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Abstract

The frequency and severity of recent intrusions involving data theft and leakages has shown that online users’
trust, voluntary or not, in the ability of third parties to protect their sensitive data is often unfounded. Data
may be exposed anywhere along a corporation’s web pipeline,from the outward-facing web servers to the back-
end databases. Additionally, in service-oriented architectures (SOAs), data may also be exposed as they transit
between SOAs. For example, credit card numbers may be leakedduring transmission to or handling by transaction-
clearing intermediaries.

We present F3ildCrypt, a system that provides end-to-end protection of data across a web pipeline and between
SOAs. Sensitive data are protected from their origin (the user’s browser) to their legitimate final destination. To
that end, F3ildCrypt exploits browser scripting to enable application- and merchant-aware handling of sensitive
data. Such techniques have traditionally been considered asecurity risk; to our knowledge, this is one of the first
uses of web scripting that enhances overall security. F3ildCrypt uses proxy re-encryption to re-target messages
as they enter and cross SOA boundaries, and uses XACML, the XML-based access control language, to define
protection policies. Our approach scales well in the numberof public key operations required for web clients
and does not reveal proprietary details of the logical enterprise network (because of the application of proxy
re-encryption). We evaluate F3ildCrypt and show an additional cost of40 to 150 ms when making sensitive
transactions from the web browser, and a processing rate of100 to 140 XML fields/second on the server. We
believe such costs to be a reasonable tradeoff for increasedsensitive-data confidentiality.

1 Introduction

Recent intrusions resulting in data leakages [22, 3] have shown that online users simply cannot trust merchants
to protect sensitive data. Security incidents and theft of private data are frequent, often in spite of the best intentions
of corporate policy, faithful compliance to standards and best practices, and the quality of security/IT personnel
involved. Data may be exposed anywhere along a web-driven pipeline, from the outward-facing web servers to the
back-end databases, so security personnel must protect a wide front. Furthermore, in service-oriented architectures
(SOAs), data may also be exposed as they transit between SOAs, and, of course, the remote SOAs must also be
configured and administered safely.

Data leakage can be very expensive to the parties involved. It was recently reported that an attacker compro-
mised the networks of clothing retailer TJ Maxx and stole credit card information for45.6 million customers,
dating back to December 2002 [22]. It is estimated that this breach will cost TJ Maxx approximately $197 million.
Another attacker stole4.2 million credit card numbers from grocery store chain Hannaford [3] with an unknown
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Figure 1. A simple e-commerce server pipeline.

cost to the company, though a recent study [19] estimated an average cost of $197 per compromised customer
record.

For a corporation to safeguard the sensitive user information, it must be protected in an end-to-end fashion
[27], in transit from the web browser to the back-end databases, and during storage at the database. Protecting
the back-end databases may come in the form of legal [1] or technical [11, 8] protection. F3ildCrypt focuses on
technical protection of data in transit. While a protocol like SSL provides adequate protection for data on the wire,
it provides no protection for transitions. Even with SSL protection between a web browser and web server, and
between the web server and back-end database, sensitive data may still be revealed during the transition across the
web server.

Consider a simple e-commerce website for a widget store, as in Figure 1. The website uses an Asynchronous
Javascript and XML (Ajax)-based shopping cart [18] and XML-formatted content, served from PHP-based busi-
ness logic. All customer communication with the website takes place over SSL [16]. Customer data, including
name, address, and order history are processed by the business logic and stored in a back-end MySQL database. As
new orders for widgets arrive, the business logic transmitsorder information to the website’s credit card processor.

An order consists of an XML document1 containing the customer’s name, address, email address, a list of each
type of widget to be purchased, and the customer’s credit card details. Note that each field is useful to only a
subset of applications in the website pipeline. Since multiple machines have access to data for which they have no
need, the architecture violates the principle of least privilege [28]. For example, there is no reason to expose the
credit card data to the web server – in fact, it should only be revealed to the credit card processor – and there is no
reason to reveal the customer’s email address to the purchasing database.

To use this website safely, a customer must trust that both the widget store and the credit card processor are
taking appropriate steps to protect his credit card information. Additionally, as far as the user is concerned, any
protection derived from the SSL session is lost in the pipeline downstream from the web server, since the SSL
tunnel ends at the web host. There is no guarantee to the customer or to the corporation that the downstream
machines are not currently compromised and that they are suitably protected against future compromise (since
downstream machines may be located in SOAs operated by third-party corporations).

The goal of F3ildCrypt is to guarantee that data are encrypted end-to-end, as they traverse an SOA and its
children SOAs. F3ildCrypt is based around three components: an XML gateway, an in-line proxy re-encryption
engine [7], and a Javascript policy and Java applet cryptographic engine.

We use an Ajax-based approach where fields are encrypted at the customer’s web browser. In the straightforward
approach, this would require that the Ajax application be bundled with certificates containing public keys for the

1The choice of XML is not integral to our scheme; we can just as easily use JSON or any other data encoding/representation. XML
was selected for convenience in prototyping, and because ofits wide use in SOA environments.



internal web-pipeline components, so it can encrypt the information appropriately. However, this approach may
not be appealing to a corporate entity, since it requires, for example, revealing the name and public key of the
corporation’s credit card processor. In general, it exposes the internal logic of the enterprise (including external
business relationships, processing intermediaries, and the internal pipelines, which may change at any time) to the
customer. A key contribution of this work is to use proxy re-encryption at the gateway to map fields encrypted by
the user to the individual internal components or partner SOAs, without exposing clear-text at the gateway, and
without revealing those partner relationships to the end-user.

Ajax-like techniques (and, more generally, web browser scripting) have long been considered a security risk,
for good reasons. To our knowledge, our approach is one of fewthat enhances overall security through use of such
techniques. Although the use of public key cryptography inevitably increases the overall latency and processing
cost of any given web transaction, we experimentally demonstrate that the costs in this case are reasonable. Fur-
thermore, these costs need only be incurred when sensitive information is being transmitted; in our widget-store
testbed, the costs are only incurred when the user makes a purchase. The preceding portion of the session, while
the user is browsing in the store, does not incuranyadditional performance impact.

2 Related work

Proxy re-encryption [9, 7] allows a third-party to transform a ciphertext for Alice into a ciphertext for Bob,
without revealing the plaintext to the third party.

Consider Alice, with key pair(pkA, skA), and Bob with key pair(pkB , skB). A re-encryption key from Alice
to BobrkA→B has the following property for all plaintextP :

pkB(P ) = rkA→B(pkA(P )) (1)

If, for example, Alice wishes to temporarily re-direct her encrypted email to Bob, but she does not wish to reveal
her secret key, she can generate a re-encryption keyrkA→B and deliver that key to a proxy. (See [7] for the details
on generating this key; it is a function of Alice’s private key and Bob’s public key.) The proxy can then re-encrypt
messages destined for Alice so that Bob may read them. The plaintext is never revealed to the proxy.

The authors in [7] demonstrate a unidirectional,single-hopscheme, while the scheme proposed in [9] is bidi-
rectional andmulti-hop. Meaning, essentially, thatrkA→B = rkB→A, and a ciphertext can be re-encrypted from
Alice to Bob to Carol. The algorithm from [7] is partially implemented in the JHU-MIT Proxy Re-cryptography
Library (PRL) [5], which we use in our prototype.

XML is fast becoming a standard for document transfer on the web, and there is a body of work on securing
those documents. Element-level encryption of XML fields wasfirst proposed by Maruyama and Imamura [26].
There are now several XML-based firewalls on the market including the Cisco ACE XML Gateway [4] and the
IBM XS40 Security Gateway [6]. These devices allow field-level transforms, including cryptographic primitives,
of XML content as it traverses the firewall. Appliances like these provide high performance, but do not provide
end-to-end protection of the individual fields.

There have been a number of proposals for XML-based access control systems [15, 24, 17]. One of the most
popular is the eXtensible Access Control Markup Language (XACML) [2]. It provides XML-based standards for
defining policies, requests, and corresponding responses.An XACML policy consists of a list of subjects, actions
and resources, followed by a list of rules for which subjectsmay apply which actions to which resources.

W3bCrypt [30] first introduced the notion of end-to-end encryption of data in a web pipeline. The W3bCrypt
system consists of a Mozilla Firefox extension that enablesapplication-level cryptographic protection of web
content. Web content is encrypted or signed in the browser before being delivered to the web application. This
provides field-level end-to-end protection for user data, but does not protect the corporate network from informa-
tion revealed by the key distribution. That is, in order to use W3bCrypt across an entire web pipeline, including
multiple possible calls to external SOAs, the logical architecture of the server network must be revealed to the
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Figure 2. Network model. Multiple children SOAs provide ser vices to the parent SOA as it handles
client requests.

client in the form of pairwise key sharing. By providing thisprotection, F3ildCrypt may be viewed as a successor
to W3bCrypt.

Li et al. useautomaton segmentation[23] to explore privacy notions in distributed informationbrokering
systems. The authors model global access control policies as a non-deterministic finite automata, and divide
those automata into segments for evaluating network components. The automaton segmentation system considers
privacy for users, data, and meta-data, but does not consider privacy notions with respect to the logical network
layout and corporate interactions between service providers.

Sun Microsystems has implemented the Java WSDP 1.5 XWS-Security Framework [25] to assist programmers
in securing web services. However, this scheme does not extend to the client (browser). Singaravelu and Pu [29]
demonstrate a secure web services system based on the WS-Security framework. The key distribution mechanism
used by this system requires pairwise shared keys between endpoints, potentially revealing the internal logical
architecture and SOA dependencies. Chafleet al. [12] use data flow constraints to protect web services, but this
requires complete, centralized control of all SOAs involved.

3 Architecture

In this section, we describe our network and threat models, and our design requirements. We then examine
several design alternatives, before explaining the overall F3ildCrypt architecture.

3.1 Network model

We consider service-oriented architecture (SOA)-style networks where external requests to the network have
a single entry point and request-handling takes the form of atree. A single parent SOA may make requests on
multiple child SOAs in the course of processing a request, asin Figure 2. The SOAs may each operate under
different administrative domains, with varying legal and corporate policies toward the privacy and protection of
data traversing their networks. There may also be political, corporate, or technical pressure to prevent disclosure
of the logical architecture of each SOA, and the identities of their children SOAs.



3.2 Threat model

A corporation whose business model requires handling sensitive user information (e.g., credit cards, Social
Security numbers,etc.) has both financial and political incentives to protect those data as they traverse its network.
There are commonly used mechanisms, like SSL, for protecting the data point-to-point, but this does not protect
against data leakage at compromised intermediate hosts.

Thus, our threat model encompasses large-scale networks ofinter-operating SOAs where multiple internal
hosts or networks may be compromised. These nodes may cooperate to extract and reveal data from transient
information flows. We focus particularly on those information flows containing sensitive data related to,e.g.,
identity theft. Our approach does not protect against the compromise of a node thatlegitimatelyhas the need to
view a specific piece of sensitive information.

Additionally, the logical architecture of the corporate network, along with any SOA peering agreements, is
sensitive. Information of this nature should be protected from disclosure.

3.3 Requirements

Our goal is to provide XML-field granularity end-to-end protection of data transmitted from a web browser to
each field’s destination end-host within the web pipeline ofan e-commerce site. The web pipeline may encompass
multiple remote SOAs, and the end-to-end property must holdacross SOA boundaries. Additionally, the confiden-
tiality of the logical internal architecture of each SOA must be respected. That is, no architecture details should be
disclosed to the web clients or across parent or children SOAboundaries.

3.4 Design alternatives

An XML firewall, like those marketed by IBM [6] or Cisco [4], ora similar proxy, sited at an SOA’s network
edge, can provide some protection. The proxy or firewall encrypts individual fields of each document to the
fields’ destination host within the SOA. However, this is notan end-to-end solution and an end-user has no way of
verifying that an XML firewall or proxy is in place, let alone operating correctly. The customer must simply trust
the SOA beyond the narrow confines of the commercial transaction.

Another approach is to generate a public key pair at each hostin the web pipeline, use a trusted third party
(VeriSign, GeoTrust,etc.) to sign certificates for each, and deliver the certificate set to each web browser or SOA
client. In the event that a document containing fields with sensitive data must be delivered to the website, the web
browser (or a browser-embedded crypto engine) can then encrypt each field directly to its destination end host.
The key distribution in such a system is illustrated in Figure 3.

There are several serious flaws in this design. If the e-commerce site links to external SOAs, the keys for each
host in each external SOA must also be delivered to the web client. Thus, this solution does not necessarily scale
well in the number of certificates. As more SOAs become involved, a cache of hundreds or thousands of certificates
would have to be provided to each new web client, and the certificate caches for existing web clients would have
to be updated each time the internal architecture of the SOA or any of its dependent SOAs changed. This solution
also has the unfortunate consequence of revealing details to the end user (and thus to competitors) about the
logical architecture of the e-commerce site and its SOA partners. By collecting and correlating the certificate sets,
an adversarial client may be able to identify individual hosts in an SOA. Furthermore, this technique reveals the
identities of the SOA partners. These details may encompasstrade secrets and other confidential information.

3.5 F3ildCrypt Architecture

Our proposed solution is based on the technique of proxy re-encryption. Each SOA publicizes a certificate
containing a public key, called theexternal key, pkE . This key is used by the SOA’s clients, either web browsers
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or other SOAs. Before sending a document containing sensitive data fields to an SOA, a client cryptographically
transforms each field containing sensitive data, using the external key. The client chooses which fields to transform
based on an XACML client policy delivered from the SOA.

Meanwhile, each host or application in the SOA has an associated public key pair. This set of public keys is the
internal key setpkI0...pkIn

. These keys are used for communication internal to the SOA.
The external keypkE is generated at a host called the external-key holder. The public keys of the internal

applicationspkI0 ...pkIn
are delivered to this host and used, in concert with the external secret keyskE to generate

the re-encryption keysrkE→I0...rkE→In
, as in [7]. The fundamental property of proxy re-encryptionholds that,

for any plaintextP and internal applicationj:

pkIj
(P ) = rkE→Ij

(pkE(P )) (2)

The re-encryption keys are installed at a host called theproxy re-encryption engine. Fields from documents
arriving at the SOA have been encrypted underpkE and are handled by the proxy re-encryption engine. The latter
re-encrypts each field under re-encryption keyrkE→Ij

, wherej is the individual host within the web pipeline
designated to process that field, based on a XACML server policy. The plaintextis not revealeduntil it arrives at
the intended destination host.

This solution requires an SOA to deliver to its clients a certificate containing only the single external keypkE ,
avoiding the problem of sending what could be a set of hundreds or thousands of certificates. Furthermore, no



logical infrastructure details are revealed to the client.With the exception of the external-key holder, any subset
of intermediate hosts between the client and end-host – including the proxy re-encryption engine itself – can be
compromised without leaking any sensitive user data.

Compromise of the external-key holder, however, could be dangerous, requiring that special care be taken to
secure this machine. Luckily, the bandwidth requirements on the external-key holder are extremely low. It is only
used to generate the re-encryption keys, so after initial setup, its use is only required when adding new internal
hosts. Thus, in the extreme, it is possible to keep the external-key holder offline at all times, and distribute keys
through it by hand.

4 Implementation

Our implementation of F3ildCrypt consists of a Javascript-based policy engine and a Java-based cryptography
engine delivered to each web browser. The web server connects to the server using SSL. On the server side, we
provide a Python-based XML gateway with in-line proxy re-encryption engine for each SOA, and a Python-based
XML proxy at each internal application. These proxies storethe key pairs for their respective applications, and
perform decryption and XML unwrapping on behalf of the application.

The Java cryptography engine and in-line proxy re-encryption engine use the proxy re-encryption algorithm
described in [7]. This algorithm is based on bilinear maps [10], and is partially implemented in the JHU-MIT
Proxy Re-cryptography Library (PRL) [5]. For our implementation, we ported the PRL to both Java and Python.
We note that the JHU-MIT PRL supports only single-hop re-encryption, thus limiting the recursive depth of our
implementation until such time as an implementation of the multi-hop algorithm from [9] is available.

F3ildCrypt setup in an SOA begins by designating an offline host as the external-key holder and generating the
external key pair. The public keypkE is signed by a trusted third party and the certificate is made available to the
public. This is the key with which all clients will encrypt sensitive data sent to the SOA.

At each application inside the SOA we install an XML proxy which serves as that application’s entry point
into the F3ildCrypt network. This proxy stores the internalkey pair(pkIj

, skIj
) associated with the application.

Any documents with encrypted fields arriving at the application are intercepted and decrypted by the XML proxy
before delivery to the application proper.

Each internal public key is delivered in offline fashion (hand-delivered via USB key, for example) to the
external-key holder, where the re-encryption keys are generated. The re-encryption key for proxyj is rkE→j

and it is a function of the external secret keyskE andpkIj
. The re-encryption keys are then hand-delivered to the

proxy re-encryption engine.
The proxy re-encryption engine operates as a client to the XML gateway. The XML gateway stores a set of

XSLT stylesheets [13]. Each stylesheet describes the transformation to be applied to a given field type in a docu-
ment. The XSLT implementation is extended with the proxy re-encryption function, so applying the cryptographic
transformations becomes an application of a stylesheet, asin W3bCrypt [30]. The specific stylesheets are chosen
based on a system administrator-defined XACML policy.

The XML gateway uses the XSLT transforms to re-encrypt designated fields, targeting them to the appropriate
internal hosts. It processes incoming documents containing fields encrypted underpkE. These fields are re-
encrypted under the various re-encryption keysrkE→I0...rkE→In

, in accordance with the XACML policy, before
forwarding the document on to the web pipeline.

When a client connects to the SOA over SSL, the SOA responds with the contents of an Ajax web application,
implementing, for example, a shopping cart application. Packaged along with the application is the Javascript-
based policy engine and an applet containing the Java cryptography engine. At the browser, the package then
downloads from the SOA an XACML policy document to be appliedto uploaded documents, and a certificate
store containing the signed certificate for the SOA’s external key. When, in the course of user interaction with
the application, an XML document must be uploaded, the Javascript engine applies the XACML client policy.



This policy describes which fields of the document should be encrypted. The cryptography engine encrypts the
designated fields with the external key, and then the document is uploaded to the SOA.

Now consider the case of a parent SOA, with external keypkEp
making requests on a child SOA with external

key pkEc
. The child SOA implements the F3ildCrypt architecture, with internal key pairs for its own internal

applications. As in the parent case, and given the appropriate proxy re-encryption algorithm, XML documents
arriving at the child SOA’s XML gateway are re-encrypted by the proxy re-encryption engine.

To make use of the child SOA, the system administrator at the parent uses the publicly knownpkEc
and its

secret keyskEp
to generate a re-encryption keyrkp→c. Fields within a document sent to the parent SOA, but

destined for the child SOA, are re-encrypted underrkp→c at the parent XML gateway. When the fields arrive at
the child XML gateway, they may be re-encrypted again, to theend-hosts within the child SOA.

4.1 Example

In this section we will describe a sample application of the F3ildCrypt architecture. It is based on the network
for a small e-commerce site selling widgets, called Widgets4Cheap. The site consists of a firewall, web server with
business logic, and back-end databases for marketing and purchases, as was shown in Figure 1. Widgets4Cheap
also makes use of an external credit card processor.

The website presents to the user a web page with a simple catalog and shopping cart application, where the user
may browse widgets and select items to purchase. When the customer makes an order, the order is delivered to the
web server in the form of an XML document. An order consists ofthe customer’s name, physical address, email
address, a list and count of each model of widget to be purchased, and the customer’s credit card information.

Customer data, including name, billing address, and order history are stored in the purchasing database. The
customer’s email address is stored in the marketing database. As orders arrive, the business logic transmits order
information and credit card details to the website’s creditcard processor.

Revealing the internal architecture of the Widgets networkis undesirable, as it may reveal business or trade
secrets (this is exacerbated in more sophisticated networks). Additionally, even with an SSL connection between
the client and the web server, the compromise of any internalhost in the Widgets4Cheap pipeline could be catas-
trophic to the company and its customers, since every internal host, particularly the firewall and web server, has
access to all the customer information in transit.

To protect this network, we define a high-level security policy. The customer’s billing address, and order details
may only be revealed to the purchasing database, while the email address may only be revealed to the marketing
database. The credit card information and total payment is revealed only to the credit card processor.

Before implementing this policy, we deploy the F3ildCrypt infrastructure, as shown in Figure 5. Co-located with
each internal application is an XML proxy which stores the key pair for that application. This XML proxy serves
to decrypt the incoming XML documents, and unwrap the XML as necessary. On a separate offline machine
(the external-key holder) the system administrator generates the external key pair which will be presented to
remote users. A certificate for this key is signed by a third-party certificate authority. In the case of this example
implementation, this was an in-house certificate authority.

The external-key holder is then used to generate re-encryption keys for each internal application and the credit-
card processor, and these are delivered to the XML gateway, thereby allowing the gateway to re-encrypt traffic to
the internal applications and credit-card processor SOA.

At the XML gateway we place a set of XACML policy files that describe the transformations to be applied to
documents in transit, an example rule of which is shown in Figure 6. The XML gateway also contains a set of
XSLT documents for implementing those transforms, an example of which is shown in Figure 7.

Meanwhile, the Javascript policy engine and Java crypto engine applet are incorporated into the Ajax application
viewed by customers, along with a XACML client policy file anda certificate store containing the Widgets4Cheap
external key.
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Figure 5. Diagram of the network for Widgets4Cheap with F3il dCrypt installed.

<rule ruleid="creditcard_transform" effect="permit">
<target>

<resources>
<resource>

<resourcematch matchid="function:xpath-node-match">
<resourceattributedesignator attributeid="resource:xpath"

datatype="string"/>
<attributevalue datatype"string">
order/creditcard

</attributevalue>
</resourcematch>

</resource>
</resources>

</target>
</rule>

<obligation>
obligationid="reencrypt_on_transit"
fulfillon="permit">

<attributeassignment
attributeid="reencrypt"
datatype="string">

ccn_reencrypt.xsl
</attributeassignment>

</obligation>

Figure 6. A rule from the XACML server policy file. When the gat eway receives an XML document,
the rule attempts to match the XPath order/creditcard. When this rule fires, the associated
obligation indicates that the XSLT transform ccn reencrypt.xsl should be applied.



<xsl:template match="creditcard">
<xsl:copy-of

select="encrypt:reencrypt(., reencrypt_key[7]’)"/>
</xsl:template>

Figure 7. An XSLT snippet for re-encrypting the credit card i nformation. Demonstrates usage of the
XSLT extension function reencrypt(). It applies proxy re-encryption to the matched XML field
using the re-encryption key reencrypt key[7].

<order>
<date>1 January 2008</date>
<name>H. Simpson</name>
<address>
<street>742 Evergreen Terrace</street>
<city>Springfield</city>
<state>USA</state>
<zip>12345</zip>

</address>

<email>homer@springfield.com</email>

<creditcard>
<payment>179.90</payment>
<issuer>American Express</issuer>
<number>1234-5678-1234-5678</number>
<expiration month="10" year="2010"/>

</creditcard>

<items>
<item>

<quantity>1</quantity>
<detail>Big red widget</detail>
<cost>69.95</cost>

</item>
<item>

<quantity>1</quantity>
<detail>Blue suede widget</detail>
<cost>109.95</cost>

</item>
</items>
</order>

Figure 8. A purchase order for two pairs of widgets from Widge ts4Cheap.



<rule ruleid="creditcard_rule" effect="permit">
<target>

<resources>
<resource>

<resourcematch
matchid="function:xpath-node-match">

<resourceattributedesignator
attributeid="resource:xpath"
datatype="string"/>

<attributevalue datatype"string">
order/creditcard

</attributevalue>
</resourcematch>

</resource>
</resources>

</target>
</rule>

<obligation
obligationid="encrypt_on_send"
fulfillon="permit">

<attributeassignment
attributeid="encrypt"
datatype="string">

encrypt(key[n])
</attributeassignment>

</obligation>

Figure 9. The XACML client rule, abridged for clarity and spa ce. This rule and obligation describes
the action to be taken on the credit card section of the XML doc ument: encrypting it with a key
obtained from the certificate store.

After browsing the catalog and selecting his items, the customer makes his purchase as in Figure 8. Before
transmitting this document, the application applies the XACML client policy. The XACML client policy file
describes which fields in the order document should be encrypted. A snippet from the Widgets4Cheap client
policy is shown in Figure 9. When the policy is evaluated, thecryptography engine encrypts the necessary fields,
resulting in a new, field-encrypted order document.

When the now-transformed document arrives at the Widgets4Cheap website, it is processed by the XML gate-
way/proxy re-encryption engine, which applies the server XACML policy to determine which XSLT transforms
to apply. The XSLT transforms apply the proxy re-encryptionto the document, re-targeting the field encryptions
that were originally applied by the client. The business logic then processes the order, delivering the various XML
fields to their intended targets. The individual XML fields are intercepted by the XML proxies at each application
and decrypted before being passed on to the application proper. The re-encrypted credit card information is passed
to the credit-card processor, who may recursively apply this system, distributing the received information through
its network.

5 Evaluation

We evaluated the performance of F3ildCrypt by measuring itsimpact on the web browser clients, on the XML
gateway, and on the XML proxies at each host. We performed micro-benchmarks at the individual hosts, as well
as throughput measurements on the servers.

Our experimental setup consisted of the network described in Figure 5. Each server application ran on a Dell
PowerEdge 2650 Server, with a 2.0GHz Intel Xeon processor, 1GB RAM, and 36GB Ultra320 SCSI hard drive.



Figure 10. Time (ms) to encrypt multiple 128-byte fields on th e client.
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Figure 11. Processing time on a document containing a single field of 20 bytes. Shows the relative
time devoted to cryptography versus the XML and XACML proces sing.

All machines ran OpenBSD 4.2. and were linked via Gigabit Ethernet. The applications included OpenBSD PF
on the firewall, Apache 1.3.29/PHP 4.4.1 on the business logic server, and MySQL 5.0.45 on the database servers.

The client ran on a MacBook Pro, with a 2.4 GHz Intel Core 2 Duo,2 GB RAM, and 150GB 5400 RPM Fujitsu
hard drive. The machine used OS X 10.5.2 with Darwin kernel version 9.2.2. The web browsing platform installed
on this computer was Mozilla Firefox 2.0.0.13.

The extra work incurred on the web browsing client consists of applying the XACML policy followed by
application of the appropriate cryptographic transformations. We used a Java port of the JHU-MIT Proxy Re-
cryptography Library [5], running as an applet in the browser, which implements the proxy re-encryption scheme
described in [7]. The Java cryptographic engine applet and Javascript policy engine together are approximately
25KB. We measured the performance of the client by encrypting multiple 128-byte fields, as shown in Figure 10.
After processing, most XML documents increase in size between 10% and 30%.

The most common sizes for identity-related sensitive data (e.g., credit card numbers, birth dates,etc.) are less
than 1K, so the cost incurred at the browser in these cases will range from40 to 150 ms. Of course, this cost is
only incurred when sensitive data requiring encryption is actually transmitted.

The additional work incurred at the XML gateway consists of parsing the incoming XML documents and
applying proxy re-encryption; Figure 11 shows the combinedcost. We isolated the re-encryption cost per field in
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Figure 12. Re-encryption rate (fields/s) at the XML gateway v s. incoming field size. As field size
grows, the processing rate decreases.
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Figure 13. Decryption rate at an XML proxy vs. incoming field s ize.

Figure 12. An XML proxy decrypts the encrypted fields from incoming documents; we isolated the decryption
cost at the XML proxy in Figure 13.

These results show that fields from XML documents can be processed at a rate of100 to 140 fields/second, and
the majority of the processing time is dedicated to the re-encryption process. This time can be significantly im-
proved through software optimization; the JHU-MIT PRL is not optimized for execution time. The re-encryption
cost can be further substantially reduced through the addition of a hardware cryptographic accelerator [21].

6 Discussion

The F3ildCrypt system is designed to assist an online entityin protecting its users’ sensitive information. The
user must not longer collectively trust the web application, the back-end databases, and the system administrators
with each sensitive item he provides. Now, for that same item, he only has to trust its intended destination.

F3ildCrypt is designed to assist the system administratorsin making the end-user’s trust well-founded. How-
ever, to provide further assurance to the user, this approach may be combined with a P3P-like policy [14] working
in concert with a browser-based cryptography engine like W3bCrypt [30]. Additional protection may come from
obtaining a signature on the Ajax application itself from a trusted third party. This trusted third party (e.g., the
Better Business Bureau) would certify that the Ajax is encrypting or protecting data to the correct recipients. Re-
gardless of the means, the user, or a trusted third party, must verify the contents of the Ajax application and the



associated policy.
For a motivated adversary attacking a F3ildCrypt-enabled system, note that the external-key holder possesses

the secret key corresponding to the external public key. Whoever possesses of the secret key is capable of de-
crypting all messages to that SOA, making the external-key holder a desirable target for attackers. However, it
is infrequently used and has low bandwidth requirements. This machine can operate entirely offline, with the
occasional generation of a re-encryption key taking place via diskette or USB key.

We also note that, within the network of the F3ildCrypt-equipped SOA, like in a traditional network, an adver-
sary who has compromised an intermediate machine may swap orreplay fields, or otherwise modify documents
as they pass through that machine’s possession. F3ildCryptdoes not prevent such attacks, though they can be
alleviated via timestamps and signatures on the individualfields.

There is an attack on web browsing transactions that comes from transaction generators. Transaction generators
wait for users to log on to their accounts, and then issue transactions on their behalf. Jacksonet al. [20] propose
as a solution a form of confirmation page. This confirmation page can be integrated with F3ildCrypt and the
user-certification process described above to provide additional protection to the user.

7 Conclusion

The F3ildCrypt system provides end-to-end protection to users and SOAs by encrypting XML fields at the
client web browser. The SOA protects its internal architecture by using proxy re-encryption to re-target the XML
fields at the SOA edge. The processing cost at the web browser ranges from.5 to 1 second when making sensitive
transactions, and a processing rate of100 to 140 XML fields/second on the server, of which the latter could be
easily improved through software optimization and hardware acceleration.

Future work on F3ildCrypt will include integration of the proxy re-encryption algorithm with the web browser
itself further extensions to the browser so the user has someassurance that the correct transformations have been
applied.
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