
Privacy-Preserving, Taxable Bank Accounts

Elli Androulaki, Binh Vo and Steven Bellovin
{elli, binh, smb}@cs.columbia.edu

Columbia University

Abstract. Current banking systems do not aim to protect user privacy. Purchases made from a single
bank account can be linked to each other by many parties. This could be addressed in a straight-
forward way by generating unlinkable credentials from a single master credential using Camenisch and
Lysyanskaya’s algorithm; however, if bank accounts are taxable, some report must be made to the tax
authority about each account. Using unlinkable credentials, digital cash, and zero knowledge proofs of
knowledge, we present a solution that prevents anyone, even the tax authority, from knowing which
accounts belong to which users, or from being able to link any account to another or to purchases or
deposits.

1 Introduction

One of the hardest realms in which to achieve privacy is finance. Apart from the obvious — few
transactions are made via cash or other anonymous payment mechanisms — society often requires
that other information about bank accounts be disclosed. In the U.S., for example, banks and other
financial institutions are required to report interest or dividend payments, since they are generally
considered to be taxable income. Some jurisdictions require that a portion of the interest be paid
directly to the government; other jurisdictions impose taxes on actual balances. These requirements
conflict with a desire for privacy and suggesting a way to combine the two is the topic of this paper.

Pseudonymity as Privacy Mechanism. One particular aspect of the conflict concerns a very com-
mon technique for achieving transactional privacy: pseudonymity. In pseudonymous systems, an
individual has a multitude of separate, unlinkable identities that can be used as desired. A separate
pseudonym can be used for each peer, thus preventing linkage between different sorts of activities.

We claim that pseudonymity may be adopted in the banking system to achieve privacy, as, at
least for tax purposes, neither banks nor the government need to know who owns a particular bank
account. In fact, there are both security and privacy benefits to having multiple pseudonymous
accounts. Often, knowledge of a “routing number” (effectively, the bank’s identity) and an account
number are sufficient to withdraw money from an account as well as deposit money into it. Having
multiple pseudonymous accounts — and closing those created for a special purpose when they are
no longer needed — could prevent such incidents.

The Challenge. Although the identity of the account owners is not a functional requirement of the
banking system, pseudonymity may harden authorization and encourage fairness attacks as it lacks
accountability. Banks need to know that only authorized parties withdraw money from accounts;
governments need ensure that balances and income are properly reported, and taxes paid. An ideal
system would be one where an individual could open a bank account without disclosing his or her
real identity; nevertheless the relevant tax authorities would receive accurate reports of relevant
information.

Our Contribution. We present a solution that accomplishes these goals. Individuals need present
strong identification credentials only to obtain a single membership to the bank, after which he

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

may open an arbitrary number of anonymous or nominal accounts, without anyone being able to
link those accounts to their owner or one to the other. Periodically, appropriate information on
taxable items is supplied; the tax authority can verify that all accounts are properly reported. Our
protocols are secure under the strong RSA assumption.
Organization. In Section 2, we give a more precise statement of the architecture and requirements
for the system. The protocols are described in Section 3. We explain why we believe this system to
be secure in Section 4. Section 5 discusses related work; Section 6 has concluding thoughts.

2 System Architecture

In this section, we present an overview of our system requirements, threat model and other under-
lying assumptions for our protocols. In addition, we enumerate the types operations considered in
the system, followed by the security definition. We note that some of these definitions were inspired
by previous work on other primitives, such as [cl01,chl05].

System Entities It constituting a complete part of our identity management system, the entities
involved are exactly the ones mentioned in chapter ?? and which we mention here for convenience:

– Users, who open bank accounts and must pay taxes.
– Banks, who allow users to open accounts for the purpose of storing cash and handling financial

transactions. They are responsible for reporting interest for income tax purposes. In accordance
to the two types of accounts they support, each bank B maintains two databases:
1. the Dreg, which contains the contact and credential information of its clients, as well as the

nominal accounts’ history information, and
2. the Dα, which contains all the anonymous accounts’ information, i.e., authorization infor-

mation, account balance, etc.
– Tax Authority (TA), which is responsible for ensuring that correct income taxes are paid by

all users. Tax Authority corresponds to the U.S.’s Internal Revenue Service (IRS), the Canada
Revenue Agency, the U.K.’s HM Revenue & Customs, etc.

We also assume that each each individual owns an IDC (see chapter ?? for more details), which
is ultimately bound to a specific person. Banks use this ID card to gain strong assurance of the
identity of the person who registers to them.

Operations To define the operations supported by a reputation system strictly we will use the
following notation: when an operation is an interactive procedure (or a protocol consisting of multi-
ple procedures) between two entities A and B, we denote it by 〈OA, OB〉 ← Pro(IC)[A(IA), B(IB)],
where Pro is the name of the procedure (or protocol). OA (resp. OB) is the private output of
A (resp. B), IC is the common input of both entities, and IA (resp. IB) is the private input of
A (resp. B). We also note that depending on the setup, some operations may require additional
global parameters (e.g., some common parameters for efficient zero-knowledge proofs, a modulus p,
etc). Our system will need these additional parameters only when using underlying schemes that
use such parameters, e.g., e-cash systems or anonymous credential systems. To simplify notation,
we omit these potential global parameters from the inputs to all the operations.

– (pkB, skB)← Bkeygen(1k) is the key generation algorithm for Bank.

2

– (pkU, skU)← Ukeygen(1k) is the key generation algorithm for the users. We call pkU the (mas-
ter) public key of U, and skU the master secret key of U.

– (P, secP) ← Pnymgen(1k) is the pseudonym generation algorithm for users. The secP is the
secret information used to generate the pseudonym P.

– 〈secα,Dα
′〉/〈⊥,⊥〉 ← AccountOpen (pkB) [U(skU),B(skB,Dα,Dreg)]. A user U requests and

open an anonymous bank account from bank B. Bank, using Dreg, checks if U is eligible for
it and If so, the account is opened. Both Dαand Dreg are changed to reflect the updated user
account information.

– 〈T i,Dα
′〉/〈⊥,⊥〉 ← TaxReportIssue (Pi, pkB) [U(seciα, skU),B(skB)]. A user U owning account

αi (secret information seciα) and B collaborate for the former to issue a tax report for αi. U
demonstrates knowledge of the account ownership and contributes his secret information to
issue tax report T i. B notes in Dα that a tax report for αi has been issued.

– TT i / ⊥ ← TaxReportTransform(T i, skU). A user U having issued a tax report T i, transforms
it in the unlinkable form TT i, for which he can still demonstrate ownership of.

– 〈>,Dα
′,Dreg

′〉/〈⊥,⊥〉 ← TaxReportDeposit (pkB, pkU, TT
1, . . . , TTN) [U(skU),B(skB,Dreg)].

User U who has already issued the tax reports T 1, . . . , TN and transformed them to TT 1, . . . , TTN

respectively, deposits the latters to the bank B.
– TotalTax/⊥ ← TotalTaxCalculation [U(skU, T

1, . . . , TN),B(skB,Dreg)]. The user U and the
bank B collaborate for the latter to calculate the overall tax amount withheld by U’s accounts.
The secret input of the user is his secret information and the initial tax reports T 1, . . . , TN .

Threat Model We make the following assumptions:

– Users may try to cheat. A user trying to avoid paying taxes may attempt to lie regarding the
tax he has been withheld and is motivated enough to attempt any type of forgery. We also
assume that malicious users may collaborate in order to change their reported balance to their
benefit, as long as through this collaboration they do not endanger their funds.

– Banks are “honest but curious”. Aiming to maintain their clientele, banks are trusted to perform
all their functional operations correctly, i.e., they issue credentials, open and update accounts
as instructed by their customers. However, they may use the information they possess for other
reasons, i.e., to sell credit card based profiles to advertising companies, while they may collab-
orate with tax authority to reveal the identity behind an anonymous account.

– Tax Authority is considered to be “honest”, as we assume that it is operated by the government
who wants to protect honest users. However, they are not assumed to protect privacy; indeed,
there have been a number of incidents in the U.S. of privacy violations by tax authorities or by
unscrupulous individuals employed by the tax authorities.

Requirements Correctness, user privacy and security of the operations of the system are our core
requirements. We will strictly define each of them.

Correctness requires that if an honest user U, who is eligible for opening anonymous accounts with
an honest bank B, runs AccountOpen with B, then none will output an error message. Also, if
honest U, has opened accounts α1, . . . , αN with honest B, and runs TaxReportIssue, then no one
will output an error message, while when the user tries to deposit them and thus runs with TA

3

TaxReportDeposit and TotalTaxCalculation no entity will output error message and they will output
the aggregated tax withheld by honest U’s accounts.

Privacy — generally equivalent to honest users’ activity untraceability — in the context of our
bank system is interpreted to the following:

1. Account-Account-owner Unlinkability. There should be no way for any entity or collaboration
of entities, including the bank and tax authority, to link accounts to a particular user identity.

2. Account-Account Unlinkability.There should be no way for any entity or collaboration of entities,
including the bank and tax authority, to link different accounts of the same user.

In both cases we consider an adversary who, having corrupted some parties including bank B, is
participating in the system for some arbitrary sequence of operations executed by honest and by
corrupted parties.

Taking in consideration that each anonymous account is taxable and managed through a
pseudonym, we should consider both unlinkability properties w.r.t. pseudonyms and w.r.t. tax
reports. More specifically, account – account-owner unlinkability can be inducted to account-
pseudonym – account-owner unlinkability and account – account tax-report (final form) unlink-
ability. The first requires that given a pseudonym PU that does not belong to a corrupted party,
the adversary can learn which user owns PU no better than guessing at random among all non-
corrupted peers that appear consistent with PU. Account – account tax-report unlinkability requires
that given a first version of a tax report T that does not belong to a corrupted party, the adversary
can learn which user owns T no better than guessing it at random among all non-corrupted users
in Dα. In addition, given a transformed (final form) tax report TT , that does not belong to a cor-
rupted party, the adversary can learn which pseudonym (and thus which account) it corresponds
to no better than guessing at random among all pseudonyms (accounts) of non-corrupted users in
Dα.

In a similar way, account – account unlinkability can be interpreted in account-pseudonym –
account-pseudonym unlinkability and account-tax report – account tax-report unlinkabilty. Account-
pseudonym – account-pseudonym unlinkability requires that given two pseudonyms P1

U,P
2
U that do

not belong to corrupted parties, the adversary has no advantage in telling whether P1
U,P

2
U belong

to the same user or not. Next, consider an adversary who corrupted some users and the bank as
well. Tax report related unlinkability requires that, given two tax reports T 1, T 2 that do not belong
to corrupted parties, the adversary has no advantage in telling whether they belong to the same
user or not.

Security consists of the following properties:

1. Fairness. An accurate statement of the contents or tax liability of all accounts belonging to a
given individual is reported to the tax authority per normal practice (i.e., quarterly or annually).
More strictly: suppose that n users U1, . . . ,Un collude together. Let the sum of the tax withheld
by all of them together is

SumTax =
∑
i=1...n

TotalTaxi,

where TotalTaxi is Ui’s tax amount withheld. Then, fairness requires that the group of users
may report in total a minimum of SumTax amount withheld. By fairness, we also require that
the following hold:

4

(a) Tax Report non-Transferability. No user should be able to exchange tax report(s) with any
other user or use the tax report of another. Assuming two corrupted users U1 and U2, where
U1 has issued T 1. Tax Report non-Transferability requires that there is no valid transfor-
mation TT 1 of T 1 (through TaxReportTransform) for which the following happens with non
negligible probability: if U2 attempts to deposit TT 1 in honest B through TaxReportDeposit,
B accepts.

(b) Tax Report Unforgeability. No user or coalition of users should be able to construct a valid
tax report for his accounts, i.e., a tax report for which TaxReportDeposit is accepted by the
tax authority or the bank.

2. Privacy preserving Tax Reporting (covered by privacy property).Tax reports, whether viewed
individually or in aggregate, should not reveal any information about the owner or their activities
beyond what is necessary for accurate taxation.

3. Accountability. Users who attempt to avoid paying taxes for their accounts are traced and
punished. We may tentatively assume that this requirement falls in the margin of fairness
property, as users who try to avoid paying taxes or attempt to report a higher amount than the
amount withheld are caught.

3 Taxation Protocol

In accordance to the two types of accounts it supports, each bank B maintains two databases:

1. the Dreg, which contains the contact and credential information of its clients, as well as the
nominal accounts’ history information, and

2. the Dα, which contains all the anonymous accounts’ information, i.e., authorization information,
account balance, etc.

As accountability imposes a “privacy-preserving” centralization critical, inside the bank, each user
can be privately authenticated by demonstrating knowledge of a single master secret, msU, which
he generates at the registration procedure. Users are highly motivated not to share their secret,
which they use to open and manage their anonymous accounts. More, specifically the user utilizes
his msU to issue single use, bank (blindly) authorized permissions permα, which he later deposits
anonymously. To manage his accounts, the anonymous user generate account pseudonyms, which are
secretly, but provably, connected to their owner’s msU. As privacy requires, pseudonyms of the same
user are totally unlinkable one with the other (account-account unlinkability), while pseudonyms,
reveal nothing regarding the owner of the msU(account owner anonymity) without their owner
collaboration. However, when a user misbehaves, he risks that his msU is revealed and his identity
and activity completely traced. Users are annually required to deposit to the tax authority an equal
amount of tax reports to the number of accounts they own. For tax reporting, we may identify the
following user-bank phases:

1. Tax Report Generation. It involves three stages:
(a) Tax-Report-number Acquisition, where account owners obtain one valid tax-report-number

(TRN) per account. It is important to note that TRNs are not linked to the accounts they
are used for.

(b) Actual Report Generation, where the account owner, contacts the bank through his account
pseudonym, proves that he is the owner of the account — by demonstrating knowledge of
the msU connected to the account pseudonym — and provides a verifiable commitment to

5

both his msU and TRN. The bank then produces the prime version of the account’s tax
report:

(T σ, TM) = (SigxB(TaxInfo), TaxInfo),

where

TaxInfo = Tax || Commitment(TRN, Master-Secret),

Tax is the tax withheld from the user’s account and by SigxB(M), we denote a complicated
procedure which involves bank’s (x-multiple) signature on M . The exact number of bank
signatures applied on M is not revealed to the user. However, the bank provides the user
with a randomized token SigInfo which contains that information, in a form only readable
by the taxation authority, along with re-randomization information SITranform for the user
to make SigInfo unlinkable to its initial form.

(c) Tax Report Transformation, where the account owner, applies a transformation function F
to both, the bank-signed tax report T σ, and the corresponding unsigned message, ending
up to the depositables

TT σ = F (T σ), and TTM = F (TM).

The account owner also transforms SigInfo through SITranform.

The tax report consists of the pair: (TT σ, TTM).

2. Tax Report Deposit. Each user deposits all of his tax reports to the bank. The deposit of tax
reports includes three stages:

(a) Deposit of all the unused permα. In this way, the bank can accurately compute the number
of anonymous accounts of each user.

(b) Deposit of the depositable tax report pairs, (T σ,i, TM,i) corresponding to each account of the
accounts owned by the user.The user proves that each tax report pair is valid, i.e., that it
corresponds to bank signature(s) (according to the transformed version of SigInfo), that was
constructed using the same user’s master secret and that is fresh.

(c) Tax Amount Calculation procedure, where, the bank processes the individual tax reports to
generate an aggregate tax report for the user, which is revealed with user’s collaboration.

3.1 Building Blocks — Primitives for the Suggested Solution

Ecash An E-Cash [chl05] system consists of three types of players: the bank, users, and merchants.
The input and output specifications of the basic operations are as follows. For convenience, we will
assume that the operations take place between a merchant M, a user U and the Bank B.

• (pkB, skB)← EC.BKeyGen(1k, params) and (pkU, skU)← EC.UKeyGen(1k, params), which are the key generation
algorithm for the bank and the users respectively.

• 〈W,>〉 ← EC.Withdraw(pkB, pkU, n) [U(skU),B(skB)]. U withdraws a wallet W of n coins from B.
• 〈W ′, (S, π)〉 ← EC.Spend(pkM, pkB, n) [U(W),M(skM)]. U spends a coin with serial S from his wallet W to M. W

is then reduced to W ′, M obtains a coin (S, π), where π is a proof of a valid spent coin with a serial S.
• 〈>/⊥, L′〉 ← EC.Deposit(pkM, pkB) [M(skM, S, π), B(skB, L)]. M deposits a coin (S, π) into its account in B. If

successful, M’s output will be > and the B’s list L of the spent coins will be updated to L′.
• (pkU, ΠG) ← EC.Identify(params, S, π1, π2). It outputs the public key of the violator U, who spent a coin with

serial S twice, producing validity proofs π1 and π2, and a proof of guilt ΠG.
• >/⊥ ← EC.VerifyGuilt(params, S, pkU, ΠG). This algorithm, given ΠG publicly verifies the violation of pkU.
• {(Si, Πi)}i ← EC.Trace(params, S, pkU, ΠG, D, n). This algorithm provides the list of serials Si of the coins a

violator pkU has issued, with the corresponding ownership proofs Πi.
• >/⊥ ← EC.VerifyOwnership(params, S,Π, pkU, n). Given a ownership proof Π it verifies that a coin with serial

number S belongs to a user with public key pkU.

6

Security Properties: (a) Correctness. (b) Balance. No collection of users and merchants can ever
spend more coins than they withdrew. (c) Identification of Violators. Given a violation and the
corresponding proofs of guilt, the violator’s public pkU key is revealed such that EC.VerifyGuilt
accepts. (d) Anonymity of users. The bank, even when cooperating with any collection of malicious
users and merchants, cannot learn anything about a user’s spendings. (e) Exculpability. An honest
user U cannot be accused for conducting a violation such that EC.VerifyGuilt accepts. (f) Violators’
Traceability. Given a violator U with a proof of violation ΠG, this property guarantees that EC.Trace
will output the serial numbers of all coins that belong to U with the corresponding ownership proofs.

Pseudonym Systems Pseudonym systems have three types of players: users, organizations, and
verifiers. Users are entities that receive credentials. Organizations are entities that grant and ver-
ify the credentials of users. Finally, verifiers are entities that verify credentials of the users. See
[lrsw99][cl01] for more details. The standard operations supported are the following:

– (pkO, skO) ← PS.OKeyGen(1k). This procedure generates a public/secret key pair for an organization. We denote
a key pair for an organization O by (pkO, skO).

– (pkU, skU) ← PS.UKeyGen(1k). This procedure generates a public/secret key pair for a user. We denote a key
pair for a user U by (pkU, skU). Sometimes we refer to the secret key of a user as a master secret key for the user.

– 〈(N,NSecrN), (N,NLogN)〉 ← PS.FromNym(pkO)
[
U(pkU, skU), O(skO)

]
. This interactive procedure between a

user and an organization generate a pseudonym (or simply nym). The common input is the public key of the
organization O. The output for the user is a nym N and some secret information NSecrN , and for the organization
the nym N and some secret information NLogN .

– 〈credN ,CLogcredN 〉 ← PS.GrantCred(N, pkO) [U(pkU, skU,NSecrN), O(skO,NLogN)]. This interactive procedure
between a user and an organization generate a credential for a nym N . The common input is N and pkO.
The output for the user is the credential credN for the nym N . The output for the organization is some secret
information CLogcredN for the credential.

– 〈>,>〉/〈⊥,⊥〉 ← PS.VerifyCred(pkO) [U(N, credN), V]. In this interactive procedure between a user and a verifier,
the user proves that he has a credential on the nym N issued by the organization O.

– 〈>,>〉/〈⊥,⊥〉 ← PS.VerifyCredOnNym (N, pkO, pkO1
) [U(N1, credN1),O(NLogN)]. In this interactive procedure

between a user and the organization O, the user proves that N is his valid nym of the organization O and that
he has a credential credN1 on the nym N1 issued by the organization O1.

Security Properties. (a) Unique User for Each Pseudonym. Even though the identity of a user who
owns a nym must remain unknown, the owner should be unique. (b) Unlinkability of Pseudonyms.
Nyms of a user are not linkable at any time better than by random guessing. (c) Unforgeability of
Credentials. A credential may not be issued to a user without the organization’s cooperation. (d)
Non-Transferability. Whenever a user U1 discloses some information that allows a user U2 to use
her credentials or nyms, U1 is effectively disclosing her master secret key to him.

Commitment Schemes In a typical commitment scheme, there are provers (let each be P) who
are required to commit to a particular value towards verifiers (let each be V), who may be able to
see the committed value when provers decide to. The procedures supported are the following:

• (params)← CS.Setup(1k), which outputs the parameters of a commitment scheme.
• (C/false)← CS.Commit(params)[P(r,m)]. It outputs either the commitment itself to a value m or not-completed.

P’s input is the message m and randomness r.
• 〈>/⊥,m/⊥〉 ← CS.Open(C)[P(m),V]. In this operation the P shows the committed value m to V. V accepts it if
m is the value matching C.

Security Properties: (a) Binding. It should be computationally impossible for P, after having com-
mitted to m, to generate another message m′ that has the same commitment value C. (b) Hiding. It
should be computationally impossible for a verifier who knows C to get any information regardingm.

Blind Signatures In a typical blind signature scheme, there are signers (let each be S) who produce
blind signatures on messages of users (let each be U). The following procedures are supported:

7

• (pkS, skS)← BS.KeyGen(1k). This is a key-generation algorithm that outputs a public/secret key-pair (pkS, skS).
• 〈>/⊥, σ/⊥〉 ← BS.Sign(pkS)[S(skS), C(m)]. At the end of this interactive procedure, the output of the S is either

completed or not-completed and the output of U is either the signature (σ) or a failure sign (⊥).
• 〈>/⊥〉 ← BS.Verify(m,σ, pkS) is a verification algorithm.

Security Properties: (a) Unforgeability. No one but the signer should be able to produce a valid
signature σ on a blinded message m. (b) Blindness S does not learn any information about the
message m on which it generates a signature σ.

Zero Knowledge Proof of Knowledge Protocols In a typical zero knowledge proof of knowl-
edge(ZKPOK) scheme there are two types of players, the provers who need to prove possession of
one or more secret number(s), that satisfy a particular property to one or more verifiers and the
verifiers. In what follows, we will use the notation introduced by Camenisch and Stadler in [cs97]
for the various proofs of knowledge of discrete logarithms and proofs of the validity of statements
about discrete logarithms. In particular, PK{(α, β, γ) : y1 = gα1 h

β
1 ∧ y2 = gα2 h

γ
2 ∧ (u ≤ α ≤ u)}

denotes a “zero-knowledge-proof-of-knowledge” of integers α, β and γ such that y1 = gα1 h
β
1 and

y2 = gα2 h
β
2 , where u ≤ α ≤ u and y1, g1, h1, y2, g2, h2 are all elements of two groups G1 and G2

respectively. We make use of the following ZKPoK schemes:
A proof of knowledge of a representation of an element y ∈ G with respect to bases z1, . . . , zv ∈ G
[cevdg88], i.e.,
PK{(α1, . . . , αv) : y = zα1

1 · . . . · zαvv }.
A proof of equality of discrete logarithms of y1, y2 ∈ G to the bases g, h ∈ G respectively, [c91,cp93]
i.e., PK{(α) : y1 = gα ∧ y2 = hα}.
A proof of knowledge of a discrete logarithm of y ∈ G with base g ∈ G such that loggy lies in the
interval [a,b], [b00],i.e.,
PK{(α) : y = gα ∧ α ∈ [a, b]}.
Proof of knowledge that the discrete logarithms of two group elements y1 ∈ G1, y2 ∈ G1 to the bases
g1 ∈ G1 and g2 ∈ G2 in the different groups G1 and G2 are equal [bcdg88,cm99], i.e.,
PK{(α, β) : y1 =G1 gα1 ∧ y2 =G2 gα2 ∧ C =G gαhβ ∧ α ∈ [0,min(q1, q2)]}, where q1, q2 are the
order of the groups G1, G2 respectively, G =< g >=< h > is a group to which the commitment C
of α, β is computed.
Security Properties.(a) Correctness. (b) Zero-Knowledge. The verifier learns nothing other than
that the prover knows the relevant values. (c) Proof of Knowledge. The protocol accepts iff the
prover knows the secret value he claims to know.
Pailier Cryptosystem The Paillier cryptosystem is s a probabilistic asymmetric algorithm for
public key cryptography and bases its security on the decisional composite residuosity assumption
(see [pp99] for details). Assuming the system is meant for a user U to be able to receive messages
confidentially, the operations supported are as in every cryptosystem the following:

– (pkU, skU) ← Pail.KeyGen(1k), where U generates his encryption key pair. In particular, U
chooses two safe large prime numbers p and q, such that gcd(p− 1, q− 1) = 2, computes n = pq
and chooses g ∈ Z∗n2 , such that n divides the order of g. pkU = (n, g), skU = (p, q).

– 〈 C/⊥ 〉 ← Pail.Encrypt(pkU,m), where anyone may use pkU to generate ciphertext C on a
mesage m: C = gm · rn(modn2), where r is randomly chosen.

– 〈 m/⊥ 〉 ← Pail.Decrypt(skU,C), where U uses his secret key to receive the plaintext.

It is apparent that a particular plaintext may have many ciphertexts, depending on r. We make
use of this property in the encryption of x in two ways: (a) two users will not be able to distin-

8

guish whether they have the same x or not, and are thus unable to know whether they are able
to exploit RSA homomorphism; (b) for re-randomization of SigInfo: users who know n can simply
compute C · (r′)n(modn2) and generate another ciphertext of x unlinkable to C. Thus in this case
of encryption algorithm, SITranform is n.

Security Properties: Semantic security against chosen plaintext attacks (IND-CPA), i.e. given pk,
two messages m1,m2 and a ciphertext corresponding c to one of them, it is impossible to guess
which of the messages corresponds to c with a better probability than 1/2.
RSA Signature Scheme As in a typical signature scheme, there are signers (let each be S) who
produce signatures on messages of users (let each be U). The details of the procedures supported
are the following:

– (pkS, skS) ← RSA.KeyGen(1k), where S chooses two safe large prime numbers p = 2p′ + 1 and
q = 2q′ + 1, where p′ and q′ are also large primes, and computes n = pq. S chooses also (e, d)
such that 1 = ed(mod(φ(pd))), publishes pkS = (e, n) and stores skS = (d, p, q).

–
– 〈 σ/⊥ 〉 ← RSA.Sign(m)[S(skS)], where S signs message m using the formula: RSA.Sign(m) =
md(mod n).

–
– 〈 >/⊥ 〉 ← RSA.Verify(σ,m, pksigner)[V], where V checks whether σe(mod n) equals m.

Security Properties: The most important security property of a signature scheme is Unforgeability.
Given a message m and assuming that factoring is hard, it is impossible to generate a valid sig-
nature that RSA.Verify accepts. In reality the way we defined the signature algorithm, it supports
homomorphism, which means that given the signatures σ1/2 of two messages m1/2, one could con-
struct a valid signature σ for m = m1m2. We restrict that attack by putting limitations on valid
message space such that multiplication of two messages falls outside the accepted message space.

3.2 Detailed Protocol Description

As mentioned before, the bank manages two different registries: one handling users’ non-anonymous
information (reg-setting) and accounts and another one handling anonymous accounts (α-setting).
As each setting is realized as organizations in pseudonymous systems (see section ?? or [cl01] for
more details), the bank runs PS.OKeyGen twice, once for the reg-setting and once for the α setting.
In particular, the bank:

– generates all the common system parameters (see [cl01]): the length of the RSA moduli `n,
the integer intervals Γ =] − 2`Γ , 2`Γ [, which is basically the interval master-secrets belong to,
∆ =] − 2`∆ , 2`∆ [, Λ =] − 2`Λ , 2`Λ+`Σ [, such that `∆ = ε(`n + `Λ) + 1, where ε is a security
parameter, and `Λ > `Σ + `∆ + 4.

– chooses two pairs (one for each setting) of random `n/2-bit primes: p′reg, q
′
reg and p′α, q

′
α, such

that px = 2p′x + 1 and qx = 2q′x + 1 are prime and sets modulus nx = px · qx, where x = reg, α.
– chooses random elements ax, bx, dx, gx, hx ∈ QRnx , where x = reg, α. In addition to the standard

organization setup procedure of [cl01], the bank also chooses random kα, lα,mα, sα, zα ∈ QRnα .

Thus, the Bank’s public-secret information for the two settings are

– {(nreg, areg, breg, dreg, greg, hreg), (preg, qreg)}, for the reg-setting, and

9

– {(nα, aα, bα, dα, gα, hα, kα, lα,mα, sα, zα), (pα, qα)}, for the α-setting.

In addition to the aforementioned parameters, the bank generates a blind signature key pair
(pkbB, skbB) and an RSA signature key pair,

{skB, pkB} = {(d, pα, qα), (e, nα)},

based on the α RSA-parameters and 1 < e < φ(pαqα) and de = 1(mod(φ(pαqα))). e is given to the
taxation authority (TA).

On the other hand, TA generates an encryption key pair (pkTA, skTA) of a known randomized
homomorphic encryption scheme (Paillier etc) and provides the bank with the encryption key (see
Appendix ?? or [pp99] for more details).

In what follows, we will assume that a user U collaborates with a bank B to open anonymous
accounts, handle them and be taxed for.

Registration. In this phase, the user U contacts the bank in person to create an entry in the
latter’s Dreg registry. This is a prerequisite for users to open (anonymous) accounts with B.

1. U provides identification credentials to B(i.e. passport, etc.)
2. U runs PS.UKeyGen to obtains a bank-oriented master secret msU and a public/secret key pair
{pkUB, skUB} connected to his msU.

3. U runs PS.FormNym using the reg-parameters to generate a bank pseudonym Preg ([cl01]),
connected to msUin zero knowledge fashion.

4. U and B U↔ B: execute EC.Withdraw procedure for U (see ?? or or [chl05] for more details) to
withdraw a wallet WAccBU of permα (ecoins). WAccBU will later authorize U to open anonymous
accounts in B. Consequently, the size of the wallet withdrawn depends on the maximum number
of anonymous accounts U is eligible for.

5. U ↔ B: execute PS.GrantCred procedure so that U obtains a registration credential credB
U for

having registered in Dreg, which is provably connected to msU.
6. U stores in his database his secret key (skUB), the information related to his pseudonym(pubPreg,

secPreg) and credentials (pubcredB
U, seccredB

U), while B stores only the public information.

Account Opening. To open an anonymous account, user U contacts B initially anonymously.
Both, B and U make use of the α-parameter group. The following interactions take place:

1. U(anonymous) ↔ B: run EC.Spend for U to spend an ecoin (S, π) (permα) from his WAccBU
wallet. If the ecoin used has been spent before, B runs the EC.Identify and EC.Trace procedures
to recover U’s identity(pkUB) and activity (skUB).

2. user: runs PS.FormNym, to generate a pseudonym Pi for managing his new account αi. The
pseudonym created has the form of

P = amsU
α bsα,

where s is a U-B-generated value known only to U (see [cl01]).
3. U(anonymous) ↔ B: run PS.VerifyCredOnNym, where U demonstrates ownership of credB

U and

B verifies both, that credB
U and Pi are bound to the same msU (user) and that their owner has

registered to the bank with a reg-pseudonym which is bound to the same msU as Pi.
4. U stores in his database the public/secret information related to his account-pseudonym (pubPi,

secPi). B stores (pubPi, S, π).

10

Tax Report Issue. This is a procedure taking place between the owner U of an account αi, who
participates through his pseudonym Pi and the bank B. It consists of three stages:

1. Tax Report Number Acquisition. The account pseudonym Pi collaborates with B in a BS.Sign
procedure, for the former to obtain a (blind towards B) TRN related ticket trticki. U deposits
in person to B the trticki to receive a tax-report-number TRNi. B sends to TA the tuple (U,
TRNi) and stores it in its Dreg. Tax report numbers are chosen from a range RangeT, such that
the sum of any two tax report numbers will result in a number out of of the corresponding valid
range, i.e.,:

∀TRNi,TRNj ∈ RangeT : TRNi + TRNj /∈ RangeT.

2. Tax Report Generation. The following take place:

(a) Pi: using secPi proves that he is the owner of Pi, by engaging in the ZKPoK:

PK{(β, γ) : (Pi)2 = (a2α)β · (b2α)γ}.

(b) Pi → B: C = Com(msU,TRNi, ri) = k
msU
α · lTRNi

α ·mri
α ,

where Com is a tax report related commitment scheme, msU U’s master-secret, TRNi, the
single-use tax-report-number, which U acquired anonymously, and ri is a U-generated ran-
domness.

(c) Pi ↔ B: execute the following ZKPoK protocol for Pi to show in zero knowledge fashion
that C was computed correctly, i.e., that the committed master secret matches the master
secret used in the construction of Pi (msU) and that the exponent of lα (TRNi) is among the
specified range:

PK{(γ, δ, ε, η) : (Pi)2 = (a2α)γ(b2α)δ ∧ C2 = (k2α)γ(l2α)η(m2
α)ε ∧

γ ∈ Γ ∧ δ ∈ ∆ ∧ η ∈ RangeT}.
(d) Pi ra B: a random rx; if B has received rx before, the procedure is repeated.

(e) B: decides x based on rx. It then computes htaxi
α and uses his RSA signature key to sign

TM,i = htaxi
α · C x times into T σ,i. B provides U with an x-related the secret piece of

information SigInfo = EncTA(x), where x ∈ Rangex. T σ,i is then:

T σ,i = hd
xtaxi
α · kdxmsU

α · ldxTRNi

α ·mdxri

α (modnα).

(f) B → U: T σ,i, SigInfo and SigInfo re-randomization information SITranform.

3. Tax Report Transformation.n this case, after having obtained his signed tax reports, U applies
the transformation function F , so that — although provably valid — the modified tax reports
are unlinkable to their initial form. In our scheme F (M) is instantiated by adding an extra
factor to M . In particular, U

(a) transforms both T σ,i and TM,i using F (M, r) = M · sr1α · zr2α , where M is the message to be
transformed and r = r1||r2 is a U-specified randomness. Thus, we get the following for the
signed tax report and the corresponding message, respectively,

TT σ,i ← F (T σ,i, rσ,i)← hd
xtaxi
α · kd

xmsU
α · ldxTRNi

α ·mdxri
α · sr

σ,i
1
α · zr

σ,i
2
α

TTM,i ← F (TM,i, rM,i)← htaxi
α · kmsU

α · lTRNi

α ·mri
α · s

rM,i1
α · zr

M,i
2
α .

(b) re-randomizes the encryption of SigInfo according to SITranform

11

Tax Report Deposit. Each user U(using a real identity) sends to the TA all the tax reports he
has acquired, (TT σ,1, TTM,1), . . . , (TT σ,N , TTM,N), where N is the number of U’s accounts. U then
proves that each one of these pairs were constructed in a correct way and that they correspond to
his accounts. The tax report validation consists of two steps:

1. Signature Validation, where U shows that (TT σ,i, TTM,i), for all i = 1 . . . N , correspond to
transformations of bank-signatures:
(a) TA: decrypts SigInfo, reads x and raises all TT σ,is to B’s signature verification key e, x times

using (modnα):

TTM
′,i ← (TT σ,i)e

x ← htaxi
α · kmsU

α · lTRNi

α ·mri
α · s

exrσ,i1
α · ze

xrσ,i2
α .

(b) U ↔ TA: interact in the following ZKPoK protocol to prove that in each pair, TTM,i

and TTM
′,i correspond to the same TaxInfo, i.e., that in both cases the exponents of

hα, kα, lα,mα are the same, or that TTM,i

TTM
′,i is a factor of powers of sα and zα:

PK{(θ, η)} : (
TTM,i

TTM
′,i

)2 = (s2α)θ(z2α)η.

2. Tax Report Ownership and non-Repetition Proof. where U proves to the tax authority TA that
each one of the tax reports he deposits had been created through his collaboration with B and
that he has not deposit the same tax report twice. The latter is achieved through the one-time-
use TRN s. For each one of TTM,is (or TTM

′,i), U reveals the TRNi to the TA, while he engages
to a ZKPoK protocol for the TA to verify that the exponent of kα in TTM,i (and thus,TTM

′,i)
matches the msU used in PB, i.e.,

PK{(γ, δ, τ, ε, θ, η) : (Preg)2 = (a2α)γ(b2α)δ ∧

∧ TTM,i

lTRNi

α

= hτα · kγα ·mε
α · sθα · zηα ∧ γ ∈ Γ ∧ δ ∈ ∆}.

Total Tax Calculation. In this operation, TA confirms that U has deposited tax reports for all
of his accounts and then uses them to extract the overall tax amount withheld by U’s accounts.
In particular, TA and U collaborate in an EC.Spend procedure for the latter to spend his unused
ecoins from WAccBU wallet. TA then estimates the exact number of U’s accounts and computes the
overall tax withheld as follows:

1. TA: computes the product of all TTM
′,i, which because of the homomorphism of the commitment

scheme used, equals to∏
i=1,...,N

TTM
′,i =

∏
i=1,...,N

(htaxi
α · kmsU

α · ltrniα ·mri
α · s

rM,i1
α · zr

M,i
2
α) =

hTotalTaxα · kNmsU
α · lRtα ·m

∑
i=1,...,N ri

α · s
∑
i=1,...,N rM,i1

α · z
∑
i=1,...,N rM,i2

α .

2. U reveals TotalTax =
∑

i=1...N taxi, which is the overall tax withheld.

3. U and TA collaborate in a ZKPoK protocol to prove that
T ′
i

hTotalTaxα ·lRtα
is correctly created and

thus prove that TotalTax is the required amount (note that TA knows Rt):

PK{(β, γ, δ)Preg2 = (a2α)γ(b2α)δ ∧ T ′i
hTotalTaxα lRtα

= (kNα)γmε
α ∧ γ ∈ Γ ∧ δ ∈ ∆}.

12

4 Discussion

In this section, we will discuss how each one of our privacy and security requirements are satisfied.
We also discuss deployability.

Security - Privacy The following theorem states the correctness, privacy and security of our
general scheme:

Theorem. if the underlying primitives (anonymous credential system, e-cash system, blind signa-
tures, commitments and ZKPoK) are secure, then our scheme satisfies correctness, account–account
unlinkability, account–account-owner unlinkability, fairness in tax reporting, tax report non trans-
ferabiliy, tax report unforgeability, and accountability.

We use prove this theorem with the following lemmas.

Lemma 1. If the underlying primitives (anonymous credential system, e-cash system, commit-
ments and ZKPoK) are secure, then our scheme satisfies Correctness.
Proof. The first condition of correctness is satisfied directly through the correctness of the under-
lying schemes of ecash and anonymous credentials and according to which if U is honest neither
EC.Spend procedure of permα nor PS.VerifyCredOnNym (which take place at the Account Open will
output an error message. The correctness and verifiability of the RSA signature scheme, its homo-
morphism and the correctness of the used ZKPoK protocols used to confirm that U is the owner of
all tax reports and guarantee that TaxReportDeposit will not output an error message.

Lemma 2. If the underlying primitives (anonymous credential system, ecash system, and ZKPoK)
are secure, then our scheme satisfies account-account unlinkability.

Proof. Account-account unlinkability is maintained in the Account Open procedure through the un-
linkability property of the ecash scheme used for permα and the unlinkability of pseudonyms property
of the underlying anonymous credential system. Account-account unlinkability is also maintained
through the tax reporting: Let α1 and α2 two accounts of U for which he obtains tax reports T 1,
T 2 respectively. Then T 1 and T 2 are unlinkable one to the other because of the hiding property
of the commitment scheme used to generate them and the zero knowledge property of the ZKPoK
scheme used to prove their correct construction.

Lemma 3. If the underlying primitives (anonymous credential system, ecash system, blind signa-
tures, commitment and ZKPoK, transformation function F , Paillier cryptosystem) are secure, then
our scheme satisfies account–account-owner unlinkability.

Proof. Let αi an anonymous account of user U managed by pseudonym Pi. Let T and TT be
the tax report for αi and its transformed version. Unlinkability of αi and U at the AccountOpen
procedure is achieved through the anonymity property of the ecash scheme realizing permαs and
of and pseudonym system used for the generation of Pi as well as through the blindness of the
blind signature scheme used for the acquisition of TRNs. T is unlinkable to U through the hiding
property of the commitment scheme, which “hides” the msU committed in T and the security (zero
knowledge) of the ZKPoK protocol used to validate the construction of T : no information is leaked
neither TRN nor for msU contained in T . TT on the other hand, does not reveal anything regarding

13

T or the account because of the hiding property of transformation function F (see appendix for
more details) used for its construction, the zero knowledge property of the ZKPoK protocol used
at its validation and the re-randomization property of the Paillier cryptosystem used for blinding
SigInfo.

Lemma 4. If the underlying primitives (anonymous credential system, digital signatures, commit-
ment) are secure, then our scheme satisfies Tax Report Unforgeability.

Proof. Let that user U manages an account αU through a pseudonym P and generates tax report

T σ/M , which is later transformed to TT σ/M , through F (). We need to prove that the tax report
remains unforgeable at all stages. T is an RSA-signature-based function on a commitment on TRN,

taxi and msU. To avoid B-signature forgeries exploiting RSA homomorphism, apply the signature
scheme on TM x number of times, while the RSA-signature verification key and x are kept secret to
U. x is only revealed to TA only at the TT deposit procedure through SigInfo. We assume that the
granularity of different x-es is very small w.r.t. the total number of tax reports so that linkability
attacks do not apply. U has no incentive to alter SigInfo. To avoid such a forgery using the same tax
report, we make use of TRN s, B-chosen numbers of a pre-specified range such that summations of
two numbers in RangeT result in an invalid number. Bindness property of the commitment scheme
used in T generation guarantees that as long as the RSA signature is unforgeable, U cannot dispute
the TaxInfo he has committed to in TM .

Lemma 5. If the underlying primitives (anonymous credential system, digital signatures, commit-
ment and ZKPoK) are secure, then our scheme satisfies Tax Report non transferability.

Proof. In our system users are highly motivated not to share their msU. Thus, assuming that they
are not doing so, Tax-Report non transferability is achieved through the need to prove knowledge
of the msU at each step of the tax reporting. More specifically, account pseudonyms are required
to show that their msU matches the one committed in T , which is then signed and -thus- cannot
change (unforgeability of the signature scheme). The proof of knowledge property of the ZKPoK
scheme used when depositing TT , guarantees that user depositing TT knows the corresponding
msU, which should match the msU used in all tax reports deposited by the same user, as well as his
registration pseudonym.

Lemma 6. If the underlying primitives (anonymous credential system, ecash, digital signatures,
commitment and ZKPoK) are secure, then our scheme satisfies Fairness.

Proof. Because of Tax Report Unforgeability and non-transferability, users cannot change the tax
reported in each report or use other users’ tax reports. Because of the Identification of Violators and
Violators’ Traceability property of ecash implementing permαs, users cannot lie to the bank regarding
the number of the accounts they have opened: if they try to prove they opened fewer accounts,
some of the permαs in WAccB will be doublespent. At the same time, because of the TRNs, users
cannot avoid a tax report, by depositing another one twice.

Lemma 7. If the underlying primitives (anonymous credential system, ecash, digital signatures,
commitment and ZKPoK) are secure, then our scheme satisfies Accountability.

Proof. Because of the Identification of Violators and Violators’ Traceability property of ecash im-
plementing permαs, users who lie regarding the anonymous accounts they opened are identified.
Because of the proof of knowledge property of the ZKPoK protocols, the non-transferability of cre-

14

dentials property of the underlying pseudonym system and the non-transferability property of tax
reports, users trying to use other users’ tax reports are detected.

Lemma 8. The transformation function F , defined on DMxZ, where:

– F (M, r) = M · sr1α · zr2α (modnα), nα = pα · qα, pα, qα safe primes, sα, zα ∈ QRnα, r = r1||r2 is
a random number and M the message to be blinded;

– DM = {x : ∃y, z, w, j : x = hyα · kzα · lwα ·m
j
α(modnα)}, where hα, kα, lα,mα ∈ QRnα are system

parameters;

is computationally non-invertible and provides output indistinguishability w.r.t. M -inputs. More
specifically, we claim that F supports:

– Non Invertibility Given an output f of F () it is computationally impossible to compute M ∈ DM

and r such that F (M,r) = f.

– Input-Output Unlinkability Given two messages M1 and M2 and an output f of F () which corre-
sponds to one of the messages, it is computationally hard to decide which message corresponds
to f with a better probability than 1/2.

Proof. Both properties derive directly from the discrete log assumption modulo a safe prime prod-
uct and strong RSA assumption.

Lemma 9. The function Com used, defined on (ZxZ)xZ, where

Com(x, y; r) = kxα · lyα ·mr
α(modnα),

nα = pα·qα, pα, qα safe primes, kα, lα,mα ∈ QRnα is a commitment scheme on x, y with randomness
r.

Proof. Function Com satisfies both properties bindness and hiding which derives from the discrete
log assumption modulo a product of safe primes and factoring assumption.

Deployability Any real-world deployment of this scheme must be affordable, and must interface
correctly with the existing worldwide banking system. Although this is not an implementation
paper, we believe that these requirements are satisfied. First, it is easy to generate International
Bank Account Numbers (IBANs) from our accounts (see Appendix A.2); these accounts can thus
be used to send and receive payments. Second, rough calculations suggest that by using modern
hardware designs, the hardware necessary for timely tax reporting and verification is affordable by
the organizations concerned; furthermore, the expense for banks is proportional to the number of
customers they have. Details are given in Appendix A.1.

5 Related Work

[jy96], [lmp96] are cases of protocols providing conditionally anonymous payments from user issued
bank accounts. However, their work is different from ours as there is either a third trusted party
involved for anonymity revocation purposes, or they do not offer privacy against coalitions of banks.
In [ab09], the authors provide privacy in the management of anonymous accounts, even w.r.t. the
bank through the use of anonymous credit cards. However, we take an additional step in addressing
tax reporting for bank accounts, which is not an issue in credit-only systems.

15

Taxation has been addressed in the past in the stock market. In [xyz00], the authors propose a
scheme addressing a similar problem to ours: anonymous and taxable stock market trading accounts.
As in our system, users are using a generated anonymous credential from a public credential to
validate anonymous stock-transaction. However, their system differs from our own in two major
ways. First, they only allow for each user to own one anonymous account, because of the extra
complications to tax reporting the multiple accounts would cause. Addressing these complications
is one of our major contributions. Secondly, they do not aim to prevent the Tax Authority from
learning which accounts the reports are coming from. Thus if the TA were to collaborate with the
Stock Exchange Center, they could re-link the users with their anonymous accounts. Preventing
this is another contribution of our system.

6 Conclusion

In this paper we presented a privacy preserving bank account system, where individuals may open
arbitarily anonymous and unlinkable accounts w.r.t. the bank and tax authority collaborations. All
accounts are ultimately and in zero knowledge fashion connected to their owner. We emphasize on
the bank account taxation mechanism, where individual users report the aggregated amount of tax
all of their accounts have been withheld in a fair and accountable way.

References

[ab09] E. Androulaki and S. Bellovin. An anonymous credit card system. In TrustBus ’09: Proceedings of the
6th International Conference on Trust, Privacy and Security in Digital Business, pages 42–51, Berlin,
Heidelberg, 2009. Springer-Verlag.

[b00] F. Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT, pages
431–444, 2000.

[bcdg88] E. F. Brickell, D. Chaum, I. Damg̊ard, and J. v. d. Graaf. Gradual and verifiable release of a secret. In
CRYPTO ’87: A Conference on the Theory and Applications of Cryptographic Techniques on Advances
in Cryptology, pages 156–166, London, UK, 1988. Springer-Verlag.

[c91] D. Chaum. Zero-knowledge undeniable signatures. In Advances in Cryptology EUROCRYPT 90, 1991.
[cevdg88] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of

discrete logarithms and some generalizations. In Advances in Cryptology EUROCRYPT 87, 1988.
[chl05] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Advances in Cryptology -

EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer-Verlag,
2005.

[cl01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In Advances in Cryptology - EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 93–118. Springer-Verlag, 2001.

[cm99] J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, pages 413–430, London, UK, 1999. Springer-Verlag.

[cp93] D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92: Proceedings of the
12th Annual International Cryptology Conference on Advances in Cryptology, pages 89–105, London,
UK, 1993. Springer-Verlag.

[cs97] J. Camenisch and M. Stadler. Effcient group signature schemes for large groups. In Advances in Cryptol-
ogy — CRYPTO ’97, volume 1296 of Lecture Notes in Computer Science, pages 410–424. Springer-Verlag,
1997.

[jy96] M. Jakobsson and M. Yung. Revokable and versatile electronic money (extended abstract). In CCS ’96:
Proceedings of the 3rd ACM conference on Computer and communications security, pages 76–87, New
York, NY, USA, 1996. ACM.

[lmp96] S. Low, N. F. Maxemchuk, and S. Paul. Anonymous credit cards and its collusion analysis. IEEE
Transactions on Networking, December 1996.

16

[lrsw99] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected Areas in Cryptography
’99, volume 1758 of Lecture Notes in Computer Science, pages 184–199. Springer-Verlag, 1999.

[pp99] P. Paillier and D. Pointcheval. Efficient public-key cryptosystems provably secure against active adver-
saries. In K. Y. Lam and E. Okamoto, editors, Advances in Cryptology ASIACRYPT 99, volume 1716,
page 165179. Springer-Verlag, 1999.

[xyz00] S. Xu, M. Yung, and G. Zhang. Scalable, tax evasion-free anonymous investing, 2000.

A Technical Issues

Any real-world deployment of this scheme must be affordable, and must interface correctly with
the existing worldwide banking system. Although this is not an implementation paper, we believe
that these requirements are satisfied. First, it is easy to generate International Bank Account
Numbers (IBANs) from our accounts (see Appendix A.2); these accounts can thus be used to send
and receive payments. Second, rough calculations suggest that by using modern hardware designs,
the hardware necessary for timely tax reporting and verification is affordable by the organizations
concerned; furthermore, the expense for banks is proportional to the number of customers they
have. Details are given in Appendix A.1.

A.1 Performance Issues

The protocols we describe are somewhat expensive, because they require a fair number of exponen-
tiations. That said, we believe the cost is affordable.

Since opening accounts and subaccounts are uncommon operations, we ignore them. The real
cost is in preparing and processing tax reports. The cost there is borne by all three parties: the
individual, the bank, and the tax authority. We now analyze the cost to the latter two; the cost to
the former is almost certainly minimal, since no one person will have that many accounts. Besides,
the individual reaps the privacy benefits of the protocol, and hence is motivated to pay for it.

The total cost is determined by the number of subaccounts per person, and the number of
individuals who use this protocol. We bound the latter by using the IRS’s figure of about 150,000,000
individual tax return filers. Obviously, if not everyone is using these mechanisms, the total cost will
be proportionally less.

The former is much more difficult to ascertain. Instead, we attempt to estimate the maximum
number of subaccounts a typical individual would have, by assuming that a separate subaccount
is used for each monthly check written; see Table 1. To set an upper bound, we double that.
Assuming there is a tax report once per quarter, we estimate that no more than 22,500,000,000
(2.3 · 1010) accounts exist. Reporting for each account requires one exponentiation and two zero
knowledge proofs of knowledge. We estimate that the latter require twenty exponentiations apiece;
each quarter, the tax authority thus must perform about 4.8 · 1011 exponentiations.

A reasonably modern CPU can do about 150 2048-bit exponentiations/second. However, we
can use dedicated exponentiation chips, which can do about 25,000 operations a second, or we can
use the graphics processor (GPU) to do calculations. According to Szerwinski and Gun̈eysu [?],
a GPU can do about 100 2048-bit exponentiations/second. Newer GPUs are considerably faster,
and have considerably more parallelisms; in particular, the forthcoming Nvidia GeForce 300 Series
will have 512 cores and should operate considerably faster. It seems reasonable to assume that
we can reach speeds of 1000 exponentiations/second on a GPU-equipped computer. We estimate
that the fully loaded cost of such a 1U server to be about $5,000, counting the computer itself,
the rack, power, cooling, and real estate. A data center with 10,000 such machines would therefore

17

Food 5
Car loan 2
Phone bils 2
Credit cards 6
Insurance 2
Cable TV 1
Rent/mortgage 1
Internet 1
Heat 1
Electricity 1
Water 1
Garbage 1
Lawn care 1

Total 25

Table 1. A conservative estimate of the maximum number of subaccounts, and hence checks, a typical individual
will write each month.

cost about $50M, with the computers amortized over a three-year lifetime; the annual cost is thus
about $17M. While not cheap, the cost is low compared to the current cost of running, say, the IRS,
whose fiscal year 2008 budget was $11B. Such a complex could do 8.6 · 1011 exponentiations/day;
it would therefore take little more than half a day to process the tax reports, a value that is clearly
acceptable. Our estimates could easily be off by a factor of 30 or more without changing the basic
result: this protocol will not impose an undue processing burden on the tax authority.

It is rather more difficult to do the same calculation for banks, since figures on the number of
depositors do not seem to be readily available. We can, nevertheless, perform some approximations.
Preparing the tax reports requires a single zero knowledge proof of knowledge for each account; the
cost per depositor (and hence the size of the data center) is thus roughly half of the tax authority’s
cost per filer. We approximate the number of customers who would desire such a service as the
number of customers who use online banking today. According to their 2008 annual reports, Wells
Fargo has 11,000,000 such customers; Bank of America, another large bank, had about 30,000,000
online customers. For the latter, then, the cost of the data center is about 10% of the tax authority’s
cost, or $5,000,000, an amount easily affordable for such a large institution.

A.2 Bank Account Number Generation

Although we have bank subaccounts which are identified by public keys, our system must be built
on top of an existing bank account system. In this system, each sub account will correspond to a
real world bank account that holds funds in the normal way, and will transact according to signed
commands given by the account owner.

Because it is a real bank account, these sub accounts must also be associated with a bank
account number. We cannot use a public key, which could be hundreds of decimal digits, as a bank
account number. A bank account number is often handled by humans, it would not be practical
for normal bank paperwork and operations.

For the sake of generality, we will assume that we will conform to the standard for International
Bank Account Numbers (IBANs). An IBAN is prefixed by a 2-letter country code, followed by
2 check digits (for error correction), and up to thirty alphanumeric characters for domestic bank

18

account numbers. Since the country code and check digits are immutable, our aim is to map a
public key to the remaining 30 alphanumeric characters.

To address this, we will use an idea based on Cryptographically Generated Addresses [?]. This
protocol is intended for mapping cryptographic public keys to the last 64 bits of an IPv6 address.
This is a similar problem; a server is associated with a public key, but must be identified by an
identifier in a much smaller space than that which would be necessary to keep public keys secure.

The thirty alphanumeric characters of an IBAN are equivalent to slightly more than 141 bits
of information. CGA is based on the SHA-1 hash function, and we will adapt it as follows.

1. Choose a security parameter l (an integer from 0-7).
2. Choose a random modifier.
3. Concatenate the modifier with the public key and take the SHA-1 hash.
4. Repeat step 3, incrementing the modifier until the leftmost 16l bits of the result are zero.
5. Set the collision count to zero.
6. Concatenate the final modifier, the collision count, the country code, and the public key.
7. Take the SHA-1 hash of this value, and reinterpret the leftmost 141 bits as a 30-alphanumeric

character bank account number.
8. Check for collisions, if there exists one increment the collision count and repeat from step 7.

In many cases, the IBAN will actually be structured: the first several digits will identify a bank,
while the remainder identifies an account within the bank. The modifications to accommodate fewer
digits are straightforward and will not be discussed further here.

A.3 RSA Signature Scheme

As in a typical signature scheme, there are signers (let each be S) who produce signatures on
messages of users (let each be U). The details of the procedures supported are the following:

– (pkS, skS) ← RSA.KeyGen(1k), where S chooses two safe large prime numbers p = 2p′ + 1 and
q = 2q′ + 1, where p′ and q′ are also large primes, and computes n = pq. S chooses also (e, d)
such that 1 = ed(mod(φ(pd))), publishes pkS = (e, n) and stores skS = (d, p, q).

–
– 〈 σ/⊥ 〉 ← RSA.Sign(m)[S(skS)], where S signs message m using the formula: RSA.Sign(m) =
md(mod n).

–
– 〈 >/⊥ 〉 ← RSA.Verify(σ,m, pksigner)[V], where V checks whether σe(mod n) equals m.

Security Properties: The most important security property of a signature scheme is Unforgeability.
Given a message m and assuming that factoring is hard, it is impossible to generate a valid sig-
nature that RSA.Verify accepts. In reality the way we defined the signature algorithm, it supports
homomorphism, which means that given the signatures σ1/2 of two messages m1/2, one could con-
struct a valid signature σ for m = m1m2. We restrict that attack by putting limitations on valid
message space such that multiplication of two messages falls outside the accepted message space.

19

