View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

F3ildCrypt: End-to-End Protection of Sensitive | nformation in Web Services

Matthew Burnside and Angelos D. Keromytis
Department of Computer Science

Columbia University in the City of New York
{mb, angelos@cs.columbia.edu

Abstract

The frequency and severity of recent intrusions involviatadheft and leakages has shown that online users’
trust, voluntary or not, in the ability of third parties to @iect their sensitive data is often unfounded. Data
may be exposed anywhere along a corporation’s web pipdiiom the outward-facing web servers to the back-
end databases. Additionally, in service-oriented ardtitees (SOAS), data may also be exposed as they transit
between SOAs. For example, credit card numbers may be leakieg) transmission to or handling by transaction-
clearing intermediaries.

We present F3ildCrypt, a system that provides end-to-eatégtion of data across a web pipeline and between
SOAs. Sensitive data are protected from their origin (ther'ssrowser) to their legitimate final destination. To
that end, F3ildCrypt exploits browser scripting to enabfgphcation- and merchant-aware handling of sensitive
data. Such techniques have traditionally been considersgkcarity risk; to our knowledge, this is one of the first
uses of web scripting that enhances overall security. [E3igt uses proxy re-encryption to re-target messages
as they enter and cross SOA boundaries, and uses XACML, theldbed access control language, to define
protection policies. Our approach scales well in the numbgpublic key operations required for web clients
and does not reveal proprietary details of the logical eptese network (because of the application of proxy
re-encryption). We evaluate F3ildCrypt and show an addalocost of40 to 150 ms when making sensitive
transactions from the web browser, and a processing rat&06fto 140 XML fields/second on the server. We
believe such costs to be a reasonable tradeoff for increasaditive-data confidentiality.

1 Introduction

Recent intrusions resulting in data leakages [22, 3] hawe/shihat online users simply cannot trust merchants
to protect sensitive data. Security incidents and theftivhpe data are frequent, often in spite of the best intestio
of corporate policy, faithful compliance to standards aedtlpractices, and the quality of security/IT personnel
involved. Data may be exposed anywhere along a web-driyelipe, from the outward-facing web servers to the
back-end databases, so security personnel must protedednant. Furthermore, in service-oriented architectures
(SOASs), data may also be exposed as they transit between, 2@ésof course, the remote SOAs must also be
configured and administered safely.

Data leakage can be very expensive to the parties involteslad recently reported that an attacker compro-
mised the networks of clothing retailer TJ Maxx and stolaitreard information for45.6 million customers,
dating back to December 2002 [22]. It is estimated that theath will cost TJ Maxx approximately $197 million.
Another attacker stolé.2 million credit card numbers from grocery store chain Haoré{3] with an unknown

https://core.ac.uk/display/161435497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

—> Marketing
database

1
> " l—| Web server/
Web browser Firewall business logic

A

Purchasing
database

}
Credit card
processor

Figure 1. A simple e-commerce server pipeline.

cost to the company, though a recent study [19] estimated/erage cost of $197 per compromised customer
record.

For a corporation to safeguard the sensitive user infoonait must be protected in an end-to-end fashion
[27], in transit from the web browser to the back-end databaand during storage at the database. Protecting
the back-end databases may come in the form of legal [1] dinteal [11, 8] protection. F3ildCrypt focuses on
technical protection of data in transit. While a protockéISSL provides adequate protection for data on the wire,
it provides no protection for transitions. Even with SSLtpation between a web browser and web server, and
between the web server and back-end database, sensidvmdsistill be revealed during the transition across the
web server.

Consider a simple e-commerce website for a widget storay Bgjure 1. The website uses an Asynchronous
Javascript and XML (Ajax)-based shopping cart [18] and Xkékmatted content, served from PHP-based busi-
ness logic. All customer communication with the websiteetaglace over SSL [16]. Customer data, including
name, address, and order history are processed by the $sifigéic and stored in a back-end MySQL database. As
new orders for widgets arrive, the business logic transandsr information to the website’s credit card processor.

An order consists of an XML documeéntontaining the customer’s name, address, email address ohéach
type of widget to be purchased, and the customer’s credit datails. Note that each field is useful to only a
subset of applications in the website pipeline. Since mleltmachines have access to data for which they have no
need, the architecture violates the principle of leastilpge [28]. For example, there is no reason to expose the
credit card data to the web server — in fact, it should onlydvealed to the credit card processor — and there is no
reason to reveal the customer’s email address to the pumghaatabase.

To use this website safely, a customer must trust that betlwilget store and the credit card processor are
taking appropriate steps to protect his credit card infdiona Additionally, as far as the user is concerned, any
protection derived from the SSL session is lost in the pigetiownstream from the web server, since the SSL
tunnel ends at the web host. There is no guarantee to thenoeistar to the corporation that the downstream
machines are not currently compromised and that they atebépiprotected against future compromise (since
downstream machines may be located in SOAs operated byghitg corporations).

The goal of F3ildCrypt is to guarantee that data are encdypted-to-end, as they traverse an SOA and its
children SOAs. F3ildCrypt is based around three componemtsXML gateway, an in-line proxy re-encryption
engine [7], and a Javascript policy and Java applet cryppuc engine.

We use an Ajax-based approach where fields are encryptegl@gtomer’s web browser. In the straightforward
approach, this would require that the Ajax application bedbed with certificates containing public keys for the

1The choice of XML is not integral to our scheme; we can justasilg use JSON or any other data encoding/representatifi. X
was selected for convenience in prototyping, and becauge wfde use in SOA environments.

internal web-pipeline components, so it can encrypt therin&tion appropriately. However, this approach may
not be appealing to a corporate entity, since it requiresgfample, revealing the name and public key of the
corporation’s credit card processor. In general, it expdble internal logic of the enterprise (including external
business relationships, processing intermediaries,taphternal pipelines, which may change at any time) to the
customer. A key contribution of this work is to use proxy reeg/ption at the gateway to map fields encrypted by
the user to the individual internal components or partneA§@ithout exposing clear-text at the gateway, and
without revealing those partner relationships to the eset-u

Ajax-like techniques (and, more generally, web browseiptiog) have long been considered a security risk,
for good reasons. To our knowledge, our approach is one oftfatienhances overall security through use of such
techniques. Although the use of public key cryptographyitably increases the overall latency and processing
cost of any given web transaction, we experimentally defnatesthat the costs in this case are reasonable. Fur-
thermore, these costs need only be incurred when sensifvariation is being transmitted; in our widget-store
testbed, the costs are only incurred when the user makeshasa. The preceding portion of the session, while
the user is browsing in the store, does not inaoly additional performance impact.

2 Redated work

Proxy re-encryption [9, 7] allows a third-party to transfor ciphertext for Alice into a ciphertext for Bob,
without revealing the plaintext to the third party.

Consider Alice, with key paitpk 4, sk4), and Bob with key pai{pkp, skg). A re-encryption key from Alice
to Bobrk 4. g has the following property for all plaintex?:

pkp(P) = rka_p(pka(P)) 1)

If, for example, Alice wishes to temporarily re-direct hexceypted email to Bob, but she does not wish to reveal
her secret key, she can generate a re-encryptiomkgy. 5 and deliver that key to a proxy. (See [7] for the details
on generating this key; it is a function of Alice’s privateykend Bob's public key.) The proxy can then re-encrypt
messages destined for Alice so that Bob may read them. Thegais never revealed to the proxy.

The authors in [7] demonstrate a unidirectiorshgle-hopscheme, while the scheme proposed in [9] is bidi-
rectional andnulti-hop Meaning, essentially, thatc4 .5 = rkp_ 4, and a ciphertext can be re-encrypted from
Alice to Bob to Carol. The algorithm from [7] is partially ifrgmented in the JHU-MIT Proxy Re-cryptography
Library (PRL) [5], which we use in our prototype.

XML is fast becoming a standard for document transfer on thb,vand there is a body of work on securing
those documents. Element-level encryption of XML fields fiest proposed by Maruyama and Imamura [26].
There are now several XML-based firewalls on the market dioly the Cisco ACE XML Gateway [4] and the
IBM XS40 Security Gateway [6]. These devices allow fielddleiwvansforms, including cryptographic primitives,
of XML content as it traverses the firewall. Appliances likese provide high performance, but do not provide
end-to-end protection of the individual fields.

There have been a number of proposals for XML-based accassoksystems [15, 24, 17]. One of the most
popular is the eXtensible Access Control Markup Languag&QML) [2]. It provides XML-based standards for
defining policies, requests, and corresponding resposeXACML policy consists of a list of subjects, actions
and resources, followed by a list of rules for which subjectsy apply which actions to which resources.

W3DbCrypt [30] first introduced the notion of end-to-end gmption of data in a web pipeline. The W3bCrypt
system consists of a Mozilla Firefox extension that enablgslication-level cryptographic protection of web
content. Web content is encrypted or signed in the browserddeing delivered to the web application. This
provides field-level end-to-end protection for user datd,dmes not protect the corporate network from informa-
tion revealed by the key distribution. That is, in order te ¥83bCrypt across an entire web pipeline, including
multiple possible calls to external SOAs, the logical amtture of the server network must be revealed to the

Client

Parent SOA

Child SOAs

Figure 2. Network model. Multiple children SOAs provide ser vices to the parent SOA as it handles
client requests.

client in the form of pairwise key sharing. By providing thistection, F3ildCrypt may be viewed as a successor
to W3bCrypt.

Li et al. useautomaton segmentatiof23] to explore privacy notions in distributed informatidmokering
systems. The authors model global access control polides @on-deterministic finite automata, and divide
those automata into segments for evaluating network coergenThe automaton segmentation system considers
privacy for users, data, and meta-data, but does not carngidacy notions with respect to the logical network
layout and corporate interactions between service proside

Sun Microsystems has implemented the Java WSDP 1.5 XWSi§eletamework [25] to assist programmers
in securing web services. However, this scheme does nataxbethe client (browser). Singaravelu and Pu [29]
demonstrate a secure web services system based on the WiSySeamework. The key distribution mechanism
used by this system requires pairwise shared keys betwedpoieis, potentially revealing the internal logical
architecture and SOA dependencies. Cheflal. [12] use data flow constraints to protect web services, hst th
requires complete, centralized control of all SOAs invdlve

3 Architecture

In this section, we describe our network and threat modeld,aur design requirements. We then examine
several design alternatives, before explaining the oVEBAIACrypt architecture.

3.1 Network model

We consider service-oriented architecture (SOA)-stylsvaeks where external requests to the network have
a single entry point and request-handling takes the formtofd@ A single parent SOA may make requests on
multiple child SOAs in the course of processing a requestp &gure 2. The SOAs may each operate under
different administrative domains, with varying legal aratporate policies toward the privacy and protection of
data traversing their networks. There may also be poljtmadporate, or technical pressure to prevent disclosure
of the logical architecture of each SOA, and the identitietheir children SOAs.

3.2 Threat model

A corporation whose business maodel requires handling sensiser information €.g, credit cards, Social
Security numberstc) has both financial and political incentives to protecstihdata as they traverse its network.
There are commonly used mechanisms, like SSL, for protgttia data point-to-point, but this does not protect
against data leakage at compromised intermediate hosts.

Thus, our threat model encompasses large-scale networkgeofoperating SOAs where multiple internal
hosts or networks may be compromised. These nodes may edeperextract and reveal data from transient
information flows. We focus particularly on those infornoatiflows containing sensitive data related éog,
identity theft. Our approach does not protect against tmepromise of a node thaggitimatelyhas the need to
view a specific piece of sensitive information.

Additionally, the logical architecture of the corporatetwerk, along with any SOA peering agreements, is
sensitive. Information of this nature should be protectedhfdisclosure.

3.3 Requirements

Our goal is to provide XML-field granularity end-to-end pction of data transmitted from a web browser to
each field’s destination end-host within the web pipelinaroé-commerce site. The web pipeline may encompass
multiple remote SOAs, and the end-to-end property must acldss SOA boundaries. Additionally, the confiden-
tiality of the logical internal architecture of each SOA rhios respected. That is, no architecture details should be
disclosed to the web clients or across parent or children BQuhdaries.

3.4 Design alternatives

An XML firewall, like those marketed by IBM [6] or Cisco [4], @ similar proxy, sited at an SOA's network
edge, can provide some protection. The proxy or firewall ygterindividual fields of each document to the
fields’ destination host within the SOA. However, this is aotend-to-end solution and an end-user has no way of
verifying that an XML firewall or proxy is in place, let alon@erating correctly. The customer must simply trust
the SOA beyond the narrow confines of the commercial traimgact

Another approach is to generate a public key pair at eachihdbe web pipeline, use a trusted third party
(VeriSign, GeoTrustetc) to sign certificates for each, and deliver the certificated® each web browser or SOA
client. In the event that a document containing fields withsgeze data must be delivered to the website, the web
browser (or a browser-embedded crypto engine) can thelygneach field directly to its destination end host.
The key distribution in such a system is illustrated in Feg8r

There are several serious flaws in this design. If the e-caersdte links to external SOAs, the keys for each
host in each external SOA must also be delivered to the wehtcliThus, this solution does not necessarily scale
well in the number of certificates. As more SOAs become ire)\a cache of hundreds or thousands of certificates
would have to be provided to each new web client, and theficate caches for existing web clients would have
to be updated each time the internal architecture of the SGéay of its dependent SOAs changed. This solution
also has the unfortunate consequence of revealing detatlsetend user (and thus to competitors) about the
logical architecture of the e-commerce site and its SOAneast By collecting and correlating the certificate sets,
an adversarial client may be able to identify individualtsda an SOA. Furthermore, this technique reveals the
identities of the SOA partners. These details may encontpads secrets and other confidential information.

3.5 F3ildCrypt Architecture

Our proposed solution is based on the technique of proxynceyption. Each SOA publicizes a certificate
containing a public key, called trexternal keypkg. This key is used by the SOA's clients, either web browsers

Client

Figure 3. The pair-wise key distribution across SOA boundar ies used in the naive public-key imple-
mentation. The client must store a key for each destination n ode in the SOA and each node of its
children SOAs.

Client

Figure 4. The proxy re-encryption-based key distribution i mplemented by F3ildCrypt. The client
requires only a single key.

or other SOAs. Before sending a document containing seagitita fields to an SOA, a client cryptographically
transforms each field containing sensitive data, usingxtezmal key. The client chooses which fields to transform
based on an XACML client policy delivered from the SOA.

Meanwhile, each host or application in the SOA has an assacpublic key pair. This set of public keys is the
internal key sepky,...pkr,. These keys are used for communication internal to the SOA.

The external keykr is generated at a host called the external-key holder. Thécpkeys of the internal
applicationspky, ...pkz, are delivered to this host and used, in concert with the eateecret keykr to generate
the re-encryption keyskr_.j,...rkg—r,, as in [7]. The fundamental property of proxy re-encryptimids that,
for any plaintextP and internal applicatiorj:

pk1;(P) = rkp—1;(pke(P)))

The re-encryption keys are installed at a host calledpifosxy re-encryption engine Fields from documents
arriving at the SOA have been encrypted ungler and are handled by the proxy re-encryption engine. The latte
re-encrypts each field under re-encryption kéy;_.;;, wherej is the individual host within the web pipeline
designated to process that field, based on a XACML servetypdlihe plaintexis not revealeduntil it arrives at
the intended destination host.

This solution requires an SOA to deliver to its clients aifiedte containing only the single external kek;,
avoiding the problem of sending what could be a set of hursdoedhousands of certificates. Furthermore, no

logical infrastructure details are revealed to the cliéffith the exception of the external-key holder, any subset
of intermediate hosts between the client and end-host adimdj the proxy re-encryption engine itself — can be
compromised without leaking any sensitive user data.

Compromise of the external-key holder, however, could bedeous, requiring that special care be taken to
secure this machine. Luckily, the bandwidth requirementthe external-key holder are extremely low. It is only
used to generate the re-encryption keys, so after inittaipséts use is only required when adding new internal
hosts. Thus, in the extreme, it is possible to keep the exitdgy holder offline at all times, and distribute keys
through it by hand.

4 Implementation

Our implementation of F3ildCrypt consists of a Javasdog$ed policy engine and a Java-based cryptography
engine delivered to each web browser. The web server cantethe server using SSL. On the server side, we
provide a Python-based XML gateway with in-line proxy resgmtion engine for each SOA, and a Python-based
XML proxy at each internal application. These proxies sthrekey pairs for their respective applications, and
perform decryption and XML unwrapping on behalf of the apgtion.

The Java cryptography engine and in-line proxy re-encoypéingine use the proxy re-encryption algorithm
described in [7]. This algorithm is based on bilinear magy,[&nd is partially implemented in the JHU-MIT
Proxy Re-cryptography Library (PRL) [5]. For our implemation, we ported the PRL to both Java and Python.
We note that the JHU-MIT PRL supports only single-hop rergpiton, thus limiting the recursive depth of our
implementation until such time as an implementation of thatinmop algorithm from [9] is available.

F3ildCrypt setup in an SOA begins by designating an offlinstlas the external-key holder and generating the
external key pair. The public keykz is signed by a trusted third party and the certificate is maed#adle to the
public. This is the key with which all clients will encryptrssitive data sent to the SOA.

At each application inside the SOA we install an XML proxy walhiserves as that application’s entry point
into the F3ildCrypt network. This proxy stores the interkey pair (pk;;, sk;;) associated with the application.
Any documents with encrypted fields arriving at the appicsatre intercepted and decrypted by the XML proxy
before delivery to the application proper.

Each internal public key is delivered in offline fashion rfdadelivered via USB key, for example) to the
external-key holder, where the re-encryption keys are igée@. The re-encryption key for proxyis rkg_.;
and it is a function of the external secret ke andpk;y,. The re-encryption keys are then hand-delivered to the
proxy re-encryption engine.

The proxy re-encryption engine operates as a client to thé. Xkteway. The XML gateway stores a set of
XSLT stylesheets [13]. Each stylesheet describes theftranation to be applied to a given field type in a docu-
ment. The XSLT implementation is extended with the proxgmneryption function, so applying the cryptographic
transformations becomes an application of a stylesheat, \&8bCrypt [30]. The specific stylesheets are chosen
based on a system administrator-defined XACML policy.

The XML gateway uses the XSLT transforms to re-encrypt degieg fields, targeting them to the appropriate
internal hosts. It processes incoming documents contaifiglds encrypted undeskp. These fields are re-
encrypted under the various re-encryption keys_.,...rkg_r,, in accordance with the XACML policy, before
forwarding the document on to the web pipeline.

When a client connects to the SOA over SSL, the SOA respontistiné contents of an Ajax web application,
implementing, for example, a shopping cart applicationck@ged along with the application is the Javascript-
based policy engine and an applet containing the Java gsagby engine. At the browser, the package then
downloads from the SOA an XACML policy document to be appliediploaded documents, and a certificate
store containing the signed certificate for the SOAs exaekey. When, in the course of user interaction with
the application, an XML document must be uploaded, the daydsengine applies the XACML client policy.

This policy describes which fields of the document should erygted. The cryptography engine encrypts the
designated fields with the external key, and then the doctimeploaded to the SOA.

Now consider the case of a parent SOA, with externaljKey, making requests on a child SOA with external
key pkg.. The child SOA implements the F3ildCrypt architecture,hwitternal key pairs for its own internal
applications. As in the parent case, and given the appteppiexy re-encryption algorithm, XML documents
arriving at the child SOA's XML gateway are re-encrypted bg proxy re-encryption engine.

To make use of the child SOA, the system administrator at #vernt uses the publicly knowpkr, and its
secret keyskg, to generate a re-encryption key, ... Fields within a document sent to the parent SOA, but
destined for the child SOA, are re-encrypted undegy_.. at the parent XML gateway. When the fields arrive at
the child XML gateway, they may be re-encrypted again, toetid-hosts within the child SOA.

4.1 Example

In this section we will describe a sample application of tBddCrypt architecture. It is based on the network
for a small e-commerce site selling widgets, called Widgeteap. The site consists of a firewall, web server with
business logic, and back-end databases for marketing antigaes, as was shown in Figure 1. Widgets4Cheap
also makes use of an external credit card processor.

The website presents to the user a web page with a simplegatatl shopping cart application, where the user
may browse widgets and select items to purchase. When thenoeismakes an order, the order is delivered to the
web server in the form of an XML document. An order consistthefcustomer’s name, physical address, email
address, a list and count of each model of widget to be puechand the customer’s credit card information.

Customer data, including name, billing address, and ordgory are stored in the purchasing database. The
customer’s email address is stored in the marketing datal¥esorders arrive, the business logic transmits order
information and credit card details to the website’s creditd processor.

Revealing the internal architecture of the Widgets netwsrindesirable, as it may reveal business or trade
secrets (this is exacerbated in more sophisticated nesjvofidditionally, even with an SSL connection between
the client and the web server, the compromise of any intdrost in the Widgets4Cheap pipeline could be catas-
trophic to the company and its customers, since every iatdrost, particularly the firewall and web server, has
access to all the customer information in transit.

To protect this network, we define a high-level security @oliThe customer’s billing address, and order details
may only be revealed to the purchasing database, while tlad address may only be revealed to the marketing
database. The credit card information and total paymemvisaled only to the credit card processor.

Before implementing this policy, we deploy the F3ildCrypirastructure, as shown in Figure 5. Co-located with
each internal application is an XML proxy which stores thg gair for that application. This XML proxy serves
to decrypt the incoming XML documents, and unwrap the XML aseassary. On a separate offline machine
(the external-key holder) the system administrator gaeesrthe external key pair which will be presented to
remote users. A certificate for this key is signed by a thiahipcertificate authority. In the case of this example
implementation, this was an in-house certificate authority

The external-key holder is then used to generate re-eriorykeys for each internal application and the credit-
card processor, and these are delivered to the XML gatewenrelty allowing the gateway to re-encrypt traffic to
the internal applications and credit-card processor SOA.

At the XML gateway we place a set of XACML policy files that debe the transformations to be applied to
documents in transit, an example rule of which is shown irufégs. The XML gateway also contains a set of
XSLT documents for implementing those transforms, an examipwhich is shown in Figure 7.

Meanwhile, the Javascript policy engine and Java cryptinerapplet are incorporated into the Ajax application
viewed by customers, along with a XACML client policy file aadertificate store containing the Widgets4Cheap

external key.

....... External
‘‘‘‘‘‘‘‘‘‘‘ keyholder

AN A

Offline

XML

Marketing
database

proxy
XML
Web server /
N > XML
Firewall > %?;iv;%,/ proxy bL;zwnzss
encryption 9
XML

proxy

Purchasing
database

XML
gateway

Credit card
processing

Figure 5. Diagram of the network for Widgets4Cheap with F3il dCrypt installed.

<rule ruleid="creditcard_transforn effect="permt">
<t ar get >
<resour ces>
<resource>
<r esour cenmat ch mat chi d="functi on: xpat h- node- mat ch" >
<resourceattributedesignator attributei d="resource: xpath"
dat atype="string"/>
<attributeval ue datatype"string">
order/creditcard
</attributeval ue>
</ resour cenat ch>
</ resource>
</ resources>
</target>
</rul e>

<obl i gati on>
obligationid="reencrypt_on_transit"
fulfillon="permt">
<attri but eassi gnnent
attributeid="reencrypt"
dat at ype="string">
ccn_reencrypt. xs
</ attributeassi gnnent >
</ obli gati on>

Figure 6. A rule from the XACML server policy file. When the gat

eway receives an XML document,

the rule attempts to match the XPath or der/ credi t card. When this rule fires, the associated
obligation indicates that the XSLT transform ccnreencrypt. xsl should be applied.

<xsl :tenpl ate match="creditcard">
<xsl : copy- of
sel ect="encrypt:reencrypt (., reencrypt_key[7]')"/>
</ xsl : tenpl at e>

Figure 7. An XSLT snippet for re-encrypting the credit card i nformation. Demonstrates usage of the
XSLT extension function reencrypt (). It applies proxy re-encryption to the matched XML field
using the re-encryption key reencrypt key[7].

<or der >
<dat e>1 January 2008</ dat e>
<name>H. Si npson</ nane>
<addr ess>
<street>742 Evergreen Terrace</street>
<city>Springfield</city>
<st at e>USA</ st at e>
<zi p>12345</ zi p>
</ addr ess>

<emai | >homer @pringfiel d. conk/ emai | >

<creditcard>
<paynent >179. 90</ paynent >
<i ssuer >Aneri can Express</issuer>
<nunber >1234- 5678- 1234- 5678</ nunber >
<expiration nonth="10" year="2010"/>
</creditcard>

<items>
<itenp
<quantity>1l</quantity>
<detail >Big red w dget</detail >
<cost >69. 95</ cost >
<litenp
<itene
<quantity>1l</quantity>
<det ai | >Bl ue suede wi dget </detail >
<cost >109. 95</ cost >
</itemp
</itens>
</ order >

Figure 8. A purchase order for two pairs of widgets from Widge ts4Cheap.

<rule ruleid="creditcard_rule" effect="permt">
<t ar get >
<resour ces>
<resour ce>
<r esour cenat ch
mat chi d="functi on: xpat h- node- mat ch" >
<resourceattribut edesi gnat or
attri butei d="resource: xpat h"
dat atype="string"/>
<attributeval ue datatype"string">
order/creditcard
</attributeval ue>
</ resour cenmat ch>
</ resource>
</ resources>
</target>
</rul e>

<obligation
obl i gati oni d="encrypt _on_send"
fulfillon="permt">
<attri but eassi gnnent
attributeid="encrypt"
dat at ype="string">

encrypt (key[n])
</attributeassi gnnent >
</ obl i gati on>

Figure 9. The XACML client rule, abridged for clarity and spa ce. This rule and obligation describes
the action to be taken on the credit card section of the XML doc ument: encrypting it with a key
obtained from the certificate store.

After browsing the catalog and selecting his items, theanst makes his purchase as in Figure 8. Before
transmitting this document, the application applies theCKA. client policy. The XACML client policy file
describes which fields in the order document should be etentypA snippet from the Widgets4Cheap client
policy is shown in Figure 9. When the policy is evaluated,¢hgtography engine encrypts the necessary fields,
resulting in a new, field-encrypted order document.

When the now-transformed document arrives at the Widgéisdf website, it is processed by the XML gate-
way/proxy re-encryption engine, which applies the servACKIL policy to determine which XSLT transforms
to apply. The XSLT transforms apply the proxy re-encryptiorthe document, re-targeting the field encryptions
that were originally applied by the client. The businessdalkien processes the order, delivering the various XML
fields to their intended targets. The individual XML fielde amtercepted by the XML proxies at each application
and decrypted before being passed on to the applicatioreprdpe re-encrypted credit card information is passed
to the credit-card processor, who may recursively apply $kistem, distributing the received information through
its network.

5 Evaluation

We evaluated the performance of F3ildCrypt by measuringnfsact on the web browser clients, on the XML
gateway, and on the XML proxies at each host. We performedostienchmarks at the individual hosts, as well
as throughput measurements on the servers.

Our experimental setup consisted of the network describdtigure 5. Each server application ran on a Dell
PowerEdge 2650 Server, with a 2.0GHz Intel Xeon proces$sB RAM, and 36GB Ultra320 SCSI hard drive.

200

150

100

Time (ms)

50

1 2 3 4 5 6 7 8 9 10
Block count (128B blocks)

Figure 10. Time (ms) to encrypt multiple 128-byte fields on th e client.

100

-
E 75
(]
£
g %
[}
3
8 25
o
0
10 20 100 1000 10000
Field size (B)
I Crypto
B XML + XACML
Figure 11. Processing time on a document containing a single field of 20 bytes. Shows the relative

time devoted to cryptography versus the XML and XACML proces sing.

All machines ran OpenBSD 4.2. and were linked via GigabieHibt. The applications included OpenBSD PF
on the firewall, Apache 1.3.29/PHP 4.4.1 on the business kxgiver, and MySQL 5.0.45 on the database servers.

The client ran on a MacBook Pro, with a 2.4 GHz Intel Core 2 UGB RAM, and 150GB 5400 RPM Fuijitsu
hard drive. The machine used OS X 10.5.2 with Darwin kernedige 9.2.2. The web browsing platform installed
on this computer was Mozilla Firefox 2.0.0.13.

The extra work incurred on the web browsing client consistapplying the XACML policy followed by
application of the appropriate cryptographic transfoioret. We used a Java port of the JHU-MIT Proxy Re-
cryptography Library [5], running as an applet in the browsgich implements the proxy re-encryption scheme
described in [7]. The Java cryptographic engine applet amdstript policy engine together are approximately
25KB. We measured the performance of the client by encrgptinltiple 128-byte fields, as shown in Figure 10.
After processing, most XML documents increase in size betwi)% and 30%.

The most common sizes for identity-related sensitive datg, Credit card numbers, birth dategg) are less
than 1K, so the cost incurred at the browser in these casésawije from40 to 150 ms. Of course, this cost is
only incurred when sensitive data requiring encryptioncisially transmitted.

The additional work incurred at the XML gateway consists afging the incoming XML documents and
applying proxy re-encryption; Figure 11 shows the combioest. We isolated the re-encryption cost per field in

200

150

100

Fields/s

50

10 20 100 1000 10000
Field size (B)

Figure 12. Re-encryption rate (fields/s) at the XML gateway v s. incoming field size. As field size
grows, the processing rate decreases.

200
150

100

Fields/s

50

10 20 100 1000 10000
Field size (B)
Figure 13. Decryption rate at an XML proxy vs. incoming field s ize.

Figure 12. An XML proxy decrypts the encrypted fields fromdming documents; we isolated the decryption
cost at the XML proxy in Figure 13.

These results show that fields from XML documents can be peeckat a rate afoo to 140 fields/second, and
the majority of the processing time is dedicated to the @gation process. This time can be significantly im-
proved through software optimization; the JHU-MIT PRL ig nptimized for execution time. The re-encryption
cost can be further substantially reduced through the iaddif a hardware cryptographic accelerator [21].

6 Discussion

The F3ildCrypt system is designed to assist an online eimtiprotecting its users’ sensitive information. The
user must not longer collectively trust the web applicatible back-end databases, and the system administrators
with each sensitive item he provides. Now, for that same,itegronly has to trust its intended destination.

F3ildCrypt is designed to assist the system administratorsaking the end-user’s trust well-founded. How-
ever, to provide further assurance to the user, this appney be combined with a P3P-like policy [14] working
in concert with a browser-based cryptography engine likdo@$pt [30]. Additional protection may come from
obtaining a signature on the Ajax application itself frontasted third party. This trusted third partg.g, the
Better Business Bureau) would certify that the Ajax is epting or protecting data to the correct recipients. Re-
gardless of the means, the user, or a trusted third party, veu$y the contents of the Ajax application and the

associated policy.

For a motivated adversary attacking a F3ildCrypt-enablestiesn, note that the external-key holder possesses
the secret key corresponding to the external public key. &vdiopossesses of the secret key is capable of de-
crypting all messages to that SOA, making the external-lagidr a desirable target for attackers. However, it
is infrequently used and has low bandwidth requirementsis fifachine can operate entirely offline, with the
occasional generation of a re-encryption key taking plaaaliskette or USB key.

We also note that, within the network of the F3ildCrypt-gupad SOA, like in a traditional network, an adver-
sary who has compromised an intermediate machine may swagplay fields, or otherwise modify documents
as they pass through that machine’s possession. F3ild@dogs not prevent such attacks, though they can be
alleviated via timestamps and signatures on the indivitiakls.

There is an attack on web browsing transactions that corapstfansaction generators. Transaction generators
wait for users to log on to their accounts, and then issus#etions on their behalf. Jacksenhal. [20] propose
as a solution a form of confirmation page. This confirmatiogepaan be integrated with F3ildCrypt and the
user-certification process described above to providdiaddl protection to the user.

7 Conclusion

The F3ildCrypt system provides end-to-end protection &rsisnd SOAs by encrypting XML fields at the
client web browser. The SOA protects its internal architexby using proxy re-encryption to re-target the XML
fields at the SOA edge. The processing cost at the web broersges from5 to 1 second when making sensitive
transactions, and a processing ratd@d to 140 XML fields/second on the server, of which the latter could be
easily improved through software optimization and haréwsceleration.

Future work on F3ildCrypt will include integration of thegxy re-encryption algorithm with the web browser
itself further extensions to the browser so the user has s@sirance that the correct transformations have been
applied.

References

[1] Regulation (EC) No 45/2001 of the European Parliameudtafithe Council of 18 December 2000. Official Journal of
the European Communities, December 2001.

[2] OASIS eXtensible Access Control Markup Language (XACML http://ww. oasi s- open. org/
conmmi ttees/security/,2005.

[3] Card data stolen from grocery chaint t p: / / www. securi t yf ocus. com bri ef/ 704, March 2008.

[4] Cisco ACE XML Gateway. ht t p: / / www. ci sco. coni en/ US/ pr oduct s/ ps7314/i ndex. ht M , March
2008.

[5] JHU-MIT Proxy Re-cryptography Libranyht t p: // spar . i si . j hu. edu/ ~ngr een/ pr |/, March 2008.

[6] WebSphere DataPower XML Security Gateway XS40. http://ww 306. i bm conl sof t war e/

i nt egrati on/ dat apower/ xs40/ , March 2008.

[7] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Impilg@rexy re-encryption schemes with applications to secure
distributed storage. IRroceedings of the 12th Annual Network and Distributed &gstSecurity Symposium (NDSS
2005) 2005.

[8] K. Bai, H. Wang, and P. Liu. Towards Database FirewallnMg the Damage Spreading PatternsPceedings of
ACSAC 2006pages 178-192, 2006.

[9] M. Blaze, G. Bleumer, and M. Strauss. Divertible protiscand atomic proxy cryptography. Proceedings of Euro-
crypt 98, pages 127-144,1998.

[10] D. Boneh and M. Franklin. Identity-based encryptioorfrthe Weil Pairing SIAM Journal of Computing2(2):586—
615, 2003.

[11] L. Cai and X. Yang. A reference model and system architecfor database firewall. IRroceedings of IEEE SMC
2005 pages 504-509, 2005.

[12] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Orchistyaomposite web services under data flow constraints.
In Proceedings of the IEEE International Conference on WekiSes pages 211-218, 2005.

[13] J. Clark. XSL Transformations (XSLT) Version 1.6t t p: / / www. w3. or g/ TR/ xsl t , November 1999.

[14] L. Cranor, M. Langheinrich, M. Marchiori, M. Preslerdvkhall, and J. Reagle. The Platform for Privacy Prefergnce
1.0 (P3PL1.0) Specifcation, April 2002.

[15] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, andd&n8&rati. A fine-grained access control system for XML
documentsACM Transactions on Information and System Security (TG 3¥2):169-202, May 2002.

[16] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Regt for Comments 2246, Internet Engineering Task Force,
1999.

[17] I. Fundulaki and M. Marx. Specifying access controlipigls for XML documents with XPath. IRroceedings of the
ninth ACM symposium on Access control models and techregjqugiges 61-69, 2004.

[18] J. J. Garrett. Ajax: A New Approach to Web Applicationsit t p: / / www. adapt i vepat h. conl i deas/
essays/ archi ves/ 000385. php, February 2005.

[19] T. P. Institute. 2007 Annual Study: Cost of a Data Breddht p: / / www. ponenon. or g/ pr ess/ PRPonenon_
2007- COB.071126_F. pdf , November 2007.

[20] C. Jackson, D. Boneh, and J. Mitchell. Transaction gatioes: Root kits for the web. Im proceedings of the 2nd
USENIX Workshop on Hot Topics in Secur2@07.

[21] A.D. Keromytis, J. L. Wright, and T. de Raadt. The Desifthe OpenBSD Cryptographic FrameworkHroceedings
of the USENIX Annual Technical Conferenpages 181-196, June 2003.

[22] R. Lemos. TJX theft tops 45.6 million card numberbkt t p: / / www. securi t yf ocus. com news/ 11455,
March 2008.

[23] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu. Automaton ssgntation: A new approach to preserve privacy in XML
information brokering. IfProceedings of the 14th ACM conference on Computer and Cainations Security (CCS)
2007.

[24] B. Luo, D. Lee, W.-C. Lee, and P. Liu. QFilter: fine-grathrun-time XML access control via NFA-based query
rewriting. InThe Thirteenth ACM International Conference on Informatmd Knowledge Managemepages 543—
552, 2004.

[25] Q. H. Mahmoud. Securing Web Services and the Java WSBRW.S-Security Frameworkht t p: / / j ava. sun.
coni devel oper/technical Articl es/ WbServi ces/ security/,March 2005.

[26] H. Maruyamaand T. Imamura. Element-Wise XML Encryptibt t p: / /| i st s. w3. or g/ Ar chi ves/ Publ i c/

xm - encrypti on/ 2000Apr/ att- 0005/ 01- %m enc, April 2000.

[27] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-endiargnts in system desiglACM Transactions on Computer
Systems (TOCS2(4):277-288, 1984.

[28] J. H. Saltzer and M. D. Schroeder. The protection of rinfation in computer systemsProceedings of the IEEE
63(9):1278-1308, 1975.

[29] L. Singaravelu and C. Pu. Fine-grain, end-to-end gcfor web service compositions. IfEEE International Con-
ference on Services Computing (SCC 20p@pes 212—-219, 2007.

[30] A. Stavrou, M. Locasto, and A. Keromytis. W3bcrypt: Eyption as a stylesheet. Proceedings of the 4th Applied
Cryptography and Network Security Conference (ACNS 2@@®)es 349-364, 2006.

