
Pseudo-Network Drivers and Virtual Networks

S.M. Bellovin*
smb@ulysses.att.com

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Many operating systems have long had pseudo-teletypes, inter-process
communication channels that provide terminal semantics on one end,
and a smart server program on the other. We describe an analogous
concept, pseudo-network drivers. One end of the driver appears to be
a real network device, with the appropriate interface and semantics;
data written to it goes to a program, however, rather than to a physical
medium. Using this and some auxiliary mechanisms, we present a
variety of applications, including system test, network monitoring,
dial-up TCP/IP, and ways to both improve and subvert network
security. Most notably, we show how pseudo-network devices can be
used to create virtual networks and to provide encrypted
communications capability. We describe two implementations, one
using a conventional driver for socket-based systems, and one using
stream pipes for System V.

1. INTRODUCTION

Many operating systems have long had pseudo-teletypes, inter-process communication channels
that provide terminal semantics on one end, and a smart server program on the other. In the
same vein, we have implemented a pseudo-network driver. To the kernel, and in particular to
IP, it appears to be a device; instead of transmitting the bits over a wire, the output packets are
sent to a program. Similarly, packets written by the program are delivered to the network
input handlers, exactly as if they were received over a real device. The general flow of control
is shown in Figure 1.

IP (or another network protocol) hands packets to the bottom half of Pnet; the top half of the
driver passes them to a server program, which can communicate with other servers. Similarly,
the server can generate packets and pass them to the driver; these are in turn sent to IP.

There are two general implementation techniques available. For socket-based systems, such as
SunOS and 4.3bsd, we have implemented a standard network device driver; a detailed
description of the driver is given below. For stream[Ritc84] implementations of TCP/IP, a
simple stream pipe may suffice, possibly with no kernel changes whatsoever; again, details are
given below.

* Author’s address: Steven M. Bellovin, Room 3C-536B, AT&T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, New Jersey 07974.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Server

Pnet
(driver)

Pnet
(network)

IP

. .
User

Kernel

other
servers

Figure 1. The Pseudo-Network Driver

Although the primary focus of the driver is TCP/IP,[Fein85, Come88] the socket version is
actually quite general; it can handle any address families supported by the rest of the kernel. It
has been tested on SunOS 4.0.1 and 4.0.3; with minor changes, it should run on 4.2bsd,
4.3bsd, and other related operating systems.

2. RE-INJECTION TECHNIQUES AND ISOLATED INTERFACES

A number of uses for Pnet involve re-injecting a transformed packet into the kernel for
further processing. For example, the packet could be encrypted, repackaged with a new IP
header and a protocol number indicating encryption, and sent on its way. Before discussing
Pnet proper, it is worth examining possible mechanisms for re-injection; it is not trivial to
implement, but is quite necessary.

The first, and most obvious way, is to build a new packet, and simply write() it to the
Pnet device, under the assumption that IP will then forward it to the proper destination.
However, many IP modules will not forward packets, either for security reasons or because
forwarding packets is the business of gateways, not hosts.[Brad89]

For socket-based implementations, a second approach is to create a raw IP socket, and use it to
re-inject the packets. Unfortunately, while that mechanism is suitable for transmitting the
encrypted packets, it fails on decryption. Decrypted packets — received by a user-level
process bound to that IP protocol number — should carry the IP source address of the original
sender; the raw IP socket interface insists that packets carry authentic local source addresses.
While it may be possible to kludge around this requirement, a cleaner solution can be obtained
by implementing a new raw protocol in the Internet address family; this protocol would permit
specification of an arbitrary IP header.1

We have opted to implement a variant of this mechanism. Rather than create a separate
interface solely for packet re-injection, we have overloaded the address family field used by
pnetwrite . As noted, these packets are passed directly to the IP output routine, rather than
the input routine. This interface must be used with great care. Only minimal checks are done,
to guard against kernel panics. No attempt is made to provide standard packet input
processing, such as checksum validation, time-to-live counter decrementing, or option
processing. More seriously, the packet is not checked to see if it is destined for this host. If it
is, when the real driver receives the packet, it must pass it to IP’s input routine. Of course, if
the packet was destined for Pnet’s local address, it will be delivered again to the server,
possibly causing a loop. Pnet broadcast packets are a particularly nasty case of this.

Implementing re-injection is harder for stream implementations. The only path into IP is the
transport protocols’ interface; for these, IP expects to fill in the source address, etc. Some sort
of raw channel is needed; this might require changes to IP.

An alternative to packet re-injection is to implement interface isolation . If an interface is
marked as isolated (presumably via ifconfig), packets from it are not forwarded. Thus,
packets arriving via the Pnet driver could be forwarded, while packets arriving on an external
link would not. Obviously, source routing would be disabled for isolated interfaces also. A
final aspect of interface isolation, possibly controlled by a different bit, is to accept packets
arriving on an isolated interface if and only if they are destined for the machine’s IP address on
that interface. That is, we do not permit the implicit forwarding to an alternate address
associated with another network interface on the gateway.2

For some purposes, a simple isolation bit is insufficient; one would need isolation groups that
define allowable forwarding patterns. Finally, one could escalate to full address
screening,[Mogu89] though if encryption is univerally performed that is probably not necessary.

3. APPLICATIONS

The Pnet driver has many uses, ranging from the trivial to the complex. A few are discussed
below. We have implemented some of these, and plan to implement others.

3.1 System Test

It is often difficult to test protocol implementations. The usual approach is to use sophisticated
network monitors to observe the traffic and to create test packets. Such techniques, though, are
expensive and often uncertain — fast hosts can easily overrun some network monitors.
Pnet, though, makes life much easier — a host program can catch or generate all test packets.

Care must be taken when emulating a protocol in a program; some features are more difficult
to emulate than others. During development of Pnet, we ran into trouble with fragmented
ICMP ECHO packets; generating proper replies required receipt and reassembly of all

1. Some people may object that allowing a host process to impersonate an IP address is a security risk. First, this
facility is only available to root; a rogue super-user has easier ways to spoof IP addresses. Second, the very
existence of Pnet allows injection of packets with arbitrary addresses. Finally, as shown elsewhere,[Bell89]

using an IP address for authorization is very unsafe in any event.

2. This does not necessarily provide enough security for the gateway machine. ICMP packets can have a global
effect, regardless of the destination address used.

fragments.

3.2 Netspy

The Pnet driver can be used to monitor conversations. A routing entry can be constructed to
direct traffic for a particular destination to the Pnet driver. After examination, the packet can
be re-injected, adding IP Loose Source routing to carry the packet to the next hop.

The potential for abuse of this capability is, of course, obvious.

3.3 Non-IP Relays

In some environments, it is necessary to send IP packets over media for which IP drivers do
not exist. Pnet provides a simple mechanism for accomplishing this; a program can retrieve
the IP packets via the Pnet driver, encapsulate them for some other protocol, and transmit
them to the far end.

This can be also be done in some situations where one side implements an IP driver directly.
For example, some implementations of DatakitÒ VCS support contain an IP interface, while
others do not. The latter can use Pnet to transmit packets to and from IP; at the far end of
the Datakit VCS circuit, IP can handle them directly.

3.4 Replacing SLIP

The conventional mechanism for sending IP packets over tty lines — SLIP, or Serial Line
IP[Romk88] — requires oddball code in the kernel. A line discipline is used for framing, which
is reasonable enough; however, some implementations require a dummy process to linger to
keep the line open, or some mechanism to prevent the normal close operations from taking
place. Furthermore, dial-up SLIP operation is awkward, though it has been done.[Lanz89] All of
that can be bypassed using Pnet. A single process can handle packets for all of the SLIP
destinations; it can make calls as needed, transmit and receive data, etc. To be sure, a line
discipline may be needed in any event, to buffer the incoming characters and avoid the need to
wake up the SLIP daemon each time, but much of the complexity could be eliminated.

A Pnet implementation has the side-effect that all of the SLIP destinations would share the
same IP network number. This is probably a good idea — using an entire network for each
point-to-point link is wasteful, though presumably one could subnet a class C network and use
it for 64 SLIP links3 — but it requires good routing protocols to handle the point-to-point
connections. The IP model normally requires that an interface driver be able to reach every
connected host directly; this is often not the case with SLIP.

3.5 Bypassing Security Controls

The Pnet driver can also be used to implement a bypass for some common security controls.
Assume, for example, a paranoid gateway that was configured to allow only electronic mail
traffic; this would be configured to accept TCP packets with a source or destination port of 25,
and to reject all others.[Mogu89] Two co-operating parties could set up a TCP circuit between
Pnet servers, and simply assign one end to port 25. Assuming suitable routing information
were exchanged, each end would have access to the other’s IP networks.

3. At least 2 bits must be used for every subnet, as the host addresses 0 and -1 are still reserved.

Obviously, in this sort of situation two parties who merely wished to leak information could do
so rather more simply. The point is that Pnet allows IP-level access, and is thus far more
damaging.

3.6 More Reliable Datagrams

In the current congested Internet environment, datagram services are hard to use. Too many
packets are dropped or delayed, leading to excessive retries and/or congestion.[Nowi89] If a
TCP-based relay process is used with Pnet, application-level retry timers can be turned off,
and advantage can be taken of recent TCP performance improvements.[Karn87, Jaco88] Similarly,
if the underlying network is prone to data corruption, this mechanism is useful when using
systems that turn off UDP checksumming.

If this strategy is adopted, great care must be taken if application-level retry timers are still
used. TCP segments can be delayed or lost as easily as UDP packets; however, since TCP will
retransmit on its own, it is highly undesirable for the application to do so as well.
Application-level retransmissions will simply generate extra load; they will not provide better
service.

4. VIRTUAL NETWORKS

There are a number of protocols, typically broadcast-based ones, that operate properly only
within a single IP network. If the machines that wish to run such a protocol are geographically
dispersed, it may not be feasible to connect them to the same net. Using Pnet, though, this
can be accomplished reasonably easily: a server could declare the interface to be a broadcast
network, and transmit broadcast packets to all appropriate destinations. This is an example of
a virtual network . While there is an obvious efficiency loss in broadcast virtual networks, the
gain in functionality may make it worthwhile for some applications.

Virtual networks have other uses as well. For example, consider the case of a large
corporation with many internal TCP/IP networks, and a single gateway to the Internet. It may
be desirable to allow a very few selected hosts access to the Internet through the gateway;
most, though, would be blocked for security reasons. The selected hosts and the gateway
could form a virtual network; only its address would be advertised to the outside world.

A more general way to phrase this is that virtual networks allow for routing and control
independent of the physical topology. This can be used to implement many different useful
schemes, including ‘‘roamer hosts’’.

Virtual network packets may be carried by TCP, UDP, or IP. If UDP is used, checksumming
should be turned off for that connection; it represents needless expense, as the encapsulated
packet will undergo further validity checking when delivered to its ultimate destination.

4.1 An Encrypted Virtual Network

Perhaps the most interesting use of Pnet is to implement encryption, access control, and
authentication mechanisms. We shall spend some time on a detailed description of just such a
system; it is currently under development. Since ours is loosely modeled on the Blacker Front
End[BFE, Mund87] but is much less secure, we dub it Greyer. There are two principal uses for
Greyer: providing end-to-end encryption between a pair of hosts communicating over an
insecure network, and providing network-level encryption between a pair of gateways, each of
which is protecting a group of naive hosts. We will consider each design in turn.

At first blush, providing end-to-end encryption is simple. Create a virtual network, as
described above. When a host wishes to make a secure call to a destination, it uses the
destination network’s address on the virtual network. All of the packets are thus delivered to
the Pnet server, which encrypts them and sends them along. These servers have addresses on
the insecure physical network. The destination server receives the packet, decrypts it, and
writes it on the Pnet device; in the kernel, the packet is recognized as destined for the local
host, and is delivered to the application in the usual fashion.

There is a catch, however. One of the benefits of encryption is the implied authentication it
provides. Applications which believe they are conversing over the secure virtual net may quite
reasonably extend much greater trust. Unfortunately, packets with a virtual net destination
address may be delivered to a host over its physical network interface; these packets have not
been validated in any way. They will nevertheless be accepted.

The easiest solution is the interface isolation mechanism described earlier. Note that we must
isolate the physical network, not the virtual one. That is, we will accept packets over the
virtual interface for either address; we do not wish to accept packets for the presumed-secure
virtual address over the physical link. If the host has more than one physical address, this
solution is too simplistic; it may be necessary to use isolation groups.

Some may object that this is not a real problem. After all, even though forged packets to the
protected address may be sent via the physical network, replies will be sent via the virtual
network, and hence will be encrypted. Unfortunately, there are ways to attack hosts that rely
on IP addresses for authentication, even if responses are not heard.[Bell89, Morr85] More simply,
IP source routing could be used, thereby forcing the target host to reply via the same insecure
path.

Gateways and Greyer
Gateways using Greyer may require interface isolation as well. For inbound traffic, the
rationale is simple: we do not wish unauthorized packets to enter the protected subnet. If the
interface were not isolated, an enemy could simply use the physical network address of a target
host.

Outbound traffic may need to be restricted also. In a classified environment, for example,
individual users may not select the data transmission mode; that is up to the administrator. It
is thus necessary to guard against internal traffic being routed directly to the external interface.
On the other hand, we cannot simply turn off packet-forwarding, or we would have no way to
deliver outbound packets to the Pnet server.

Our model, then is this: hosts behind the Greyer gateway forward their packets to it to
reach a remote secure host. On the gateway, routing table entries specify that the next hop is
on the virtual net; this forces the packets to be delivered to the Pnet server for encryption.
The packets are encrypted and encapsulated, and transmitted over the insecure network to a
remote server. It must then decrypt them and hand them back to IP. We may use re-injection;
if the host will permit packet-forwarding from the Pnet interface, a write() over the Pnet
device will serve.

As noted, encryption provides implied authentication. It also provides authorization: the key
distribution center may, at its option, decline to issue a key for a conversation deemed
administratively prohibited. In fact, the Greyer mechanisms could simply be used for
authorization without bothering with transmitting the encrypted text at all, as in the Visa
protocols.[Estr89] There are obvious risks of address forgery here, of course.

Encapsulation for Greyer
There are two issues to consider when deciding how to encapsulate Greyer packets for
transmission over the insecure network: how should session key information be distributed,
and what transport mechanism should be used? The two questions are related.

First, we assume that the Greyer server will not have keys for each possible destination;
rather, it will use something like Needham-Schroeder[Need78, Denn81, Need87] or Kerberos[Stei88]

to obtain a session key. It is therefore necessary to transmit this session key to the remote
Greyer server. If TCP is used as the transport mechanism, the solution is obvious: send the
session key at the start of each connection. If a key expires, the connection may be torn down
and a new one constructed.

If, on the other hand, a datagram mechanism is used (either UDP or a new IP protocol type),
the problem is a bit harder. One possibility is to send a special packet containing the key to
the remote Greyer server; depending on the reliability of the underlying network, it may be
desirable to await an acknowledgement before transmitting any packets that use the key. More
likely, we will use the SP3 protocol from SDNS.[SP3]

A final possibility is to include the encrypted key in each packet. This preserves the stateless
nature of IP gateways, at the obvious cost in bandwidth. The exact choice depends heavily on
the characteristics of the physical network; we will address this question further when
Greyer is implemented.

5. SOCKET IMPLEMENTATION DETAILS AND ALTERNATIVES

The socket Pnet driver consists of two distinct halves, a network driver and a character
device driver. Each contains the usual entry points: attach, output, and ioctl for the network
driver, and open, close, read, write, ioctl, and select for the character driver. We describe each
half in turn.

The network output routine (pnoutput) is quite straight-forward. If the character half of the
driver is not open, packets are rejected with code ENETDOWN . Otherwise, the packet is queued
for the server program. A header containing the destination address is prepended to the packet,
in the form of a single struct sockaddr . It is important that the server program use this
address to determine the header, rather than looking at the packet header; to do otherwise
would require that it duplicate most of the functions of IP. If the program’s input queue is
full, the packet is discarded and ENOBUFS is returned to the caller. No attempt is made to
loop back packets destined for a local address; that is left to the server.

The rest of the network driver half is comparatively trivial. One, perhaps incorrect, decision:
if the interface is turned off via SIOCSIFFLAGS , the server program is sent an EOF message.

The character driver is a bit more complex. Pnetread blocks until data has been enqueued
by pnoutput; if FASYNC mode has been selected, it returns an error code instead if the
queue is empty.

Pnetwrite is more problematic for several reasons. First, it cannot accept just a raw packet;
it needs address family information in order to route the packet to the proper protocol. While a
simple short would suffice, the current driver requires a full struct sockaddr; this
simplifies use of the same data structures for the input and output halves of the program. The
other fields in this structure are currently unused, though that may change in the future.

A second complication is the need to re-inject packets into the system, as described above. If
the high-order bit of the address family is on, the packet is passed to the output routine of that
protocol, rather than the input routine. Currently, only AF_INET is supported for this option.

Finally, it is not obvious how to block if the protocol input queue is full. It is easy enough for
the server process to sleep; however, there is no ‘‘interrupt routine’’ to awaken it when the
queue drains. Accordingly, a timer routine is used to poll the queue status.

Pnetselect has a similar problem; additionally, since it lacks information on which protocol
input queue is desired, it cannot assert definitively that space is available. As a heuristic, it
queries the status of the last queue to which a write() was attempted.

Pnetioctl permits the server to set the IFF_BROADCAST and IFF_POINTOPOINT flags
for the interface; since the driver has no way of knowing the intended use of the interface, it
cannot make a default choice. Additionally, the server can set and reset IFF_UP; while this
flag can be set via SIOCSIFFLAGS , use of that ioctl() is restricted to root .

It is also possible for the server to change the maximum transmission unit (MTU) allowed for
the interface. If another network medium is used to relay Pnet packets, the MTU for the
Pnet interface should be set to the MTU of the medium minus any required headers, to avoid
fragmentation.

Rejected Alternatives
An alternative implementation technique would have been to replace the character driver with a
new socket address family. That would have allowed use of sendto() and recvfrom()
system calls to pass the auxiliary address, rather than requiring a prepended header. Similarly,
much of the existing code for socket input/output could be used, rather than writing new
routines. This approach turned out to be infeasible for several reasons.

The first is simply a question of packaging. As some systems are distributed, it is much easier
to add new device drivers than to add new address families. There is no accessible table to
configure the domain structure for a new address family, nor are there vacant entries in the
address family name space. While some dormant entry could be reused, this seemed unwise.
Nor is it possible to add additional entries to a binary system; there are several routines, and
one table, that ‘‘know’’ how many address families there are.4

A second reason is the permission structure. It was useful to permit non-root users to access
this facility, at least during testing; this is very easily accomplished via the file system’s
permission mechanisms. Doing the same for a socket family would have been awkward.

Finally, the device driver interface is much more standardized across releases than is the
socket interface, and much more documentation exists for it.

It should be noted parenthetically that although modifying distributed source code is not a
priori a bad idea, it is often infeasible. Source code distributions are sometimes not as current
as binary-only distributions, and not everyone is licensed to receive source code.

4. Amusingly enough, the SunOS 4.0 distribution does not have AF_MAX set high enough for all of the address
families named in socket.h .

5.1 Performance of Socket-Based Pnet

Obviously, performance is a concern when packets are copied to and from user level an extra
time before being transmitted. To measure the performance of the socket implementation, we
employed a modified version of ping(8). This version transmitted a new ICMP ECHO packet
immediately upon receipt of the response to the previous packet; it also printed the total
elapsed time for the packet sequence. Employing this technique, rather than measuring the
per-packet round-trip time, allowed us to avoid problems with the coarse granularity of the
system clock. In the actual test, between a Sun 3/60 and a Sun 3/75, we measured
performance at user-data lengths ranging from 0 to 1300 bytes. Each measurement consisted
of 100 ICMP packets; we repeated each test 100 times The goal was to acount for both the
per-packet and per-byte overhead. UDP was used as the transport mechanism, with
checksumming turned off (the SunOS default). Each test was repeated several times. Note
that the timing represents four copy operations on each byte: when sending the ECHO packet,
when it is received on the target machine, when the response packet is sent, and when it is
received.

Packet Size

per-packet
time (ms.)

0

.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

. .
physical network

Pnet

Figure 2. Median ICMP ECHO Time

Figure 2 shows the median times in milliseconds for each packet size. There is a glitch in the
graph at around 500 bytes; this is most likely due to buffer allocation strategies. Packets of
more than 512 bytes — counting the IP and ICMP headers, in this case — are copied into a
single mbuf cluster , rather than a chain of mbufs.

A second graph, Figure 3, shows the ratio of the times. It appeared that Pnet performed at
one half to one third the speed of the raw underlying network. To validate this, we used
ftp(1) to copy a large file to /dev/null , after ensuring that the entire file was in the

-0

1

2

3

Packet Size

time
ratio

0 200 400 600 800 1000 1200 1400

Figure 3. Ratio of Median Times

sender’s buffer cache. The speed ratio was noticeably worse than might be expected from the
previous measurements, 3.4 to 1. We attributed this difference primarily to CPU time
consumption. Copying the data to and from the Pnet driver is CPU-intensive; thus, Pnet is
competing with ftp and TCP itself for processor time. The ttcp throughput benchmark
developed by Mike Muuss yielded similar results. Visual observation of perfmeter during
ttcp runs displays indicated that the receiving host sustained additional CPU load; the
transmitting host actually had more idle time.

If CPU capacity is really the limiting factor, the performance difference would not be seen if
there was extra CPU capacity available. Looked at another way, we can make available more
CPU time per packet by slowing down the interarrival rate. This was most easily
accomplished by running similar tests across a long-haul link, in this case between Murray
Hill, New Jersey, and Allentown, Pennsylvania. IP access between the two sites is via a
1.344M bps point-to-point link; additionally, several other local area networks and gateways
intervene at each end.

The raw throughput graph is shown in Figure 4; the speed ratio is shown in Figure 5.
Performance is a bit more variable, due to the vagaries of the shared link; as can be seen,
though, the shapes of the two sets of graphs correspond nicely. The Pnet link is only about
1.1 times slower than the direct link in this case. A complication arose because of packet loss
on the link; given the design of the test program, each dropped packet caused a one-second
timeout before the next ICMP packet was sent. We adjusted for this by subtracting one second
from the total time for each such packet.

The overhead of Pnet should be relatively constant for a given packet size, regardless of the
link speed. Figure 6 shows the difference in throughput for both sets of tests; as can be seen,

Packet Size

per-packet
time (ms.)

0

5

10

15

0 200 400 600 800 1000 1200 1400

. .
physical network
Pnet

Figure 4. Median ICMP ECHO Time — Long Haul

the two graphs are quite similar.

Finally, the same ftp and ttcp tests were run; throughput for Pnet was essentially the
same as on the physical network.

6. A STREAM VERSION OF Pnet

On a system with a good stream implementation of TCP/IP, there is no need for a Pnet
driver. The native drivers can be used instead, for all of the applications described above. The
mechanism is quite simple: create a stream pipe, and link one end of it to IP. Issue the
appropriate configuration ioctl() calls (i.e., to inform IP of the network number and IP
address), and the stream will be treated the same as any other device driver. For conventional
devices, this configuration process is typically table-driven. Since Pnet devices are
dynamically created, a table is not usable; instead, the Pnet server must handle the process
manually.

Shutting down a pipe-based Pnet driver is often difficult. Shutdown may be disorderly; one
or both ends of the pipe may be closed before IP’s close routine is called. It is therefore
vital to detect M_HANGUP messages traveling upstream. Another crucial detail is whether IP is
prepared to delete the interface control structures. In some versions of stream TCP/IP, much of
the rest of the networking code is unprepared to deal with the possibility of such deletions.
For example, route table entries often point to the per-interface structure; if these are not
cleaned up, problems can occur. In fact, some early implementations of SLIP for 4.2bsd were
known to crash when the interface was deleted.

-0

.5

1

1.5

2

Packet Size

time
ratio

0 200 400 600 800 1000 1200 1400

Figure 5. Ratio of Median Times — Long Haul

The 9th Edition implementation of stream TCP/IP deals well enough with shutdowns; however,
the IP destination address is not passed downstream along with the packet unless ARP[Plum82]

is in use. The implementation is thus able to deal only with Ethernet5 networks and point-to-
point links, for which the concept of destination address is not relevant. This is obviously easy
to fix.

System V versions typically use the Data Link Provider Interface (DLPI)[McGr89] protocol
between IP and the device driver. The Pnet server must implement its half of this protocol,
a non-trivial matter. DLPI does provide for the destination address to be passed along.
Unfortunately, it also introduces another complication at shutdown: the protocol requires that a
link be unbound at connection tear-down, via a DL_UNBIND_REQ message and
acknowledgement. This is not difficult for a resident device driver, but is problematic when
the ‘‘device’’ is a pipe. Shutdown can occur when a server program has exited; there is
obviously no way for the server to receive or send any more messages.

We worked with a pre-release version of the System V Release 4 streams TCP/IP, based on the
Lachman/Convergent code; for it, some of these concerns were minimized. For example,
although the drivers do acknowledge IP’s DL_UNBIND_REQ message, the acknowledgement is
silently ignored; thus, its absence is not missed. Similarly, while some implementation-specific
details — for example, associating the stream with a statistics structure, and actually keeping

5. Ethernet is a registered trademark of Xerox Corporation.

1

1.2

1.4

Packet Size

difference

0 200 400 600 800 1000 1200 1400

.
. ..
..

. ..
. ..
.

..
.. . . .

..
.. .

. ..
.

.. .
.

.. .
.

.. .
..

.
.. .

.
.. . . .

. . .
local

Long Haul

Figure 6. Time Differences

counts in that structure — are messy, the existing drivers in our version ignored them, so we
ignored them as well.

Given that, we must implement the following aspects of the protocol:

• Respond to DL_BIND_REQ with a DL_BIND_ACK message. Since both of these
messages are transmitted as M_PROTO streams messages, they could be sent and received
easily enough via putmsg() and getmsg().

• Respond to a DL_INFO_REQ message with a DL_INFO_ACK message. Again, this
requires no kernel code.

• Accept and send data via DL_UNITDATA_REQ and DL_UNITDATA_IND .

• Accept a few ioctl() calls. This version of IP requires that the socket ioctl() calls,
notably SIOCSIFFLAGS , SIOCSIFADDR , and SIOCSIFNAME (to set the interface
structure name) be fielded by the driver (or a convergence module), and an M_IOCACK
message sent back upstream. This one is more difficult, since there is no way to process
M_IOCTL messages at the stream head, or to generate responses.

We could have implemented this via a special-purpose module. Indeed, if a module were
needed anyway, to handle DL_UNBIND_REQ , we would probably have opted for that solution.
Given that everything else could be handled at user level, though, we provided a general
alternative, the mesg/rmesg module pair used in 9th Edition systems. These modules
encapsulate all stream messages, regardless of type, as an M_DATA message preceeded by an
M_PROTO header. In the reverse direction, a user-generated header is examined to produce an

arbitrary-type message from the data portion written via putmsg().6 A consequence of this is
that even the DLPI messages are encapsulated this way; thus, the user process is slightly more
complex than might otherwise be the case.

A few minor changes were needed to the implementation of IP. Most important, IP needs to
recognize the M_HANGUP message, to indicate that the pipe has been closed. The proper
response to this is to delete the data structure identifying a stream, and to delete any routing
table entries pointing to it. The routing table adjustments should also be made when an
I_UNLINK message is received for any stream; the lack of such could be considered a bug in
IP regardless of of the presence of Pnet.

Finally, although the current code permits a stream to be attached via either I_LINK or
I_PLINK , the latter is inappropriate for a pipe. If the owning process dies, the user end of
the pipe will be closed, thus generating an M_HANGUP and disabling the stream. The IP end,
though, will be permanently attached; no process is likely to come along and issue the
appropriate I_PUNLINK . Nor is there any significant benefit to the user process in being able
to do a persistent link. Consequently, IP should reject I_PLINK calls for pipes.
Unfortunately, that is not easy to do; the check is very implementation-dependent.
Consequently, we have omitted it in this prototype.

7. CONCLUSIONS

We have demonstrated how one simple piece of code can be used to create a variety of
powerful mechanisms. Given comparatively minor changes to the stream versions of IP, it
woas simpler yet. We have implemented some of the applications described above; work on
others is in progress, notably Greyer.

REFERENCES

[BFE] ‘‘Blacker Front End Interface Control Document,’’ pp. 1-25– 1-40 in DDN
Protocol Handbook, ed. E.J. Feinler, O.J. Jacobsen, M.K. Stahl, and C.A. Ward.

[Bell89] S.M. Bellovin, ‘‘Security Problems in the TCP/IP Protocol Suite,’’ Computer
Communications Review 19(2), pp. 32-48 (April, 1989).

[Brad89] R.T. Braden,ed., ‘‘Requirements for Internet hosts - communication layers.,’’ RFC
1122 (October 1989).

[Come88] D. Comer, Internetworking with TCP/IP : Principles, Protocols, and Architecture,
Prentice-Hall, Inc. (1988).

[Denn81] D.E. Denning and G.M. Sacco, ‘‘Timestamps in Key Distribution Protocols,’’
Communications of the ACM 24(8), pp. 533-536, ACM (August 1981).

6. In practice, life is a bit more complex; M_FLUSH messages must be processed both in the kernel and sent to the
user process. Furthermore, security considerations dictate that use of mesg/rmesg be restricted to the
superuser.

[Estr89] D. Estrin, J.C. Mogul, and G. Tsudik, ‘‘Visa Protocols for Controlling Inter-
Organization Datagram Flow,’’ IEEE Journal on Selected Areas in
Communications 7(4), pp. 486-498, (Special Issue on Secure Communications)
(May 1989).

[Fein85] E.J. Feinler, O.J. Jacobsen, M.K. Stahl, and C.A. Ward, DDN Protocol Handbook,
DDN Network Information Center, SRI International (1985).

[Jaco88] V. Jacobson, ‘‘Congestion Avoidance and Control,’’ pp. 314-329 in Proceedings of
SIGCOMM ’88 (August 1988).

[Karn87] P. Karn and C. Partridge, ‘‘Improving Round-Trip Estimates in Reliable Transport
Protocols,’’ pp. 2-7 in Proceedings of SIGCOMM ’87 (August 1987).

[Lanz89] L. Lanzillo and C. Partridge, ‘‘Implementation of Dial-Up IP for UNIX Systems,’’
in Proc. Winter USENIX Conference, San Diego, California (January, 1989).

[McGr89] G.J. McGrath, ‘‘DPLI Interface Specifications.,’’ AT&T White Paper (February
1989).

[Mogu89] J. Mogul, ‘‘Simple and Flexible Datagram Access Controls for UNIX-based
Gateways,’’ in Proc. Summer USENIX Conference, Baltimore, Maryland (June,
1989).

[Morr85] R.T. Morris, ‘‘A Weakness in the 4.2BSD UNIX TCP/IP Software,’’ Computing
Science Technical Report No. 117, AT&T Bell Laboratories, Murray Hill, New
Jersey (February 1985).

[Mund87] G.R. Mundy and R.W. Shirey, ‘‘Defense Data Network Security Architecture,’’ in
Proc. MILCOM ’87, IEEE, Washington, D.C. (1987).

[Need78] R.M. Needham and M. Schroeder, ‘‘Using Encryption for Authentication in Large
Networks of Computers,’’ Communications of the ACM 21(12), pp. 993-999, ACM
(December, 1978).

[Need87] R.M. Needham and M. Schroeder, ‘‘Authentication Revisited,’’ Operating Systems
Review 21(1), p. 7 (January 1987).

[Nowi89] B. Nowicki, ‘‘Transport Issues in the Network File System,’’ Computer
Communications Review 19(2), pp. 16-20 (April, 1989).

[Plum82] D.C. Plummer, ‘‘Ethernet Address Resolution Protocol: Or converting network
protocol addresses to 48.bit Ethernet address for transmission on Ethernet
hardware.,’’ RFC 826 (November 1982).

[Ritc84] D.M. Ritchie, ‘‘A Stream Input-Output System,’’ AT&T Bell Laboratories
Technical Journal 63(8, part 2), pp. 1897-1910 (October 1984).

[Romk88] J.L. Romkey, ‘‘Nonstandard for transmission of IP datagrams over serial lines:
SLIP.,’’ RFC 1055 (June 1988).

[SP3] SDNS Protocol and Signalling Working Group, SP3 Sub-Group, ‘‘SDNS Secure
Data Networking System Security Protocol 3 (SP3),’’ SDN.301 (July 12, 1988).

[Stei88] J. Steiner, C. Neuman, and J.I. Schiller, ‘‘Kerberos: An Authentication Service for
Open Network Systems,’’ in Proc. Winter USENIX Conference, Dallas (1988).

