lookup
BN CTX end BN div
BN CTX start ASN1 item free
BN clear free i2c ASN1 INTEGER
X509 OBJECT retrieve by subject ASN1 item i2d
X509 verify cert RSA private decrypt
asn1 template ex d2i BN mod exp mont
asn1 template ex i2d asn1 do adb
BN mod exp mont consttime BN is bit set
BN rshift ASN1 object size
BN copy BN rshift1
X509 get subject name bn sqr recursive
X509 free EVP PKEY free
asn1 enc restore bn mul add words
X509 STORE CTX cleanup asn1 i2d ex primitive
X509 VERIFY PARAM new BN BLINDING create param
i2d X509 i2c ASN1 BIT STRING
BN usub bn add words
RSA eay mod exp ASN1 item verify
bn sub part words d2i PrivateKey
BN mod mul montgomery BN MONT CTX new
BN uadd bn mul normal
asn1 do lock BN free
BN BLINDING convert ex BN free
X509 get issuer name asn1 get field ptr
ASN1 STRING free BN init
X509 NAME cmp asn1 ex c2i
ASN1 STRING set asn1 template noexp d2i
X509 get pubkey parameters asn1 primitive clear
BN ucmp BN MONT CTX set
asn1 item ex combine new ASN1 template free
x509 cb X509 OBJECT up ref count
ASN1 STRING type new bn sub words
BN add X509 subject name cmp
HMAC Final BN lshift
BN value one asn1 d2i ex primitive
BN set bit pubkey cb
bn expand2

APPENDIX D: TLS CLIENT SIDE CONNECTION IMPROVEMENT

By enabling the debugging log and examining the code, we found that when OpenSIPS tries to establish an outgoing TLS
connection as the client side, it calls the SSLconnect function, which returns SSLERROR WANT READ, indicating the
function should be called when data can be read. However on the epoll based waiting loop, both POLLIN and POLLOUT
events are being monitored. When either event is reported, the SSL connect function is called again. During each connection
establishment, there are a large number of times where the epoll loop returns POLLOUT which indicates data can be writtenbut
not read. All these returns incur additional calling of the SSL connect function, which simply returns SSLERROR WANT
READ again. These additional unnecessary calls to SSLERROR WANT READ (e.g., it could be 44 times for one connection
setup) turn out to have a big cost impact. We modified the epollloop so that during the connection setup, the loop only reports
the needed events. Figure 17 shows the cost comparison with and without the fix in the inbound proxy TLS mode. The costs
shrink in virtually all categories except AES encryption cost, which should not be affected. The total libcrypto cost isreduced
by 38% from 500K down to 310K. The most significant cost reduction comes from libcrypto-other functions (128k, including
27k ssleayrand add, 11k int thread get, 10k int thread get item, 6k int thread release, 7k lhretrieve, 19k errclear error,
7k err get state, 7k cryptoadd lock, 4k crypto free). MAC and RSA costs are also reduced by 34k and 28k, respectively. In
addition, the overall cost is seen to be reduced by29%, from 1,316K down to 936K. Cost savings from outside the libcrypo
library include libssl (22k), libc (37k), Other (29k), OpenSIPS-Core (39k), OpenSIPS-Module (4k) and Kernel (58k).

To further verify the TLS libcrypto cost associated with establishing TLS connections (as TLS client) and accepting TLS
connections (as TLS server), we compare the corresponding cost incurred in our SIP proxy with that incurred in a simple
HTTPS client server application [29], assuming a similar number of connections are being set up. Results show that the TLS
client side cost in the two cases are around 310k and 270k, respectively, with an RSA cost of around 150k in both cases.
The TLS server side cost in the two cases are 340K and 400K, with RSA cost of 240k and 300K, respectively. These results
indicate a reasonably close crypto costs match between the relatively complex SIP proxy server and the simple HTTPS server.

Fig. 17. Impact of TLS Client Side Fix on CPU Events in InboundProxy TLS Mode

We update the component cost model with the TLS client fix applied in Figure 18. As we can see, the client side cost
in the TLS, TLS mutual authentication and TLS session reuse cases is reduced by50%, 55% and 73%, respectively. The
corresponding total cost savings are29%, 38%, and17%, which represent a potential peak throughput increase of41%, 62%,
and21%.

Fig. 18. Component Cost Model with TLS Client Fix Applied

