
AES Key Agility Issues in High-Speed IPsec Implementations

Doug Whiting∗ Bruce Schneier† Steve Bellovin‡

May 15, 2000

Abstract

Some high-speed IPsec hardware systems need to support many thousands of security associations.
The cost of switching among different encryption keys can dramatically affect throughput, particularly
for the very common case of small packets. Three of the AES finalists (Rijndael, Serpent, and Twofish)
provide very high key agility, as is required for such applications. The other two candidates (MARS,
RC6) exhibit low key agility and may not be appropriate for use in such equipment.

Keywords: cryptography, block cipher, AES, key agility, IPsec, performance.

1 Introduction

The ultimate winner of the AES “contest” will be
used in many different applications, with widely
varying cost and performance constraints. IPsec will
almost certainly adopt AES, dramatically speeding
up software implementations over the currently pre-
dominant algorithm (triple-DES).

In high-speed routers and other networking boxes
that apply IPsec [KA98c, KA98a, MG98a, MG98b,
MD98, KA98b, Pip98, MSST98, HC98, GK98,
TDG98, PA98] to aggregated traffic, hardware en-
cryption is almost always necessary to meet per-
formance objectives. For some applications, such
equipment may have to handle thousands or tens
of thousands of security associations. In such envi-
ronments, the cost of switching between encryption
keys for different security associations may be a sig-
nificant issue, particularly for the important case of
small packets (e.g., 64 bytes).

This paper attempts to quantify the key agility of
each AES candidate algorithm and assess the per-
formance impact of this metric on high-performance
IPsec equipment.

2 Why IPsec?

Although encryption can be used in many places in
the Internet, the focus in this paper is on IPsec be-
cause of its unique characteristics. First, as noted
above, it is often employed in contexts where hard-
ware implementations are useful. Second, it is in
some sense an extreme case in that it requires more
key agility than most other Internet applications.

Most Internet encryption is used above TCP. SSL,
widely used in Web browsers, is one example. Typi-
cally, the host needs to complete TCP processing be-
fore any cryptographic chips can be invoked. (There
have been many attempts to build front-end proces-
sors for TCP; i.e., RFCs 928 and 929. In most cases,
these have failed, because the complexity of the host-
to-front-end protocol has been comparable to that of
TCP/IP itself.) However, requiring a separate pass
over the data by the cryptographic processor would
place an extra load on main memory. Furthermore,
given that SSL is typically used only for electronic
commerce, the actual amount of data transmitted in

∗Hi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com
†Counterpane Internet Security, Inc., 101 E Minnehaha Parkway, Minneapolis, MN 55419, USA; schneier@counterpane.com
‡AT&T Labs Research, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07974, USA; smb@research.att.com

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161435327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


any given session is relatively small. Thus, there is
not much data over which to amortize the cost of
the hardware setup operations.

Encrypted e-mail is even less suited to hardware
processing. The application itself must extract the
ciphertext before any possible decryption can take
place, or package the resulting ciphertext after en-
cryption. Use of outboard hardware would thus re-
quire an extra kernel interaction (and possibly data
copy) to do any cryptographic operations in hard-
ware. Furthermore, e-mail should generally be en-
crypted on the end user’s system, rather than on a
gateway, suggesting little need for key agility.

By contrast, IPsec was designed for hardware imple-
mentation. There are already commercially avail-
able Ethernet controllers that incorporate IPsec.
There are also gateway products today that run at
tens of megabits per second, while handling thou-
sands of security associations, and new products un-
der design will support much higher throughput and
SA count (see next section).

The gateways are also a test of key agility. In a typ-
ical remote user scenario, all traffic from every re-
mote user, to any destination whatsoever, will pass
through the gateway. The gateway thus sees all traf-
fic patterns, and all mixes of packet sizes. Further-
more, gateways of this type are inherently multiuser.
Depending on the number of simultaneous users and
the link speed, rapid key switching would be needed.

Although they will not be analyzed in detail here,
other gateway-like scenarios will present similar
challenges. One is ATM-based virtual private net-
works, which are typically very high speed. A second
is the interface between voice-over-IP products and
the current switched phone network; draft standards
from at least one group require that this traffic be
encrypted over the Internet. Both of these situa-
tions may be even more demanding, because they
use small packets exclusively.

3 The Environment

In IPsec systems, the first step in a typical process-
ing path for a packet is for a CPU or a packet proces-
sor to examine the packet header and make a policy
decision as to which Security Association (SA), if
any, the packet “belongs.” Once the SA determi-
nation is made, the packet is passed to the crypto
subsystem (if required), where the IPsec header ma-
nipulation and crypto transforms are applied. The
SA index is used by the crypto subsystem to load

from memory any SA-specific context, including se-
quence number, Security Parameters Index (SPI),
transform type, and key material.

Due to the large number of SAs supported in some
equipment, this context cannot reasonably fit on a
single chip, so it typically resides in a large memory
(e.g., 128 Mbytes) external to the crypto chip(s).
Such chips are available from several companies,
such as Hi/fn, Rainbow Technologies, Broadcom,
and IRE. These chips can perform the entire header
manipulation and crypto processing tasks, including
triple-DES and HMAC-SHA/MD5, all in a single
pass over the packet, at full-duplex speeds of hun-
dreds of megabits per second. In the coming few
years, these speeds will approach and exceed the gi-
gabit/second range.

Empirically, to a first order approximation, all IP
packets are either large (1500 bytes) or small (less
than 128 bytes). Various empirical studies have been
done, showing distribution histograms with large
spikes at both ends of the spectrum, with relatively
small background counts in the packet sizes [Abb99],
as Table 1 illustrates. This distribution makes sense
because of the Ethernet packet size limit (about 1500
bytes) on one hand, and because of the many small
packets used for sending keystrokes and protocol ac-
knowledgements on the other. In general, the ma-
jority of packets are small, but the majority of bytes
are in large packets. In any case, the small-packet
throughput of an IPsec system is normally used as
the key comparative performance benchmark by all
equipment vendors.

4 The Issue

Since small-packet performance is so critical, if an
IPsec algorithm for encryption or MAC requires a
large context, and if one cannot load that context
quickly enough, the performance of the entire system
may suffer. For example, given a 64-byte packet, the
typical context size for an ESP tunnel transform us-
ing triple-DES and HMAC-SHA is on the order of
100 bytes. This includes 24 bytes for triple-DES key,
8 bytes for IV (if saved from packet to packet within
the SA), 40 bytes for the precomputed HMAC in-
ner and outer loop values, and 20–30 other bytes,
including protocol, SPI, sequence number, tunnel
header information (e.g., IP addresses), and other
per-session configuration information (e.g., tunnel
vs. transport mode, byte counts for session lifetime,
etc.). In such systems, these parameters may all
vary from SA to SA and must thus be loaded as

2



Packet Probability Bandwidth
Size Distribution Distribution
32 0.000 0.0000
64 0.489 0.0602
96 0.055 0.0102
128 0.012 0.0030
160 0.006 0.0018
192 0.006 0.0022
224 0.006 0.0026
256 0.005 0.0025
288 0.016 0.0089
320 0.009 0.0055
352 0.008 0.0054
384 0.006 0.0044
416 0.005 0.0040
448 0.004 0.0034
480 0.004 0.0037
512 0.003 0.0030
544 0.010 0.0105
576 0.068 0.0754
1024 0.023 0.0453
1536 0.253 0.7480

Table 1: Size Distribution of Internet Packets

each packet is processed. Thus, the time for load-
ing the session context is comparable to the time
required for reading and writing the packet (e.g., 64
bytes in, about 100 bytes out). Some of the context
(e.g., sequence number) needs to be updated when
the packet processing has been completed, but the
byte counts are roughly balanced, to the first order.
The packet may or may not go through the same
memory as the session contexts, depending on the
architecture and performance requirements.

Ideally, these numbers should not change dramati-
cally for ESP using the AES algorithm, compared to
triple-DES. For example, using triple-DES, the sub-
keys from round to round are easily computed on
the fly directly from the 24-byte key material itself.
There is no need to perform any precomputation on
the key material on a per-packet basis, so encryption
or decryption can begin immediately upon loading
of the key. Assuming a 128-bit AES key size, the
total context for AES encryption should ideally re-
main roughly comparable to that of triple-DES, at
16-32 bytes (16 for key, possibly 16 for IV). However,
if the key schedule cannot be easily computed on the
fly, the transfer count could change significantly, af-
fecting performance.

There are several solutions to such a problem, each
with its own cost in hardware and/or complexity.

The simplest solution is to always precompute the
entire key schedule when the SA is established and
load it from memory each time the session context
is accessed. Because memory bandwidth is almost
always a performance constraint in such systems, de-
pending on the size of the subkey material, this ap-
proach probably requires widening the memory path
or adding a separate memory just for subkeys to
maintain a given performance level. The expanded
subkey size is usually at least an order of magnitude
larger than the raw key itself (e.g., 160+ bytes ver-
sus 16 bytes). Since most of the memory in such
crypto subsystems is dedicated to session contexts,
any such multiplier on the session context size im-
pacts memory cost almost linearly, compared to al-
gorithms that can perform on-the-fly subkey gener-
ation. Thus, such solutions are expensive, not only
in terms of the cost of the memory chips, but also in
pin count (which translates directly to dollars) and
in board area.

It is also possible to have an off-chip memory with
an on-chip cache holding the expanded key schedule
for recently used SAs. There are several problems
with this approach, in addition to the intrinsic de-
sign complexity and unpredictable performance of
caches. First, the size of the on-board cache is re-
lated to the number of SAs supported, and thus
would necessarily be quite large to achieve reason-

3



able cache ”hit” rates for systems with tens of thou-
sands of SAs. In such instances, it is likely that the
on-chip area dedicated to such a cache would be as
large as or larger than the rest of the crypto logic,
thus significantly increasing the system cost. Also,
the size of the cache is dictated by the key agility
to first order. In other words, for an algorithm with
high key agility, the key could be stored unexpanded
in the cache (e.g., 16 bytes), while for an algorithm
with low key agility the expanded key (e.g., 150+
bytes) must be stored. Suffice it to say that relative
factors of ten in on-chip memory size can rarely be
ignored!

Another solution is to pipeline the subkey compu-
tation on the chip, loading the 128-bit key and ex-
panding it in on-chip memory for the “next” packet.
Assuming that the key schedule computation could
be completed in less than the processing time for
a small packet (e.g., 64 bytes, or four blocks), this
approach should not affect throughput, although it
may add considerably to the gate count of the chip.
Unfortunately, as will be shown below, this assump-
tion is not true for two of the AES candidate ci-
phers. Equally problematic is the fact that such a
change modifies the underlying chip architecture by
adding an entirely new stage in the pipeline that
is not required for current algorithms such as triple-
DES. Such a change can be extremely costly in terms
of design complexity and time-to-market.

Ideally, adding AES to an existing IPsec chip should
involve a relatively simple change, not radical archi-
tectural modifications. To be fair, changing from
triple-DES to AES does require a change due solely
to the different block size, and this is not insignif-
icant. However, the block size change only affects
the bundling of data within the crypto processing
pipeline, not the overall relative flow of session con-
text and packets.

5 The Ciphers

Three of the AES finalist candidates, Rijndael
[DR98], Serpent [ABK98], and Twofish [SKW+98,
SKW+99a], can easily perform on-the-fly subkey
generation in hardware. The key schedules of Ri-
jndael and Serpent are stateful in progressing from
round to round. Thus, in order to perform decryp-
tion on the fly, both require a one-time computa-
tion of the key schedule to the end of the cipher so
that the key schedule can be run backwards from
the end point, using only 128 bits of key mate-
rial state. However, this obstacle is easily overcome

by performing the one-time precomputation of the
key schedule when the SA is initially established,
and placing the “decrypt” key starting point value
in the session context. Depending on whether en-
cryption or decryption is needed, only the forward
or backward subkey (16 bytes for a 128-bit key)
starting point would be loaded from memory. The
Twofish key schedule is entirely stateless from round
to round, so no such initialization is required. All
three of these ciphers can be dropped into an exist-
ing architecture without modification.

However, MARS [BCD+98] and RC6 [RRS+98] do
not have on-the-fly key schedules. The subkey mate-
rial for the two algorithms totals 160 and 176 bytes,
respectively. Thus, solely from a memory trans-
fer count, a simple approach would nearly double
the memory bandwidth requirements, compared to
triple-DES or Rijndael, Serpent, or Twofish. On
the other hand, if a pipelined approach is used, it
appears that cost goes up significantly and perfor-
mance may still be affected, as shown below.

For MARS, if a separate key schedule pipeline stage
is used, that pipeline stage must have its own S-
box. Since each S-box requires a large (16 Kbit)
ROM, this change is a non-trivial addition to the
logic cost of MARS, which has already been shown
to be by far the largest among the AES finalists
[WBRF00, IKM00]. Also, the time required for pre-
computing the MARS subkeys is fairly large. As-
suming that a single core round of MARS can be
run in one clock and that two rounds of the mixing
layer can be run in one clock (to go faster requires
a second S-box, further increasing the gate count),
then a single MARS block can be encrypted or de-
crypted in 24 clocks. By contrast, the key schedule
of MARS (assuming a single S-box) requires at least
270 clocks, assuming that two linear transformation
steps can be performed per clock. Even if the linear
transformation were free, the key schedule requires
240 clocks, or the time required to encrypt 10 blocks
(i.e., a 160-byte packet!). In other words, a pipelined
approach is actually not sufficient to hide the key
schedule time of MARS. Because the key schedule
is inherently sequential, even if dramatically more
hardware were thrown at the problem (e.g., two S-
boxes for the key scheduler), the key schedule speed
could not be significantly increased relative to the
speed of the encryption itself.

For RC6, if a separate key schedule pipeline stage
is used, the additional logic required is non-trivial
(e.g., another 32-bit variable rotator or two), in-
creasing cost. Also, the number of clocks required
to run the full key schedule is about 180, assuming

4



that the key schedule logic can perform two variable
rotates in a single clock. Assuming that a round of
RC6 runs in one clock, the block encrypt time is 20
clocks, so the key schedule requires 9 block timings,
corresponding to a 144-byte packet.
For RC6 and MARS, it appears that the only viable
approach to maintaining small-packet IPsec perfor-
mance with high key agility is to use more and/or
wider memory, and even that may still hurt perfor-
mance somewhat. Further, using these algorithms
with pre-expanded keys more than doubles the ses-
sion context size (100 bytes to 250+ bytes) compared
to other algorithms (triple-DES, Rijndael, Serpent,
Twofish). In many applications, all off-chip key ma-
terial must be stored in encrypted form, and the per-
formance overhead of decrypting the expanded key
may be significant. Since the session contexts gener-
ally occupy the lion’s share of the memory, it is also
fair to say that the cost disadvantage is very signifi-
cant for these two algorithms. For large packets, the
performance issue is much less noticeable, because
the cost of loading the key schedule from memory is
amortized over many more blocks of data. However,
the memory cost problem does not disappear.

6 Conclusion

RC6 and MARS do not have on-the-fly key sched-
ules, raising cost and lowering performance, call-
ing into question their suitability for certain high-
performance IPsec hardware environments. If all the
AES candidates had such limitations, it could per-
haps be argued that the associated additional cost
and complexity involved in using these algorithms in
such systems is justifiable. However, Rijndael, Ser-
pent, and Twofish all have on-the-fly key schedules
that work very well in such environments, fitting eas-
ily into existing architectures without significantly
affecting cost or performance.

7 Acknowledgments

The authors would like to thank Steve Kent, who
contributed to this paper. Also, the authors would
like to thanks the Extended Twofish Team for their
comments and support.

References

[Abb99] S. Abbott, ”Architectures for Support-
ing Hardware Cryptographic Engines,”

1999 RSA Conference, Jan 1999.

[ABK98] R. Anderson, E. Biham, and L. Knud-
sen, “Serpent: A Proposal for the
Advanced Encryption Standard,” NIST
AES Proposal, Jun 1998.

[BCD+98] C. Burwick, D. Coppersmith, E.
D’Avignon, R. Gennaro, S. Halevi, C.
Jutla, S.M. Matyas, L. O’Connor, M.
Peyravian, D. Safford, and N. Zunic,
“MARS — A Candidate Cipher for
AES,” NIST AES Proposal, Jun 1998.

[DR98] J. Daemen and V. Rijmen, “AES Pro-
posal: Rijndael,” NIST AES Proposal,
Jun 1998.

[GK98] R. Glenn and S. Kent, “The NULL En-
cryption Algorithm and its Use with
IPsec,” RFC 2410, Nov 1998.

[HC98] D. Harkins and D. Carrel, “The Internet
Key Exchange (IKE),” RFC 2409, Nov
1998.

[IKM00] T. Ichikawa, T. Kasuya, M. Matsui.
“Hardware Evaluation of the AES Final-
ists,” AES3 Conference, April 2000.

[KA98a] S. Kent and R. Atkinson, “IP Authenti-
cation Header, RFC 2402, Nov 1998.

[KA98b] S. Kent and R. Atkinson, “IP Encap-
sulating Security Payload (ESP),” RFC
2406, Nov 1998.

[KA98c] S. Kent and R. Atkinson, “Security Ar-
chitecture for the Internet Protocol,”
RFC 2401, Nov 1998.

[MD98] C. Madson and N. Doraswamy, “The
ESP DES-CBC Cipher Algorithm with
Explicit IV,” RFC 2405, Nov 1998.

[MG98a] C. Madson and R. Glenn, “The Use of
HMAC-MD5-96 Within ESP and AH,”
RFC 2403, Nov 1998.

[MG98b] C. Madson and R. Glenn, “The Use of
HMAC-SHA-1-96 Within ESP and AH,”
RFC 2404, Nov 1998.

[MSST98] D. Maughan, M. Schertler, M. Schnei-
der, and J. Turner, “Internet Security
Association and Key Management Pro-
tocol (ISAKMP),” RFC 2408, Nov 1998.

5



[PA98] R. Pereira and R. Adams, “The ESP
CBC-mode Cipher Algorithms,” RFC
2452, Nov 1998.

[Pip98] D. Piper, “The Internet IP Security Do-
main of Interpretation for ISAKMP,”
RFC 2407, Nov 1998.

[RRS+98] R. Rivest, M. Robshaw, R. Sidney, and
Y.L. Yin, “The RC6 Block Cipher,”
NIST AES Proposal, Jun 1998.

[SKW+98] B. Schneier, J. Kelsey, D. Whiting,
D. Wagner, C. Hall, and N. Ferguson,
“Twofish: A 128-Bit Block Cipher,”
NIST AES Proposal, Jun 1998.

[SKW+99a] B. Schneier, J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson, The
Twofish Encryption Algorithm: A 128-
bit Block Cipher, John Wiley & Sons,
1999.

[TDG98] R. Thayer, N. Doraswamy, and
R. Glenn, “IP Security Document
Roadmap,” RFC 2411, Nov 1998.

[WBRF00] B. Weeks, M. Bean, T. Rozylowicz, C.
Ficke (NSA), “Hardware Performance
Simulations of Round 2 Advanced En-
cryption Standard Algorithms,” AES3
Conference, April 2000.

6


