
Transient Addressing for Related Processes: Improved Firewalling
by Using IPV6 and Multiple Addresses per Host

Peter M. Gleitz
�

pmgleit@netscape.net
Steven M. Bellovin

smb@research.att.com
AT&T Labs Research

Abstract

Traditionally, hosts have tended to assign relatively few
network addresses to an interface for extended peri-
ods. Encouraged by the new abundance of address-
ing possibilities provided by IPv6, we propose a new
method, called Transient Addressing for Related Pro-
cesses (TARP), whereby hosts temporarily employ and
subsequently discard IPv6 addresses in servicing a client
host’s network requests. The method provides cer-
tain security advantages and neatly finesses some well-
known firewall problems caused by dynamic port nego-
tiation used in a variety of application protocols. A pro-
totype implementation exists as a small set of kame/BSD
kernel enhancements and allows socket programmers
and applications nearly transparent access to TARP ad-
dressing’s advantages.

1 Introduction

In the simplest of inter-networked host models, a client
or server host has a single network interface with a sin-
gle network address identifying the host. Even under
such an elementary set-up, firewalls have traditionally
faced difficulty when confronted with application pro-
tocols needing to open secondary channels. Examples
abound, most notably ftp, but also rsh, RealAudio,
H.323, tftp and the X Window System. To oper-
ate with such popular applications, firewalls have been
forced either to follow the application layer protocol

�

Work done while interning at AT&T Labs Research

Proceedings of the Eleventh Usenix Security Confer-
ence, August 2001, Washington, D.C.

and configure themselves appropriately or to keep open,
sometimes unnecessarily, a range of ports.

As an alternative to potentially complex, detailed, and
often stateful firewall interaction, we propose a method
using multiple network addresses per host to organize
and simplify firewall decisions. Under our basic model,
instead of trying to follow the unfolding application pro-
tocol details, the firewall makes an initial permissibility
determination based on transport layer protocol and the
endpoints’ ports and addresses. Assuming approval of
the proposed transaction, the firewall subsequently per-
mits all traffic between the approved address pairs, irre-
spective of port.

The security concerns arising from the firewall’s appar-
ent loss of control over a session’s evolving ports will
be alleviated by dynamic control of the protected host’s
active addresses. Further, by segregating and control-
ling which addresses offer network services outside the
firewall and which facilitate protected-host driven net-
work requests, the architecture provides a natural ad-
dress based division between potentially hostile requests
from outside the bastion, and presumably benign out-
bound activities originating within the protected net-
work.

To help distinguish among a protected-host’s various
client/server tasks, we will tie the address used by a
client process to its process group identifier. This way,
host addresses will come and go as part of the natural
lifecycle of the processes that use them.

For example, when a TARP client starts ftp from be-
hind a firewall to a similar server, also protected by a
firewall, it configures a new address. The client’s fire-
wall recognizes the client’s new address and records it
along with the destination address. The firewall pre-
sumably grants the FTP request based on port and ad-
dress criteria and subsequently passes all outbound and
inbound packets between the two addresses. Further port

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161435308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ethernet’:0.20
Server Subnet:

Server Subnet:
Ethernet’:0.21

FTP Server

Ethernet:pgid.5040
Client Subnet:

Client Subnet:

FTP Client

Ethernet:pgid.5041

Figure 1: TARP Client FTP Through a Firewall: When the client connects to the FTP server, the client’s firewall
recognizes that FTP uses auxiliary ports and opens all ports between the server and the client’s transient address,
Client Subnet:Ethernet:pgid.The FTP thus proceeds without the firewall knowing that the client negotiated port 5041
for the data channel.

negotiations (using the same addresses) conducted by
ftp will have no effect on what the client side firewall
passes; it will simply pass along all the server packets
addressed to the client’s ftp address.

The server side behaves similarly (though there are some
issues if different servers have different access policies);
however, servers must use static addresses, largely so
that clients can find them. The server’s firewall sees the
client address opening a connection to the server’s fixed
address and ftp port and decides whether to allow the
connection. If the server’s firewall permits the connec-
tion, it passes all subsequent packets between the client
and server addresses, independent of port, including in-
coming calls.

Another way to view this is to adopt a virtual machine
metaphor. That is, each client process group conceptu-
ally runs in a virtual machine, with an independent IP
address space. This view can guide several design deci-
sions, as shown in Figure 2.

Although IPv4 might conceivably support such a
scheme, IPv6 and its large 128-bit addresses [HD98]
provide a simpler opportunity to deploy TARP. Typi-
cally, the high order 64 bits of an IPv6 address provide
the information needed to deliver a packet to the host’s
LAN, and the low order 64 bits, assigned by the site ad-
ministrator, are commonly the interface’s 48-bit Ether-
net address padded with a constant to create a unique
64-bit interface identifier. TARP’s addressing scheme
exploits these pad bits to create a family of

�����
IPv6

addresses with the same basic uniqueness properties as
Ethernet-based host identifiers. These addresses become
associated with the sockets of a process group and form
the foundation for TARP.

A proof-of-concept implementation exists as a small
set of kame/BSD [KAM] kernel enhancements, and al-

lows socket programmers and applications transparent
access to TARP’s advantages. The basic server/client
programs supplied with the kame IPv6 package (tftp,
ftp, rlogin, rsh, telnet, sendmail, ssh,
mozilla, inetd) all work with the modified kernel,
and none of them required modification to run.

2 Multiple Addresses per Host and a
Large Family of IPv6 Addresses

The notion of assigning multiple IP addresses to a (non-
routing) host is not new. In 1994, RFC 1681 [Bel94] de-
scribed a number of potential uses and benefits of assign-
ing multiple IP addresses to a host, and Stevens’ stan-
dard socket programming text [Ste90] is peppered with
some of the subtleties of socket programming on multi-
homed servers. The IPv6 addressing model specifically
supports assignment of “multiple IPv6 addresses of any
type (unicast, anycast, and multicast) or scope” [HD98]
to a single interface. Although primarily intended to fa-
cilitate renumbering, this IPv6 feature can also be used
to simplify firewall interaction via TARP.

To form addresses based on unique interface identifiers,
RFC 2373 [HD98] recommends using, whenever possi-
ble, the 48-bit IEEE 802/Ethernet MAC addresses, and
the RFC offers the IEEE EUI-64 [Ins97] as one way to
create a globally unique 64-bit identifier from the Ether-
net address. The suggested method consists of inserting
the two-byte padding pattern FFFE ��� after the third byte
of the the Ethernet address.

To create TARP addresses, we actively vary the pad
bytes to select from a large family of IPv6 addresses
unique to an interface. We also use a slightly dif-
ferent ordering than the examples in RFC 2373. The



Internet

Network:Ethernet:5040.53

Name Server

FTP Server

Network:Ethernet:138
For the Macintosh via sshQueries a Name Server ftp to the big server
Network:Ethernet:0.22

Figure 2: An Example Under the Virtual Machine Model:Viewing each process group as a virtual machine, the figure
shows a single TARP host involved in three distinct network sessions run by separate process groups 1) an FTP
session from the TARP client to a server across the WAN ; 2) the TARP client serving an ssh session to a Macintosh
client; 3) A DNS request originating from a process within process group 5040.

first six bytes of our addresses are simply the inter-
face’s Ethernet address with the last two bytes vary-
ing as needed. Re-ordering the bits that vary to the
least significant bits has the benefit of allowing the
last hop router to use a single table entry with a 112-
bit prefix to send all such packets to a single host.

3 Some Notation

We now introduce some notation. Suppose
a host interface has an Ethernet address of
00:10:4b:63:80:4b, a 64-bit network prefix length
and a subnet prefix of 1111:2:3:4. Then the
TARP address family available for this inter-
face ranges from 1111:2:3:4:10:4b63:804b:0
through 1111:2:3:4:10:4b63:804b:ffff. We de-
scribe the general concept of an address like
1111:2:3:4:10:4b63:804b:0, as Subnet Pre-
fix:Ethernet Address:0 and when the least significant
bits of an address correspond to the process group iden-

tifier using the address, we write Subnet Prefix:Ethernet
Address:pgid. When the discussion requires some no-
tion of a port, a dot after the final address bytes delimits
the port, as in Subnet Prefix:Ethernet Address:0.21
for port 21, or Subnet Prefix:Ethernet Address:0.*
meaning any port on the address. As a further notational
imprecision, quantities like Subnet Prefix and Ethernet
Address can be enhanced to refer to some particular
network, interface, or host context, as in Subnet Prefix
Network 1, or Ethernet Address Host 2, etc.

4 Using a Large Family of Host Addresses

Host usage of this this large address family depends on
whether the host process acts as client or server. In gen-
eral, client applications select actively from the pool of
available addresses and dynamically configure the ap-
propriate interface. Server processes will use a desig-
nated static address.

Our decision to connect the address used by a client pro-



cess to its process group was driven only by a desire
to have a group of related processes use the same ad-
dress. Process groups have no particular special proper-
ties, other than being somehow “related” (on Unix sys-
tems, they represent the processes descended from a sin-
gle command line), and the basic concept of transient
addressing extends to other similar, natural process re-
lationships. As the basis for the UNIX process group
indexing scheme, processes could, in principle, have
their own IP addresses, although the clutter and possi-
ble performance penalties of establishing a per-process
address seem excessive. In a multi-user environment,
UIDs, credentials, or session identifiers could sensibly
anchor similar addressing schemes, as could a new (as
yet unspecified and only dimly imagined) set of kernel
concepts and data structure for organizing related pro-
cesses.

More fundmanentally, the requirement is that the
addresses assigned to “related programs”—ones that
somehow “expect” to be at the same place—be stable,
but that “different” programs have different addresses.
Thus, a Web browser structured as multiple processes
should have a single IP address, while individual ftp
commands should have different addresses.

Address organization by process group has the advan-
tage that the kernel already supports the notion that a
collection of processes is somehow related. The data
structures are stable in the UNIX kernel, and bolting
the addressing scheme onto them posed little threat to
the processing flow for establishment, maintenance, and
appropriate removal of the fundamental data structures
managing process groups. We are unaware of any ba-
sic conflicts created by attaching our concepts to pro-
cess groups, and found them lively and flexible enough
to stress the kernel enhancements dealing with address
management.

4.1 How a Client Uses the Large Family of Ad-
dresses

When a client implicitly binds a local address to a
socket, the kernel decides which interface to use. Our
modified kernel determines what process group the bind-
ing client process belongs to, and uses the correspond-
ing Subnet Prefix:Ethernet address:pgid address for the
socket. For a process group’s first such socket, this in-
volves assigning a new IPv6 address to the appropri-
ate interface and joining the corresponding Solicited-
Node multicast address required by the IPv6 specifica-
tion [HD98]. Note that by only assigning a TARP ad-

dress in the case of an implicit bind, the kernel still al-
lows explicit binding to any valid host address a socket
program can identify. With an address established for
the process group, any other implicitly bound sockets
arising from the same process group will use the same
address. The address persists on the interface until the
process group leader terminates, when the address and
its Solicited-Node multicast address are removed.

4.2 How a Server Uses the Large Family of Ad-
dresses

Server interactions passing through the firewall must oc-
cur on the reserved Subnet Prefix:Ethernet Address:0 ad-
dress. This requirement serves several useful purposes.
First, connecting to a server with a dynamic address is
like hitting a moving target, so fixing the address al-
lows clients to find servers. Next, fixing the server ad-
dress (both listening and responding address) further as-
sists the expected server/firewall interaction by omitting
any need for server applications to inform interested fire-
walls of their addressing dynamics. Finally, it provides
control for firewalled hosts running servers using wild-
card listening sockets.

The control requirements are the most subtle, and
an example of what could be dubbed “coat tail rid-
ing” will clarify the importance of restricting exter-
nal server activity to a fixed address. Consider an in-
stallation with a policy freely allowing outgoing ftp,
but not incoming telnet from outside its firewall.
A host inside the installation opens an FTP connec-
tion from Protected Installation Prefix:Ethernet Ad-
dress:pgid.5040 to a hacker-compromised site, Com-
promised FTP Server.21. This complies with the in-
stallation’s security policy, and the firewall enables
the rule allowing all traffic between the protected host
and the compromised server,

�
Protected Installation

Prefix:Ethernet Address:pgid.* ��� Compromised FTP
Server.* � . A telnet server listening to a wildcard
socket on the ftp client machine could then receive
and serve connection requests from the compromised
FTP server to Protected Installation Prefix:Ethernet Ad-
dress:pgid.23 in violation of the installation’s telnet pol-
icy. We prevent a server from riding back on the client’s
coat tails by forcing server activities to occur on the
:0 address and preventing a server’s wild card listen-
ing sockets from connecting to inappropriate TARP ad-
dresses. Section 5.4 describes a set of socket match-
ing rules that prevent coat tail riding. Note we cannot
simply forbid connections to Protected Installation Pre-
fix:Ethernet Address:pgid as active mode FTP will re-



quire that the compromised server connect back to the
client.

The address based firewall rule and designated server
address principles lack fine discrimination concerning
what services will be served outside the protected bas-
tion. Once a client opens a connection through the fire-
wall to any service, the firewall rule subsequently allows
the same client through to any port. In another exam-
ple, suppose the protected host’s security policy allows
ftp connections from the outside, but not telnet.
Any authorized user could start an ftp from the outside
to Protected Installation Prefix:Ethernet Address:0.21,
causing the firewall to allow all traffic between the ftp
client and the protected server. With all ports now open
to the FTP client, it can now start a telnet session
from the outside, unimpeded by the firewall. This prob-
lem of finer discrimination of service access has some
reasonable remedies short of following application-level
protocols, and we discuss them in the security section
below.

5 TARP and Sockets

5.1 Overview

Our TARP implementation rests on a set of kernel en-
hancements at the socket level and below. It relies ex-
tensively on the socket data structure’s process group
identifier, and every AF INET6 socket receives the pro-
cess group identifier of the process group creating it.
The main intent has been for socket programs to receive,
without further programmer intervention, the appropri-
ate TARP address when simply using the vanilla Socket
API.1

As illustrated above, it matters greatly to the addressing
scheme’s security concept whether a process acts as a
server or client. As a result the kernel tries to classify a
process group as either a client process group or a server
process group, and typically assigns a classification to a
process group according to the first SOCK STREAM or
SOCK DGRAM socket usage of a process in a process
group. A process group typically exists in an indetermi-
nate state until one of its processes first reads or writes a
socket. The exception to the usual indeterminacy occurs
when a server spawns a new process group. In this case,
the new process group inherits its server state from the

1In this prototype, we have not fully checked if SS ASYNC’s usage
of the sockets process group components may conflict.

parent process group. If a process group’s first datagram
or stream socket usage is a read, the enhanced kernel
classifies that process group as a server process group.
Similarly, if the first such socket usage writes a socket,
then the process group receives a client classification.
The implementation offers system calls to manipulate a
process group’s client server state for socket applications
ill-served by the default classification rules, but experi-
ence has so far shown them needless: except for auth
(see Section 6.1), all tested applications worked without
change.

5.2 Client Sockets

Client applications wishing to use a TARP address sim-
ply create a socket and first write to it (using write,
writev, sendmsg, or sendto) or call connect so
that the socket receives an implicit bind. During the
process of implicitly binding the socket to a local ad-
dress, the kernel assigns and configures the appropriate
TARP address.

5.3 Server Sockets

Like client sockets, server sockets can receive the source
address of their outgoing packets via an implicit bind,
but sometimes, this produces undesirable results. Under
the general model that servers will create sockets some-
how listening on some limited set of addresses for con-
tact from clients, one of our goals is to insure that servers
will listen to and respond from the same reserved server
address that was contacted by the client. Achieving this
goal depends on the transport layer protocol, the Unix
flavor, and the server’s socket programming style.

TCP servers pose little problem as the connection frame-
work provides adequate structure to determine the cor-
rect address for a listening socket to bind to (presum-
ably a reserved server address contacted by a client). We
do not force the accept to occur on a server address,
but rather view that decision as a administrative choice
for the firewall. By allowing connections to valid ad-
dresses outside the TARP address family but sharing the
same interface, we can also support multi-homed TCP
servers. We expect (but do not force) that installations
using these extra addresses will have firewalls routinely
blocking all traffic involving these non-process group
based addresses so that they will be served only from
within the protected enclave.

UDP client/server applications are slightly more prob-



lematic, mostly because the BSD derived kernels do
nothing to force a multihomed UDP server to respond
from the same address as the destination address of the
prompting packet[Ste90, p. 220]. Coupled with the real-
ity that many common UDP servers let the kernel choose
the server’s responding address, this effectively causes
problems for clients attempting to use UDP sockets to
communicate with multi-homed UDP servers running a
kernel supporting TARP addressing. The BSD based
kernels choose a reply address from the outgoing inter-
face which does not necessarily mean replying with ei-
ther the same address as the client’s destination address
or the designated :0 server address. If a client contacts
a UDP server on Subnet Prefix:Ethernet Address:0, the
kernel must insure that the response returns from the
same server address or the firewall rule set will likely
block the response.

For UDP servers, the classification of a process group
as a server process forces response on the server ad-
dress, achieving the desired result. The whole classifica-
tion scheme is mostly forced by BSD’s carefree attitude
about ensuring that the UDP server responds from the
same address contacted by the client.

5.4 Matching Protocol Control Blocks for In-
bound Data to Sockets

To read incoming data, a process typically creates a
socket and places it in a state (often blocking, but per-
haps polling) awaiting network data. The kernel mon-
itors incoming IP data, classifies it according to trans-
port layer protocol and ports, and finally matches it to a
list of available sockets. To work well with TARP ad-
dressing, the standard BSD rules for matching network
data to sockets need refinement, and the new assignment
rules are described below.

These assignment rules enforce several operating princi-
ples. First, they must prevent coat tail riding by provid-
ing the control necessary to prevent wildcard listening
sockets from providing network services on a process
group based address. Second, the rules must also permit
connections to servers on the Ethernet:0 address. Third,
they need to connect the appropriate incoming packets to
sockets listening specifically to a TARP address. Finally
(and optionally), because servers may wish to provide
separate services inside the protected bastion, the rules
need to allow a server to match sockets listening to a
valid address outside the TARP address family. The rule
set below achieves these goals.

1. A socket with a socket pair (
�
source address.source

port, destination address.destination port � ) exactly
matching a datagram’s source and destination ports
and addresses receives the datagram payload. This
rule typically applies to TCP sockets from estab-
lished connections, for example.

2. Bound Listening Sockets: If no match is found
in Rule 1, the sockets listening to a particular ad-
dress are examined sequentially for the first match
against the following ordered rule set:

a. A socket listening to
�
*.*, Subnet Pre-

fix:Ethernet Address:0.port � receives the data
sent by any client to the server on that port.
This rule applies to server connection estab-
lishment, and UDP servers on the server ad-
dress.

b. A socket belonging to process group pgid,
and listening to

�
*.*, Subnet Prefix:Ethernet

Address:pgid.port � gets data sent to that port
and address. This rule allows TARP ad-
dress clients to use listening sockets to accept
connections from servers, like an ftp client
might do.

c. A datagram addressed to a socket listening
to the specified port on a valid host address
outside the TARP address family will receive
data sent to that port and address. This is in-
tended to handle requirements to provide ser-
vices not available outside the protected bas-
tion to internal hosts.

3. Wildcard Listening Sockets: If no match for any of
the sockets is found in Rule 2, then a socket listen-
ing to

�
*.*,*.port � can match if and only if:

a. The datagram from the client is addressed to
the server address.

b. The datagram is addressed to a valid TARP
address and the socket belongs to the process
group designated by the address.

c. The datagram destination address is outside
the TARP Family but a valid host address.

Rule 3 is a catch-all and the last socket matching
under Rule 3(a), 3(b), or 3(c) receives the datagram.

An example shows how these rules effectively prohibit
coat tail riding. Reconsider the example of Section 4.2,
where a protected client runs both telnet and FTP servers
on a wildcard address, but allows only FTP to outside
the firewall. After the protected client starts an ftp ses-
sion to the compromised FTP server, the compromised



site attempts to open a connection to Protected Instal-
lation Prefix:Ethernet Address:pgid.23, and the firewall
passes the malicious SYN packet according to the rule
legitimately established by the ftp allowing

�
Protected

Installation Prefix:Ethernet Address:pgid.* ��� Com-
promised FTP Server.* � . As the telnet server is lis-
tening with a wildcard socket, the the first two rules
(each requiring a specified destination address) will fail
to match the SYN packet. The only remaining candidate
is Rule 3(b), but this fails to match because the tel-
net server’s listening socket will belong to a different
process group than the ftp. Thus the packet intending
to ride the coat tails of the open firewall filter is never
delivered to the telnet server socket and the connection
is never opened.

Rules2(c) and 3(c) are optional and permit a host to of-
fer services on an address outside the TARP family, pre-
sumably to machines within the protected enclave. They
should be filtered outside the protected enclave and also
admit the possibility of firewall misconfiguration. For
installations not requiring their functionality, a compile
option can remove them and protect against misconfigu-
ration dangers.

5.5 Aids for Socket Programmers

Although the enhanced kernel modifications work sensi-
bly with a variety of unmodified IPv6 server/client soft-
ware, socket programmers using TARP addresses may
need to be mindful of certain subtleties. Socket pro-
grammers writing applications that fork new processes
and subsequently assign the forked processes to new
process groups will will need to remember that the re-
sulting sockets may not share the same IP address (if that
matters to them or their application). Additionally, the
inheritance of a parent’s process group server state could
conceivably create problems if a server forks a process
that needs to act as a client.

As a convenience and measure of control, the modi-
fied kernel provides a system call allowing a program
to request either server or client status. So far, the
client/server applications tested have required no such
manipulations to use the correct addresses, suggesting
that the kernel rules generally provide the desired re-
sults. During development, the modified kernel also con-
tained a setsockopt call allowing programmer con-
trol of whether a socket uses the server addresss, but this
control appeared superfluous in light of the server inher-
itance rule and was removed pending demonstration of
its utility.

Host applications may also explicitly bind to any ad-
dress they could otherwise bind to with an unmodified
kernel, although doing so will likely produce useless re-
sults. For example, an application could bind to the ad-
dress used by a separate process group, but the resulting
socket would (absent process group manipulation) have
an address with the process group component not equal
to the socket’s process group. This would always fail the
protocol control block matching algorithm joining sock-
ets and protocol control blocks, and so no data could
flow to the socket. (A simple code change could pro-
hibit the ability to misbind, to avoid violating the rule of
least surprise.)

6 Experience with Client/Server Interac-
tions

6.1 TCP Applications

Our experience is primarily limited to some of the IPv6
server/client inetd programs available from kame : in-
etd, tftp, ftp, rlogin, rsh, and telnet, and
auth, although we also worked successfully with IPv6
ports of ssh and sendmail as well as with a web
browser mozilla and a web proxy wwwoffled. Ex-
cept for auth[Joh93], the TCP applications all appear
to run reasonably well, unmodified, with the enhanced
TARP address kernel. The UDP client/server pairs also
ported well, though with some mild restrictions concern-
ing the server’s responding address.

The problems encountered by the unmodified applica-
tions depend variously upon the session layer proto-
col, the application layer protocol (auth), and whether
the application uses address based authentication (e.g.
rsh and rlogin). Cognizant of the terrible secu-
rity properties of address based authentication [Bel89],
we question the wisdom of bothering to fix rsh and
rlogin, especially with ssh working, but their func-
tionality can be restored with modest DNS adaptations
discussed in Section 7.3. We have not performed ex-
haustive testing. (We do note that ssh [Ylo96] can use
cryptogrpahically-protected name based authentication;
similarly, rlogin et al. are secure when protected by
IPsec [KA98]. If use of such protocols is considered de-
sirable, we may need to reopen this issue.)

Of the TCP applications, ssh, ftp, and telnet,
sendmail, and ssh appear to function normally with
the modified kernel, while rsh and rlogin both suffer



mildly from authentication problems already described.

The auth server presents insurmountable problems,
mainly because its poor interaction with TARP address-
ing. Consider a server installation wishing to fire an
Ident query to a TARP client’s auth server about a con-
nection coming from, say, Subnet Prefix:Ethernet Ad-
dress:pgid . Ident queries consist only of the port
numbers; the query addresses are implied by the source
and destination address of the queries. The querying
host has two choices for an address to query, neither of
which work. Querying the Subnet Prefix:Ethernet Ad-
dress:pgid will fail, as there will be no server on the
process group address. Querying the server address,
Subnet Prefix:Ethernet Address:0 yields a null result,
as the connection does not originate from that address.
This failure seems a small loss, as the quality of the
information returned from the auth server has always
been greatly disparaged (c.f.[CB94, GS96], and even its
defining RFC [Joh93]). As a workaround, client instal-
lations feeling an obligation to reply to Ident queries
should have little trouble hacking a small Ident server
into client applications, so that the application itself
replies to Ident queries on its process group address.
Of course, such an implementation would require a se-
tuid helper program.

6.2 UDP Applications

By restricting UDP clients and servers to asking only
for services and responding to requests (respectively)
from an interface’s designated server address, then all
the kame/BSD UDP client/server applications work cor-
rectly, unmodified. We wrote simple socket clients to
communicate with inetd’s built-in servers, and (except
for auth) succeeded with both the TCP and UDP ver-
sions of: time, echo, daytime, and chargen.

We should distinguish that our UDP clients used un-
connected UDP sockets when communicating with the
built-in servers. When requesting service from a valid
address outside the TARP Family, the clients executed a
sendto followed by a read. Following the rule that
processes first reading then writing sockets are servers,
the server responded from its Subnet Prefix:Ethernet Ad-
dress:0 address, which the client successfully read from
its unconnected socket.

Had we instead used a client socket connected to the
valid non-TARP address where the UDP service request
was sent, the UDP client server transaction would have
failed when the reply returned from the server address.

This problem with connected sockets is not isolated to
the modified kernel, but also exists when interacting with
multihomed Berkeley-derived UDP servers [Ste90, pp.
219–220]. Under BSD, the server is only guaranteed to
reply from an address chosen from the same interface as
the contacted server address. The server can reply with
an address other than the one contacted by the client (but
on the same interface) and a connected UDP socket will
fail to read the server’s reply.

6.3 ICMPv6

Some network services are bound to the existence of an
IP address, rather than to a specific port number. For
example, ICMP messages are received by a host, rather
than by a specific process. How should messages sent to
TARP addresses be treated?

Our primary guiding principle is that of the virtual ma-
chine, though for implementation reasons we cannot al-
ways follow this. Thus, a “ping” message sent to a TARP
address should be replied to, because a real machine
with that address would respond.

Some ICMP messages create state on the receiving host.
For example, ICMP Redirect changes the local routing
table. Given the security risks posed by this message
[Bel89], it would be nice if these changes could be re-
stricted to the particular process group to which the mes-
sages were addressed, but that would require substantial
kernel changes. Furthermore, there are distinct advan-
tages to making certain state information global, such as
that distributed by Path MTU [MDM96]. Further work
is needed in this area.

7 Network Interaction

7.1 Firewall Interaction

TARP was designed for firewalls, with the goal of pro-
viding a mechanism for firewalls to make sensible secu-
rity decisions without following application layer proto-
cols. The resulting firewall interactions are intended to
be straightforward and simple. The main precept is to
use address based filtering after an initial authorization.
For a connection based protocol like TCP, this means
port information need only be examined at connection
establishment.



For outbound data, the firewall only needs to examine
the outbound destination port, determine whether the
originating address belongs to a family of TARP ad-
dresses, and know whether the protocol involved uses
auxiliary data connections involving other ports. As-
suming it approves the protected client’s transaction and
the underlying protocol requires dynamic port negotia-
tion, the firewall simply permits any incoming traffic to
that address, regardless of port. The firewall no longer
needs to know any protocol details; it simply needs to
know that the protocol involves secondary channels. For
services using only fixed ports, the firewall can filter tra-
ditionally.

For service requests originating from outside the pro-
tected bastion, the firewall typically would reject all re-
quests for the services of an address other than a desig-
nated server address. For authorized services, the fire-
wall permits packets to flow freely between a server ad-
dress and the client outside. For example, an FTP server
host administratively configured to provide no other ser-
vices outside the firewall would reject all inbound con-
nection attempts and UDP packets other than those to the
FTP server port. Following a successful connection, out-
bound packets to the client from Subnet Prefix:Ethernet
FTP Server Host:0.* are freely allowed between the ap-
proved server and client.

The firewall can use several approaches to revoke au-
thorization. TCP connections are easiest: If the packet
triggering authorization comes from a TCP connection,
the firewall simply disallows (pending possible future
authorization) packets between the two addresses when
all related connections (as determined by address) termi-
nate. Additionally, and more appropriate for UDP and
ICMP, a simple timer mechanism can revoke authoriza-
tion some number of minutes after the last use of an ad-
dress. Finally, a protected host can explicitly release an
address, upon process group termination.

Having a host communicate its release of an address pro-
vides the firewall the best general understanding of when
to terminate authorization, but it requires the protected
host to know how to reach its firewall(s). The best con-
trol exists in situations where all relevant firewalls are
either embedded in the host (like a Distributed Firewall
[Bel99]) or or share the same link layer and are able to
see the link local ICMPv6 broadcast as a result of the
host leaving the Solicited-Node multicast address. Here,
the firewall either knows or has an inkling of the address
being removed at process group termination. The em-
bedded firewall can simply de-authorize the canceled ad-
dress from within the kernel, while the link local firewall
will need to match the Multicast Listener Done message

to its authorized addresses, and cancel upon determining
their unreachability.

For installations where routers lie between the protected
host and the relevant firewall, hosts wishing to commu-
nicate address revocation will need more complex inter-
action mechanism with their firewalls.

Using a traditional proxy firewall to protect hosts with
TARP addresses works as before, but will require some
flexibility in configuration to accommodate the large
number of addresses that will be coming and going. For
example, certain outbound filter rules will need to apply
for Subnet Prefix:Ethernet:* where before they perhaps
pertained only to a single address per host.

Note well that clients are usually well protected, even if
the firewall is slow revoking authorization. This is be-
cause when a process group terminates, its correspond-
ing address is scrubbed from the client’s interface, so
even if the firewall is tardy blocking the inbound pack-
ets, they fall on deaf ears when reaching the host. Any
nefarious or spurious inbound packets to unconfigured
addresses should ultimately die an unconsumed death.
This is the fundamental reason why TARP-based hosts
can simplify firewalls.

Because we use only the initial address and port of a con-
nection, we have prevented new application protocols
from obsoleting otherwise adequate firewall software.
Instead of requiring complex (and possibly buggy and
insecure) new application protocol-aware software to be
written and installed in the firewall, to keep up with new
application protocol developments, the firewall adminis-
trator need only know what port the service uses to start
its transactions and filter accordingly. Thus, only minor
firewall configuration changes will accommodate a large
class of new, unforseeable applications. (This work does
not discuss application-specific audit trails or intrusion
detection system events that an application-aware fire-
wall may collect today.)

7.2 Router Interaction

At one level, routers are not affected by TARP addresses.
They will see an IP address for which they have no cor-
responding link-layer address cached; accordingly, they
will resort to the Neighbor Discovery Protocol [NNS98],
in normal fashion. But TARP-aware routers and proto-
cols can do better.

Widespread use of TARP would require considerably



more storage on routers for link-layer addresses. But
this set of IP addresses all share a common prefix and a
common link-layer address. Accordingly, routers could
employ a single mapping of prefix to link-layer address.
Unfortunately, that is not supported by NDP. If neces-
sary in a given environment, this could be faked by hav-
ing a host pretend to be a stub router; however, this
would require the host to participate in routing proto-
cols, which is generally considered to be a bad idea. A
better solution would be to extend NDP to handle host
address prefix lengths.

7.3 DNS Interoperation

As evident in the discussion concerning rlogin and
rsh, TARP Addressing encounters problems interact-
ing with DNS. Of particular concern is the dubious prac-
tice of so-called “double-reverse lookups” (cf. [ZCC00]
and [GS96]) where a DNS client attempts address based
authentication by first looking up the hostname for an
IP address and subsequently checking the IP address(es)
for that hostname, requiring a match to proceed. But for
double-reverse lookups, most dynamic address clients
would probably work happily by simply registering their
server address with the appropriate name server; a wild-
card PTR record would yield the same name for all pos-
sible TARP addresses.

IPv6-to-hostname lookups pose no problem, as the DNS
specification for IPv6 [TH95] provides the necessary
wildcarding. For example a name server could asso-
ciate a wildcard to a PTR record for, say, *.12-nibble
Ethernet Address.16-nibble Subnet Prefix.IP6.ARPA (or-
dered appropriately) and correctly return the hostname
for a host’s Process Group Dynamic Addresses. Another
possibility is to query the host directly with an ICMPv6
FQDN query, as described in an IETF draft “IPv6 Node
Information Queries” [Cra99] and already implemented
by kame.

Hostname-to-address queries are more problematic. A
standalone name server presumably has no information
about a host’s active addresses, and absent refinements
in the name server/resolver software and protocols, a
complete reply to a hostname-to-address query would
consist of all

� ���
Process Group Dynamic Addresses.

Unfortunately, simply listing a host’s server address is
insufficient, as a double-reverse lookup will find incon-
sistency when comparing a client’s dynamic address to
the its server address.

Three straightforward solutions to the basic problem

come to mind. The simplest treats a Process Group
Dynamic Address client as a domain. Its parent DNS
server delegates authority to the client and simply refers
queries to the clients themselves for final resolution. The
clients can then run a pared down name server which re-
sponds with the appropriate set of addresses for a name-
to-address query.

In another method, the TARP clients use the DNS UP-
DATE message [VET

�
97] to inform the relevant name

servers of their evolving address state. It is not clear how
well this would work in practice, as problems could arise
in situations where the querying agent has a faster path
to the name server than the TARP client. A clever TARP
client could conceivably delay outgoing datagrams from
a new TARP address until a DNS update could be veri-
fied, but this might prove unnecessarily cumbersome.

A third method embeds the process group portion of
the address into a synthetic hostname and places the
corresponding

� ���
possible hostnames as entries in the

nameserver database. For example the fictitious TARP
client host foo.bar.com would have name server entries
for 0%foo.bar.com - 65535%foo.bar.com, where we use
the % to mean a meta-character (determined locally
by bar.com) denoting that the hostname uses Process
Group Dynamic Addressing. The name server would
conceptually have

�����
PTR records mapping each Dy-

namic Address family member to its corresponding ex-
panded hostname (e.g. pgid%foo.bar.com) The cross-
check query invokes an address-to-hostname query
for foo.bar.com Subnet Prefix:foo.bar.com Ethernet Ad-
dress:pgid, which eventually returns pgid%foo.bar.com;
this is followed by a name-to-address query about
pgid%foo.bar.com, which will provide a consistent
check if the name servers are configured correctly.

This third method scales poorly, taxing the DNS servers
serving TARP client domains by forcing them to store
� ���

records per client. While some of this can be dealt
with by “syntactic sugar”—the servers need not store
all

� ���
records, but can simply generate them on the

fly—we are left without a canonical name for the host.
This affects host configuration files (/etc/hosts,
.rhosts, etc.), email, and other services that require
one true name for each machine. (In a sense, this is car-
rying our virtual machine metaphor too far.)

Finally, we note that the problem only arises because
hosts use name-based authentication, and hence need the
extra protection of the double-reverse lookup. If this
practice were to be abandoned—and we strongly sug-
gest that that be done in any event—the name-to-address
lookup could be omitted, thereby eliminating the prob-



lem.

8 Implementation Details and Perfor-
mance

8.1 Implementation

Our testbed implementation consists of a handful of
subroutines and about 400 lines of C code inside the
kame/FreeBSD 3.4 kernel. The kernel enhancements
appear to port easily to the other BSD families kame
supports (NetBSD, BSD/OS and OpenBSD). The essen-
tial code flow remains unchanged, and the bulk of the
software changes sit inside a single kame subroutine,
in6 selectsrc (basically an IPv6 re-work of parts
of the function of in pcbconnect [WS95]), called
when assigning a local IPv6 address to a protocol control
block.

The kame/FreeBSD code has a parameter for the max-
imum process identifier, PID MAX, which comes con-
figured at 99999. Our implementation reduces this maxi-
mum to 65535 to insure the resulting process group iden-
tifiers fit entirely into the corresponding two bytes of the
TARP address.

Given the uniqueness properties implicit the Ethernet ad-
dress based addresses, the implementation does not per-
form Duplicate Address Detection [TN98] when adding
a TARP address to an interface. This enhances per-
formance by preventing unnecessary delays when con-
figuring an interface with a new address, and yet still
complies with the RFC’s notion that addresses based
on unique interface identifiers need only check for du-
plicate addresses at initialization ([TN98], Section 5.4).
When bringing up an interface, the kame IPv6 imple-
mentation configures it with a proper Ethernet-derived,
EUI-64 compliant link local address. This address re-
ceives proper duplicate address detection, and so any
(presumably relatively rare) problems caused by locally
duplicate Ethernet addresses should be caught when the
interface goes up.

Regrettably, the IPv6 Address Autoconfiguration Stan-
dard [TN98] lacks a sub-net mask capability that would
allow hosts to reserve a range of addresses under a mask.
Were such a facility available, a TARP host could make
a single duplicate address detection query to reserve a
whole range of an address family with a single query. In
this case, hosts would be freed of needing to use the Eth-

ernet address-based connection for its implied unique-
ness properties, and could still safely reserve a range of
without fear of address collisions. Local administrators
would then have the freedom to assign the host address
portion according to their own rules, and could conceiv-
ably use even larger address families.

We could, in principle, do duplicate address detection
for each TARP address. However, the overhead, and par-
ticularly the 1-second timeout, are prohibitive.

There is some conflict between this scheme and the IPv6
privacy extension standard [ND01]. The easiest solution
is to use the suggested algorithms to generate just a re-
placement for the MAC address portion of the address,
rather than the full low-order 64 bits.

8.2 Performance

In our tests thus far, there has been virtually no impact
on performance. It is clear, however, that current kernel
algorithms will not scale well. The list of IP addresses
per interface is kept on a linked list, which implies a lin-
ear search for each packet received. Clearly, this is in-
adequate if there are many process groups active at any
time. The obvious alternative is to use a more sophisti-
cated data structure, though it would have to be one that
permitted speedy additions and deletions.

An alternative would be to compare the prefix of the ad-
dress in incoming packets to the base address of the in-
terface, and use existing speedy look-up mechanisms to
ascertain if the associated process group exists. That is,
assume that a packet is destined for a machine if the base
address is valid and the process group exists, rather than
checking if such a process group has actually performed
network operations.

There is one other area of some concern. As noted ear-
lier, for each new TARP address allocated it is neces-
sary to join the appropriate Solicited-Node multicast ad-
dress group. For some hardware designs, it is necessary
to load the group address onto the controller chip. De-
pending on the chip and driver design, this may be an
expensive operation.



9 IPSEC Interaction

Successful IPSEC interaction essentially depends on the
ability of hosts running TARP addressing to conduct the
necessary key exchanges. Fortunately, ISAKMP and
IKE provide an adequate framework to support TARP.
A simple solution uses either of ISAKMP’s [Pip98] ad-
dress range or subnet identification payloads to desig-
nate that the ISAKMP peer negotiating the key exchange
is the address range or subnet of the TARP Family. Us-
ing keys negotiated for the address family thus permits
processes to use IPSEC in conjunction with TARP ad-
dresses.

Depending on the threat model, installations may wish to
eschew IKE’s Base Quick Mode [HC98, p. 16]. Lacking
perfect forward secrecy, Base Quick Mode admits the
possibility that an authorized host process able to obtain
its keying material can use that knowledge to determine
keying material for other processes, including those be-
longing to other users. The Quick Mode key exchange
payload option [HC98] prevents this problem by provid-
ing the necessary perfect forward secrecy at the cost of
an additional exponentiation. Alternatively, use of cryp-
tographically strong random number generators, ciphers
resistant to chosen-plaintext attacks, and suitable crypto-
APIs (i.e., those that will not, under any circumstances,
disclose a session key to an application) can prevent this
attack.

10 Interaction with Other Systems

At this point in the evolution of IPv6, it would not be
acceptable to introduce a new scheme that would break
compatibility with existing systems. For the most part,
we have not done so.

Servers do not notice anything different, with the possi-
ble exception of contacts from many more clients. That
depends on whether the server is noting addresses or
names, and in the latter case, on what mechanism is se-
lected for address-to-name resolution.

Servers that do rely on host names for authentication
may have problems. As noted, we recommend that that
practice be abandoned in any event; we do not consider
its difficulties to be a disadvantage of our scheme.

11 Security Implications

In some sense, the simplicity of the security enabled de-
pends on the assortment and type of network services a
protected host needs to provide. TARP addressing offers
simpler, more robust protection for hosts acting primar-
ily as clients rather than servers. This does not mean
that many server configurations cannot receive adequate
protection using the method and a compatible firewall,
rather that servers will need to be much more careful
about their configuration to achieve results comparable
to hosts acting entirely as clients.

11.1 Client Security

Clients offering no network services can be well-
protected by TARP addressing and an accompanying
firewall. Such clients will also operate reasonably unim-
peded by their firewalls. The main observation is that
absent user-directed activities, the typical client provid-
ing no network services (a dedicated workstation, for ex-
ample) could be protected from all TCP and UDP data-
grams from outside the protected bastion. It thus shares
many of the security features of the proverbial uncon-
nected host. Yet if some user directed activity makes it
necessary to leave the protected enclave (a user wishes
to run ftp to retrieve a file from the Internet for ex-
ample), sufficient connectivity is enabled to allow the
user to conduct transactions, unimpeded by tight secu-
rity policies concerning connectivity to the outside. Fur-
thermore any vulnerability created by the FTP client’s
network activity terminates with the FTP client process.

11.2 Server Security

For services using an evolving set of ports, the princi-
pal filtering domain has shifted from ports to addresses.
Many servers are programmed with wildcard listening
sockets, and the ensuing address promiscuity of these
sockets poses severe challenges for address based filter-
ing. The problem with protecting servers is that after an
initial connection, the server’s firewall no longer follows
the ports of the packets coming and going to the server.
If an initial connection is permitted from a host address
to a server, then all subsequent packets between the two
addresses will flow freely. This can result in inadequate
control, as shown in the following example.

Again, consider a server that wishes to permit incom-
ing access to ftpd services from the network, but not



telnetd. A devious client could start an FTP ses-
sion to the server, which the server firewall permits, and
once the firewall enables the rule

�
Devious Host.* ���

Server:0.* � the client can now connect to the server’s
telnet port from the network in violation of the in-
tended security policy.

One obvious solution to this problem is to use an em-
bedded server access control mechanism (something like
TCP Wrappers [Ven92]) to regulate what will be served
to the outside on the Ethernet:0 address. After breezing
by the firewall with an attempted telnet request, the
previous paragraph’s devious client could be refused a
connection to telnetd according to its source address.
Similarly, the inetd super-server has a address option
that will bind the server to a particular address, and this
should provide adequate control for services running un-
der inetd.

A simpler approach would be for the firewall to continue
to monitor connection attempts to well-known services
and filter accordingly. This deviates from the concept
of filtering solely based on address, but not necessar-
ily to the point of continuously following application
level protocols. In our example, connection attempts
to all privileged ports other than the ftp ports would be
blocked at the firewall, and the ftp could proceed.

Clearly, relying solely on a packet filtering approach to
provide server security becomes more unworkable as the
variety of externally-accessible services grows. As the
number of services increases, sensible packet filter rules
become more difficult to specify, and the likelihood of
consistency problems caused by interaction effects in-
creases correspondingly. This is an old and familiar fire-
walling problem, traditionally best solved with a mix-
ture of strategies combining packet filters and proxies.
We make no claims that TARP Addressing solves any
of these complexities, only that there should be cases
where firewalls can use the addressing scheme to pro-
vide equivalent security without following application
level protocols.

12 Limitations

Server facilities using a multi-homed server strategy to
serve a variety of domains from the same host [Ste90,
p. 93], may not be a good match for TARP’s preference
to serve from a single fixed address per interface. At
the least, they seem incompatible with inetd’s wild-
card listening sockets and would seem better off if the

relevant servers bound only to the the address they are
serving. This is more a limitation of BSD, rather than
TARP addressing, per se.

The security concepts make no contributions to solving
problems of inside threats, but this is a recognized limi-
tation of firewalls in general ([Cha92], [CB94]).

Our implementation cannot support more than a single
TARP address per interface, and doing so would require
extensive kernel modifications. This is for two reasons.
First, when faced with an outgoing address decision, the
kernel already knows which interface to use, and the im-
plementation determines the Ethernet address of the out-
going interface for use in address computation. Even if
we had an extra, valid Ethernet address to use, it would
be difficult for the kernel to determine when to assign it.
The second set of problems is that all of the problems of
multi-homed BSD servers described above would occur.

13 Applicability to other Operating Sys-
tems

Although our implementation was built on the UNIX no-
tion of “process groups”, it is clearly not necessary to do
it that way. Two preconditions are necessary for a sub-
stitute mechanism.

First, and most obvious, there has to be some way to
generate a 16-bit number not currently in use. Clearly, a
counter and an in-use list will suffice. The harder prob-
lem is somehow assigning this number to a program or
group of related programs. All “related” programs—we
define “related” as meaning “they would expect to have
the same IP address”—must somehow be linked to this
number. The notion of a process group in UNIX captures
these semantics quite well; the fact that process groups
have the right sort of number is simply a happy accident.

14 Conclusions

We have shown TARP to be a useful new possibility
made available by IPv6’s Addressing Architecture. Us-
ing TARP addresses greatly simplifies firewalling de-
cisions for the machines protecting either clients or
servers. Furthermore, by partitioning the address space
into client and server addresses and only configuring
client network addresses as needed by client activity, it



looks to provide particular advantages for hosts acting
mostly as network service consumers.

15 Acknowledgments

A number of people involved in the IETF’s IPv6 ef-
fort (Steve Deering, Thomas Narten, Erik Nordmark,
Keith Moore, and others) provided valuable advice. Jon
Crowcroft noted that similar facilities could be built on
top of Linux’s IP Address Masquerading facility. Also,
great thanks are due to John Ioannidis for helpful and
generous use of the computer laboratory facilties he
maintains. We gratefully acknowledge the code, excel-
lent assistance and cheerful bug fixes provided by the
kame project.

References

[Bel89] Steven M. Bellovin. Security problems in
the TCP/IP protocol suite. Computer Com-
munications Review, 19(2):32–48, April
1989.

[Bel94] S. Bellovin. On many addresses per host.
Request for Comments 1681, Internet Engi-
neering Task Force, August 1994.

[Bel99] Steven M. Bellovin. Distributed firewalls.
;login:, pages 39–47, November 1999.

[CB94] William R. Cheswick and Steven M.
Bellovin. Firewalls and Internet Security:
Repelling the Wily Hacker. Addison-Wesley,
Reading, MA, 1994.

[Cha92] D. Brent Chapman. Network (in)security
through IP packet filtering. In Proceedings
of the Third Usenix UNIX Security Sympo-
sium, pages 63–76, Baltimore, MD, Septem-
ber 1992.

[Cra99] Matt Crawford. IPv6 node information
queries, 1999. Work in progress.

[GS96] Simson Garfinkel and Gene Spafford. Prac-
tical Unix and Internet Security. O’Reilly,
Sebastopol, CA, 1996.

[HC98] D. Harkins and D. Carrel. The inter-
net key exchange (IKE). Request for
Comments 2409, Internet Engineering Task
Force, November 1998.

[HD98] R. Hinden and S. Deering. IP version
6 addressing architecture. Request for
Comments 2373, Internet Engineering Task
Force, July 1998.

[Ins97] Institute of Electrical and Electronics Engi-
neers. Guidelines for 64-bit global identifier
EUI-64 registration authority, 1997.

[Joh93] M. St. Johns. Identification protocol. Re-
quest for Comments 1413, Internet Engi-
neering Task Force, January 1993.

[KA98] S. Kent and R. Atkinson. Security architec-
ture for the internet protocol. Request for
Comments 2401, Internet Engineering Task
Force, November 1998.

[KAM] http://www.kame.net.

[MDM96] J. McCann, S. Deering, and J. Mogul. Path
MTU discovery for IP version 6. Request for
Comments 1981, Internet Engineering Task
Force, August 1996.

[ND01] T. Narten and R. Draves. Privacy exten-
sions for stateless address autoconfiguration
in IPv6. Request for Comments 3041, Inter-
net Engineering Task Force, January 2001.

[NNS98] T. Narten, E. Nordmark, and W. Simpson.
Neighbor discovery for IP version 6 (ipv6).
Request for Comments 2461, Internet Engi-
neering Task Force, December 1998.

[Pip98] D. Piper. The internet IP security domain
of interpretation for ISAKMP. Request for
Comments 2407, Internet Engineering Task
Force, November 1998.

[Ste90] W. Richard Stevens. UNIX Network Pro-
gramming: Networking APIs: Sockets and
XTI, volume 1. Prentice-Hall, Englewood
Cliffs, NJ, second edition, 1990.

[TH95] S. Thomson and C. Huitema. DNS exten-
sions to support IP version 6. Request for
Comments 1886, Internet Engineering Task
Force, December 1995.

[TN98] S. Thomson and T. Narten. IPv6 state-
less address autoconfiguration. Request for
Comments 2462, Internet Engineering Task
Force, December 1998.

[Ven92] Wietse Venema. TCP WRAPPER: Network
monitoring, access control and booby traps.
In Proceedings of the Third Usenix UNIX



Security Symposium, pages 85–92, Balti-
more, MD, September 1992.

[VET
�

97] P. Vixie, Ed., S. Thomson, Y. Rekhter, and
J. Bound. Dynamic updates in the domain
name system (DNS UPDATE). Request for
Comments 2136, Internet Engineering Task
Force, April 1997.

[WS95] Gary R. Wright and W. Richard Stevens.
TCP/IP Illustrated: The Implementation,
volume 2. Addison-Wesley, Reading, MA,
1995.

[Ylo96] Tatu Ylonen. SSH – secure login connec-
tions over the internet. In Proceedings of
the Sixth Usenix UNIX Security Symposium,
pages 37–42, July 1996.

[ZCC00] Elizabeth D. Zwicky, Simon Cooper, and
D. Brent Chapman. Building Internet Fire-
walls. O’Reilly, Sebastopol, CA, second
edition, 2000.


