
The following paper was originally published in the
Proceedings of the Sixth USENIX UNIX Security Symposium

San Jose, California, July 1996.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A DNS Filter and Switch for
Packet-filtering Gateways

Bill Cheswick, Lucent Technologies
Steven M. Bellovin, AT&T Research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A DNS Filter and Switch for Packet-filtering Gateways

Bill Cheswick
Bell Laboratories

ches@bell-labs.com

Steven M. Bellovin
AT&T Research

smb@research.att.com

Abstract
IP-transparent firewalls require access to the external Domain Name System (DNS) from protected in-
ternal hosts. Misconfigurations and misuse of this system can create internal administrative and security
problems.

Dnsproxy provides access to and protection from untrusted DNS services. It runs on a firewall, or on a
trusted host just inside the firewall. The program receives (or intercepts) DNS queries and forwards them
to an appropriate internal or external “realm” for processing. The responses can be checked, filtered, and
modified before they are returned to the requester. The logging and consistency checks can provide infor-
mation about possible DNS attacks and irregularities that are not available from most DNS implementa-
tions.

Introduction

For many years we have run application-level gateways
on our interface to the Internet.[2][3, pp. 85–118] Be-
hind these firewalls has grown an intimate community of
perhaps 300,000 hosts, plus a (mostly) separate domain
name system (DNS) arrangement. We’ve run our own
DNS root and shielded ourselves from most of the secu-
rity and administrative problems associated with the ex-
ternal DNS.

Recently we have installed a dynamic, or smart,
packet filter. This newer technology allows us to have
most of the security promised by an application-level ap-
proach, with much better performance.

A dynamic packet filter acts very much like tradi-
tional router, except that it keeps track of each TCP cir-
cuit, and permits bidirectional packet flow for each TCP
circuit until the connection is terminated. Our users no
longer need modified client software or proxies to access
the net—they can get there themselves.

This gateway is transparent to permitted IP packets
flows, which means we need something like standard
DNS access to the Internet. This brings two problems:

1. Internally we rely on address-based authentication
extensively for services like rlogin, rsh, rcp, and
NFS. DNS is a vital part of these services, and it
is easily subverted. Our crunchy outside now has a
liquid center.

2. It’s going to take a while to wean our companies

away from our internal DNS root servers and our
old gateways. During the transition period, inter-
nal exposure to external DNS information must be
controlled and limited. We can’t have external root
NS entries knocking around inside, confusing in-
nocent resolvers about where the answers lie.

The first problem is generic, and Internet-wide. Current,
and especially older versions of bind, are much too trust-
ing of the answers they receive.

The second problem is of our own making, but we ex-
pect that many sites are facing similar problems as their
gateway technologies evolve.

What are we Afraid of?

There are many problems with the DNS protocol and its
implementation. We don’t intend to enumerate all the
problems here—see references[1][5][6][7] for a detailed
list.

Most of the known attacks are based on the fact that
many popular Internet protocols rely on name-based au-
thentication. If a client connects to a host using rlogin,
the server does a reverse lookup of the client’s IP address,
and consults a table of trusted clients. If an attacker can
subvert the DNS, this mechanism is broken. An attacker
can force the target to make a normal query, and return
additional irrelevant glue records to that query. These
glue records are cached, and consulted on the subsequent
query, giving the wrong answer.



We have seen DNS packet injectors and related tools
in hackers’ toolkits captured by law-enforcement folks.

It was clear to us that we could not allow an external
name server to give us any information about an internal
host or network. The DNS reply had to be unpacked, ex-
amined, censored and filtered, repacked, and forwarded
to the recipient. This is an application-level gateway for
external DNS services.

We also wanted to filter out all external NS records,
to keep from polluting our internal DNS tree. In fact,
we filter any record that is not explicitly necessary and
common. There are a lot of miscellaneous and apparently
harmless DNS records. We won’t pass them until there is
a need. As a performance optimization, we do pass back
inside NS records; this allows inside resolvers to contact
insider servers directly on subsequent queries.

We considered checking the address returned in the
A record. Could an attacker harm us if he said his host
was on one of our internal nets. We couldn’t think of an
attack, but one turned up in February involving Java (see
CERT Advisory CA-96.05, March, 1996, and [4]). It was
easy to install the check, because we had the right tool in
place.

Dnsproxy

Dnsproxy is a DNS switch and filter. To clients it looks
like a name server. We run it on two internal hosts; the
resolvers inside point to these hosts. The next section
discusses other deployment options. The program looks
up the address in a configuration file and forwards the
request to an appropriate “realm”. Two realms are typ-
ically used: “inside” and “outside”, though more may
be configured. (We could set up separate att.com and
lucent.com realms if we wished.) A realm is typically
served by at least two name servers. Dnsproxy will for-
ward the request to the least-busy server.

The realm’s name server sends its reply to dnsproxy,
which examines the response. The following checks are
made:

� Is the record malformed in some way? If so, drop
it.

� Does the query in the response match the query we
sent out? If not, drop the whole thing.

� Did the response come from the expected IP ad-
dress? If so, drop the response. This can obviously
be spoofed, but the check is cheap. On the other
hand, it can cause problems when talking to some
multi-homed DNS servers, as the answers may ap-
pear to come from a different address for that ma-
chine.

� In each resource record, do all domain names refer
to the relevant realm? If a query forinside.com
would normally be directed to realm inside, an
answer containing it will not be tolerated from an-
other realm. This rule has some administrative im-
plications, discussed below.

� Is there a filter rule for the responding realm to drop
or modify a particular resource record? If so, apply
it.

Deployment Choices

There are several different ways in which a DNS proxy
can be deployed. First, it can simply be a server
within a comparatively small lab. Each machine has
its resolv.conf file pointing to the server; it in turn
queries the outside or inside as needed. A variant points
the forwarders option of Bind at dnsproxy, to al-
low for local caching of responses. We use both of these
variations now. A second method would be to have the
proxy act as the root server within a large organization.
As per normal practice, all unresolved queries would be
redirected to the root; it would take appropriate action.
The third way is to install the proxy as a filter in some sort
of dynamic packet filter. The packet filter could intercept
outgoing DNS queries and kick them up to dnsproxy for
processing.

Each of these three schemes has its advantages and
disadvantages. The third scheme is likely the best. In-
siders see the same image of the world as do outsiders.
NS records need not be deleted, save for those that refer
to the inside domain. And it doesn’t matter where a host
learned of a DNS server’s address; the address will just
work.

The problem is that this deployment mechanism is
very dependent on the details of your firewall. Not all
firewalls permit this sort of dynamic processing—simple
packet filters do not—and those that do differ widely in
their design.

The second scheme works well for large organiza-
tions; it has the disadvantage that it produces an incon-
sistent view of the world. There are then two sets of root
servers, the outside’s and the inside’s. A laptop that lives
in both worlds would need two different configuration
files.

It would be least intrusive to use local
resolv.conf files or forwarders entries in
named.boot files is the least intrusive mechanism.
Only the local machine is affected; it does not require
organization-wide deployment. Furthermore, it works
even with ordinary packet filters. The problem is that this
approach doesn’t scale; it may not be feasible to change
all of the machines in a large organization. As such, it



realm
inside 135.104.2.10,135.104.26.141 error
outside 192.20.225.4,192.20.225.9 default

switch
outside any www-db.research.att.com
outside any www.research.att.com
outside any ampl.com
outside any dnstest.research.att.com
inside any att.com
inside any ncr.com
inside any lucent.com
inside any attgis.com
inside any 135.in-addr.arpa
inside ptr 127.in-addr.arpa
inside any 11.192.in-addr.arpa
inside any 19.192.in-addr.arpa
inside any 94.128.in-addr.arpa
inside any 127.192.in-addr.arpa
inside any 222.131.in-addr.arpa
inside any 243.132.in-addr.arpa
inside any 206.141.in-addr.arpa
inside any 25.149.in-addr.arpa
inside any 52.153.in-addr.arpa

...
inside any 87.153.in-addr.arpa
outside any *

filter outside block * NS *
outside block * A 135.104/16
outside block * A 135.180/16
outside block * A 127/8

Figure 1: A sample configuration file.

is best for experimental use or within relatively small
groups. We have found that the benefits of the dynamic
packet filter have given our users strong incentive to
point their resolvers at the dnsproxy service.

We are currently using this latter choice, precisely to
avoid impact on the rest of the company. At this stage, the
code is experimental, and we are not prepared to deploy
it widely. Ultimately, we will likely modify it so that it
can be integrated with our dynamic packet filter.

It’s not surprising that we have found it vital to dupli-
cate the dnsproxy service. Since all name server queries
come through it, its host provides an annoying single
point of failure. Each realm has at least two servers, as
well.

Performance

We’ve made no attempt to optimize the code in dnsproxy
at this point: we are pleased enough that it works well.
At present, the program is a CPU hog. We are process-

ing 40,000 requests an hour on an NCR 3430 server with
two 60MHz Pentiums. It uses about 10 CPU seconds per
minute.

But the users see snappy response times. Typical
round-trip times are about 10ms.

Scheduling

Dnsproxy supports multiple servers per realm. How
should we use these? It would be nice to share the load,
and if one server goes down, to rely on the others. How
do we tell if a server is down? We could ping the server,
but that would require additional code, and possibly a
new hole in the firewall. Why not use our DNS traffic
flow?

The problem is that a server may fail to respond be-
cause it hasn’t obtained an answer, or because it is down.
With a hefty load such as ours, we get plenty of indica-
tions that a server is working, but it is harder to tell if it
isn’t.



At first we tried a moving average of server response
times. They all started with a high average, and quick
responses brought the average down. If we gave up on
a query, we included the timeout in our average. This
worked well enough, and wasn’t hard to implement. But
we found a simpler way.

Resolvers are accustomed to timingout, and reissuing
requests: typical retries arrive within three seconds. We
can use this flexibility to waste an occasional request in
the name of scheduling. To do this, we keep track of the
number of outstanding requests to each server. We send
the request to the server with the shortest queue. Even un-
der heavy load, we usually get our answer before a new
query comes in. Typically, one server handles all of the
load until a single query gets stalled. Then it switches to
the other. If one server goes down, the second starts han-
dling the entire load within a couple of requests.

Other approaches

Paul Vixie[7] is working to add these and similar features
to Bind. We hope he succeeds. For example, he is modi-
fying the forwarding code to implement checks like ours,
and others.

On the other hand, Bind is already a very large pro-
gram; adding more security-critical functionality to it
may not be a good idea. We’re likely to continue running
dnsproxy no matter how the base code changes.

Administration details

Dnsproxy normally runs as a detached daemon, and lis-
tens to queries on UDP port 53. (To access this port, it
currently runs as root, which it shouldn’t.) It forwards its
queries from a predictable UDP port based on the realm,
so it is easy to install appropriate filtering rules in a gate-
way. For example, in the following realms:

inside 135.104.70.9 error
outside 192.20.225.4 default

queries to 135.104.70.9 port 53 would be forwarded from
port 54 in dnsproxy, and queries to 192.20.225.4 would
come from UDP port 55. If a debugging version of
dnsproxy is listening to port 9953, these ports would be
9954 and 9955 respectively.

Figure 1 shows a sample configuration file. The
realm section describes the realm name and servers.
It also can process erroneous requests or be the default
(keywords error and default) if a query does not
match any entry in the switch section.

The switch section is an ordered list of query types
and the realms that process them. When a query arrives,
dnsproxy runs through the list to find the first match, and

dispatches the query to the given realm. This crude data
structure eats much of our processing time, and should
probably be improved.

The filter section is for responses, and is speci-
fied per realm. In this example we explicitly filter out
all NS records, and any A records that refer to our inter-
nal addresses. Other filtering occurs as well, as described
above. Our filter rules are fairly primitive. One should
probably be able to match any specific type of resource
record. We haven’t needed this generality yet, so the code
is currently fairly crude.

Dnsproxy generally logs to syslog. The usual syslog
level controls the detail and severity of logging informa-
tion. At the debugging level it produces a full dump of
every query and response, producing a torrent of output.
At a typical syslog logging level of notice, only records
with unusual reason codes are displayed.

The routine loggingcan show a host of ills and config-
uration mistakes that might be normally missed. After we
sifted through these, we raised the logging level. Error
logs should be normally silent, so really unusual events
won’t get buried in a sea of mundane trivia. It has been a
bit difficult to get the logging level right.

Dnsproxy does not handle tcp requests at present.
This hasn’t been a problem in our environment, but there
are name servers that rely on this ability.

Availability

At present this code is not available outside of Lucent and
AT&T.

References

[1] Bellovin, S. Using the Domain Name System
of System Break-ins. Proceedings of the Fifth
Usenix Unix Security Symposium, June 1995,
pps. 199–208.

[2] Cheswick, W. R. The Design of a Secure Inter-
net Gateway. Proceedings of the Usenix Sum-
mer ’90 Conference.

[3] Firewalls and Internet Security; Repelling the
Wily Hacker. Cheswick and Bellovin. Addi-
son Wesley, 1994.

[4] Dean, D. and Wallach, D. Security Flaws in
the HotJava Web Browser. Proceedings of the
IEEE Symposium on Security and Privacy,
May 1996.

[5] Mockapetris, P. Domain names–concepts and
facilities. RFC 1034, Nov. 1987. Updated by
RFC1101.



[6] Mockapetris, P. Domain names–concepts and
facilities. RFC 1035, Nov. 1987. Updated by
RFC1348.

[7] Vixie, Paul. DNS and Bind Security Issues.
Proceedings of the Fifth Usenix Unix Security
Symposium, June 1995, pps. 209–216.


