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ABSTRACT: Accurate forecasting of annual national coconut production (ANCP) is important for national agricultural
planning and negotiating forward contracts. Climate and the long-term trends (attributed to ‘technology’) are major factors
that determine ANCP. The effect of climate on ANCP of the following year was studied for the seven agro-ecological regions
(AER’s) in the principal coconut growing areas for the period 19502002. Climate was studied based on seasons aggregated
by the monsoon calendar and by quarters that are consistent with the agricultural calendar. The use of quarterly seasons
explained more of the variability of ANCP than the use of monsoon based seasons. January–March rainfall in all AER’s
and July–September rainfall in the wetter regions are positively correlated with the ANCP (p < 0.005). The technology
effect was estimated using a log–linear trend model. The regression model integrates both climate and technology effects
developed to predict ANCP with high fidelity (R2 = 0.94). The climate effect was estimated by regressing production
data that had been de-trended to remove the technology effects with quarterly rainfall in the year prior to harvest. The
most significant predictors were found to be the quarterly rainfall from the AER’s in the coconut growing regions that
are designated as wet and intermediate. Representative rainfall from each quarter was used in a regression model with
corrections for the technology effect. The correlation between observed and predicted values of the ANCP was 0.83
(p < 0.001). The prediction of ANCP for 2003 and 2004 gave errors of only 6.5 and 7.0%. The estimated value of ANCP
for 2005 is 2715 million nuts, which is 12% higher than the mean. The lead time of the prediction extends to 15 months
but it may be extended with the use of seasonal climate forecasts to 24 months. Copyright  2007 Royal Meteorological
Society
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1. Introduction

Coconut is among the important tree crops of the
humid tropical regions. The global annual production of
coconut is around 52 billion nuts (Asian–Pacific Coconut
Community, 2003). Sri Lanka ranks fourth in terms of the
contribution to the world coconut production (6%) and
land extent under coconut (Peiris, 2004) after Indonesia,
India and Philippines. In Sri Lanka, Coconut is grown as
a plantation crop across seven of the 24 agro-ecological
regions (AERs) (Mapa et al., 1999).

The annual national coconut production (ANCP) in Sri
Lanka, between 1950 and 2003 varied from 1948 million
nuts in 1973 to 3039 million nuts in 1986, with a
mean of 2427 (Peiris, 2004). Coconut contributed 1.3%
of Sri Lanka’s GNP in 2002 (Central Bank, 2003).
Coconut provides about 22% of the daily calories of
the Sri Lankan population and is second only to rice
in providing nutrition. Sri Lanka’s annual per capita
consumption of coconut of 95–100 nuts is the highest in
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the world (Ministry of Plantation Industries, 2003). The
nuts remaining after local consumption are used for fresh
nut export and to manufacture products such as desiccated
coconut, coconut oil, copra, coconut milk powder and
coconut milk cream.

The coconut is a perennial crop and it has a prolonged
reproductive phase of 44 months from the initiation of
the inflorescence primordium to full maturity of the
nuts. The inflorescence is enclosed in a spathe and
includes both male and female flowers. Inflorescences are
produced by the coconut palm at the rate of nearly one
a month. The pre-fertilization phase from the initiation
of the flower primordium to emergence accounts for
32 months. The fertilization and post-fertilization phases
(the development of female flowers into nuts) takes
12 months during which period the spathe is open
(Menon and Pandalai, 1958). Weather affects all stages of
the long development cycle extending to 44 months and
thus there is likely to be extended predictability based on
climate variability.

For a given farm, when other external factors are
non-limiting; rainfall, temperature and relative humidity
during February, June, July, September and December in
the year prior to the harvest are the major factors that
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influence the yield (Peiris and Thattil, 1998). Location-
specific predictive models to predict annual coconut yield
have been developed using climatic variables alone (e.g.
Nambiar, 1969; Reynolds, 1979; Mathew et al., 1991;
Peiris et al., 1995; Peiris and Thattil, 1998). Rainfall is
the principal climatic variable that affects nut production
(Peiris and Thattil, 1998). The influence on ANCP is
primarily from the rainfall in the year preceding the
harvest rather than the coincident year. Because of
the climate variability across AER’s, it is necessary to
consider rainfall in each individual AER and season
rather than annual total Sri Lanka rainfall in devising
a prediction scheme (Abeywardena, 1968; Peiris et al.,
2000; Peiris, 2004).

The major factors that determine the ANCP are
(1) climatic variations in the principal coconut grow-
ing regions, (2) use of fertilizer and other recommended
agronomic practices (3) intensity of pest and disease con-
trol and (4) area of bearing coconut (Peiris and Thattil,
1998). Annual data for the last three variables are not
available at the national or regional scale. However, the
combined influence of fertilizer use, control of pest and
diseases and the use of new technology on ANCP has to
be considered in addition to the influence of climate.

Advance knowledge of coconut production at national
and regional scales is useful for planning within the
industry, for allocation of nuts among various sectors
and for agreements of forward contracts with foreign pur-
chasers. The official ANCP prediction for Sri Lanka is
being provided by the first author and colleagues at the
Coconut Research Institute using an autoregressive inte-
grated moving average (ARIMA) model (Box and Jenk-
ins, 1981). The correlation coefficient between observed
and modeled ANCP was R = 0.73.

ARIMA models are the most general class of models
for forecasting time series data where there is a significant
serial correlation. The autocorrelations of ANCP years
were significant (p < 0.05) with a lag of 1, 3 and 4 years
and this relationship may be exploited to predict the
yield in the subsequent year with some skill (Peiris,
2004). This extended relationship could be due to the
long (44 months) development cycle of a coconut bunch.
Unlike with use of regression models, this method does
not need any external variables as predictor variables.
The main disadvantage of this model is that it does not
explicitly account for the variability of climate.

In this paper, we characterize the impact of seasonal
climate variability of ANCP and develop a national
coconut production forecast model that incorporates key
climatic variables in addition to a model that captures the
influence of ‘technology effect’.

2. Data and methods

2.1. Agro-ecological regions

AERs are demarcated based on climate, soils and topog-
raphy (Panabokke, 1996). Sri Lanka is divided among
wet, intermediate and dry zones based on annual rainfall

and as low, mid and up country based on elevation. The
AERs use these two variables as primary classifiers with
the first letter denoting W, I or D to indicate the climatic
zone and the second letter (L, M, U) to indicate the ele-
vation (Figure 1). Each of these regions is then further
classified based on soils and the seasonal distribution of
rainfall.

2.2. ANCP

The ANCP from 1950 to 2003 was obtained from the
Coconut Development Authority of Sri Lanka (Ministry
of Plantation Industries, 2003). The temporal variability
of the ANCP is shown in Figure 2. Along with the inter-
annual variability, this figure shows significant trends
such as a declining trend between 1963 and 1977,
followed by an increasing trend to the present.

Coconut is cultivated over approximately 394 836 ha
in Sri Lanka. A large fraction of the coconut plantations
(77%) are located in seven AERs (Figure 1). The approx-
imate distribution of planted extent by AER is estimated
as IL1–20%, IL3 − 13.8%, DL3 − 11.7%, DL5 − 5.3%,
WL4–11.4%, WL3 − 10.9% and WL2 − 3.9%. How-
ever, annual nut production is available only by national
level, but not by AER level or administrative district level
in Sri Lanka. Given the longevity of the coconut planta-
tion, there is limited year-to-year fluctuation of the area
under cultivation and the distribution of coconut produc-
tion among the different AER’s.

Figure 1. The agro-ecological regions (AER’s) that include significant
coconut cultivation are shown in the map along with the rainfall stations

that were used.
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Figure 2. The annual national coconut production (ANCP) in Sri Lanka. The horizontal line indicates the mean of the base period from 1961 to
1990.

Table I. Rates of annual increase for each climate variable (significant at least p < 0.05) in principal coconut-growing regions.

AER Rainfall (mm) TMAX (°C) TMIN (°C)

mean SD Trend mean SD trend mean SD trend

IL1 1662 279 −3.85∗ 31.5 0.6 0.011∗ 23.1 0.5 ns
IL3 1380 248 −5.16∗ n/a n/a – n/a n/a –
WL3 2224 438 −6.76∗ 33.3 0.6 0.019∗ 23.7 0.3 ns
WL4 2435 451 −7.66∗ 29.3 0.3 0.018∗ 24.2 0.4 0.013∗
WL2 2287 555 −7.24∗ n/a n/a – n/a n/a –
DL3 1193 307 ns 31.6 0.5 0.027∗ 24.0 0.3 0.021∗
DL5 1033 264 ns 30.3 0.3 0.019∗ 24.2 0.2 0.013∗

(n/a, data not available; *, significant at least p = 0.05; ns-not significant at p = 0.05).

2.3. Climate data

Daily rainfall data (1948–2003) from the seven principal
coconut growing AERs (Table I) were acquired for the
stations within AER as shown in Figure 1. Daily data
were quality controlled and missing data were estimated
using a single moving average/single exponential smooth-
ing technique (Box and Jenkins, 1981). Mean annual
daily maximum air temperature (TMAX) and minimum air
temperature (TMIN) were obtained for each AER except
IL3 and WL2. Temperature data were not available in
those two AERs.

2.4. Seasons

Sri Lanka receives rainfall throughout the year, with a
bimodal seasonal distribution. The seasonal peaks vary
by region with the peak of the main rainfall season
occurring in October, November or December and the
subsidiary peak occurring in April, May or June. In
the southwest hill slopes of the island there is heavy
rainfall from July to September as well, but in the rest
of the island this period along with January to March
may be prone to droughts. On account of the regional
and seasonal variability in rainfall, the demarcation of
seasons is not clear-cut. Meteorologists have classified
the annual cycle into four seasons consistent with the

seasons defined by the Indian Meteorological Department
(Bamford, 1922):

• Northeast monsoon (NEM) from December to Febru-
ary,

• First inter-monsoon (FIM) from March to April,
• Southwest monsoon (SWM) from May to September
• Second inter-monsoon (SIM) from October to Novem-

ber.

However, this is not consistent with the agricultural
seasons with respect to traditional rice cultivation and
harvesting which lasts from October to March (Maha)
and April to September (Yala). Recent work (Zubair,
2002, 2003) has shown that Sri Lanka’s climate, stream
flow and rice production show greater predictability
based on El Niño-Southern Oscillation (ENSO) when the
quarters are chosen to be consistent with the early and
late halves of the agricultural seasons. These predictions
were statistical based on ENSO indices derived from
the sea surface temperatures (SST) in the Pacific Ocean
either at the start of the season or during the season
in question. The use of Indian Ocean SST in the
predictions improves the skill of predictions (Zubair
et al., 2003).

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 28: 103–110 (2008)
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• Early Yala: April–June (AMJ),
• Late Yala: July–September (JAS),
• Early Maha: October–December (OND) and
• Late Maha: January–March (JFM).

The principal large-scale climate modes that influence
the rainfall over Sri Lanka are the ENSO (Zubair and
Ropelewski, 2006) and the Indian Ocean Dipole (Zubair
et al., 2003). El Niño typically leads to wetter anoma-
lies (from climatology) during October to December and
to drier anomalies during January to March and July to
August on average. La Niña typically leads to drier than
normal conditions during the months October to Decem-
ber and to wetter than normal conditions during July and
August. The positive Indian Ocean Dipole (warmer than
normal SST in the Arabian Sea and cooler than normal
SST near Sumatra) co-occurs frequently but not always
with El Niño. With a positive Indian Ocean Dipole, the
rainfall from September to December is enhanced and
with the negative dipole, the September to December
rainfall is diminished. All of these relationships are more
consistent with the quarterly seasons chosen as the first
and second half of each agricultural season rather than
the monsoon wind based seasons.

As a result greater predictability is obtained with the
quarterly seasons. On the other hand, the NEM season,
for example, combines months with increased rainfall
(December) and decreased rainfall (January to February)
with ENSO. Indeed, the SWM monsoon period from May
to September may mask important seasonal variability. A
correlation of May to June rainfall with July to September
rainfall for all of Sri Lanka between 1950 and 2000
shows a negative correlation of −0.15 which while not
statistically significant still suggests that the rainfall in
the early part of the season is, if at all, anti-correlated
with that in the later part of the season.

A further advantage in the use of quarterly seasons is
that seasonal climate predictions are provided for quarters
by forecasting centers (Goddard et al., 2004) and these
predictions shall be more easily incorporated into the
ANCP prediction.

We compare the predictability of ANCP using rainfall
obtained with both classifications of seasons in this paper.

2.5. Prediction of technology effect

In addition to the influence of climate effect, the use
of fertilizer, control of pest and diseases and the use
of improved management practices affect the ANCP.
As there are no data to estimate the latter factors
individually, we may attribute the long-term changes
to the combination of these and related factors, which
are referred to as the ‘technology effect’. There is no
theoretical basis for identification one functional form
to another for technology effect (Hansen et al., 1998).
Therefore, a suitable functional form may be chosen
which best captures the temporal variation of ANCP.

2.6. Integration of climate and technology effects

The historical yield series was considered to be com-
prised of multi-year trends that reflect change due to
technology and inter-annual anomalies from this trend
was attributed to seasonal changes in climate. The final
form of the model should consider the combination of
these influences. Both additive,

Yield = constant + technology effect + climate

variability effect + noise effect, (1)

and multiplicative functional forms,

Yield = constant + technology effect × climate

variability effect × noise effect, (2)

(Chatfield, 2000) for the decomposition of the time series
were tested.

A multiplicative model assumes that standard devia-
tion changes proportionally, or equivalently, coefficient
of variation is constant, with changing central tendency
associated with a trend. This would be the case if a
production trend were due entirely to the expansion of
an area under stationary climate and constant production
technology. In a multiplicative model, year-to-year vari-
ations can be interpreted as a percent deviation from the
trend. The additive model, on the other hand, treats depar-
tures from the trend in central tendency as differences,
and assumes that variability about the trend is constant.
An additive model would be consistent, for example, with
changing technology that increases yields by an annual
increment independently of weather.

2.7. Statistical analyses

The correlation analysis was first carried out between
ANCP and total rainfall of each seasonal component
(NEM, FIM, SWM and SIM for monsoon rainfall and
JFM, AMJ, JAS and OND for quarterly rainfall) sepa-
rately for each AER to identify the significant rainfall
variables.

Candidate models to predict ANCP were considered
based on the two formulations of the yield (Equations 1
and 2) and the two formulations of seasons. For each
candidate the set of rainfall predictors that were signifi-
cantly influential were selected by backward elimination
stepwise regression technique that starts with all rainfall
variables (Draper and Smith, 1966). This method han-
dles the co-linearity problem better than other stepwise
techniques. The most suitable model was selected based
on the magnitude of the adjusted R2 value (coefficient of
determination) and the range of errors of the predicted
ANCP.

The adjusted R2 statistic is calculated as Adj. R2 =
1 − [((n − 1)(1 − R2))/(n − p)] where n is the number
of observations used in fitting the model with intercept, p

is the number of parameters and R2 is the ratio between
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model sums of squares and total sums of squares (Draper
and Smith, 1966).

Once the best seasonal type model was identified, the
effect of climate was examined after removing the trend
attributed to the ‘technology effect’ from the original
data under two model formulations. Having identified
the better model out of the two models, residuals of the
selected model were evaluated for independence using
Durbin–Watson (DW) statistics, which is a common
procedure to test for serial correlations in regression
models (Draper and Smith, 1966). The model that best
fitted the ANCP for 1950–2002 was then used to predict
ANCP for 2003 and 2004.

3. Results and discussion

3.1. Trend in rainfall and temperature

The spatially aggregated annual mean values of the three
climate variables (rainfall, maximum air temperature and
minimum air temperature) of the seven AERs in principal
coconut growing areas and their annual rate of increases
are shown in Table I. The rate of increase was obtained
by fitting a simple linear trend model (y = a + bt) for
each data series separately. All the AERs except DL3 and
DL5 exhibited a significant decreasing trend in annual
rainfall (p < 0.05). All regions showed a significant
increasing trend for TMAX and a significant increasing
trend for TMIN was found only in WL4, DL3 and DL5.
The rate of increase was greater for TMAX than for TMIN

with the difference in the two trends being significant in
WL4, DL3 and DL5.

3.2. Use of monsoon seasons rainfall to predict ANCP

The distribution of monsoon seasonal rainfall is different
among AERs (Figure 3). Rainfall is lowest in the NEM
except in DL5. Rainfall is greatest during the SWM in
wet regions and during the SIM in other regions. Analy-
sis of ANCP and monsoon seasonal rainfall within each
AER showed significant correlations with rainfall logged
1 year prior to harvest (Table II). No significant corre-
lation was found between yield and monsoon seasonal
rainfall of the harvesting year. This confirms the impor-
tance of rainfall distribution in the preceding year for
the ANCP. In fact many authors (Gangolly, 1953; Abey-
wardena, 1955; Nambiar, 1969) claim that during the
44 months development cycle the effect of climate on
nut production is more significant after the spathe opens
because the coconut bunches are fully exposed to climate
during this period

NEM rainfall in all regions and SWM rainfall in
wet regions are positively correlated at significant levels
with ANCP (Table II). The influence of rainfall on
national coconut production in the coconut growing areas
during NEM and SWM is stronger than the influence of
rainfall during the intervening periods. The correlations
between ANCP and SIM rainfall are negative but not
significant. This is probably because rainfall in October
and November is generally much higher than the crops’
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Figure 3. Distribution of rainfall by monsoon seasons in the seven
agro-ecological regions in the principal coconut growing areas.

Table II. Correlation between ANCP and the monsoon seasonal
rainfall with rainfall lagging ANCP by at least a year.

AER NEM FIM SWM SIM

IL1 0.445∗∗∗ ns ns ns
IL3 0.381∗∗ ns ns ns
WL4 0.327∗ ns 0.299∗ ns
WL3 0.418∗∗ 0.292∗ 0.296∗ ns
WL2 0.355∗∗ ns 0.443∗∗ ns
DL3 0.385∗∗ 0.295∗ Ns ns
DL5 0.303∗ Ns ns ns

(∗ p < 0.05;, ∗∗ p < 0.01; ∗∗∗ p < 0.001; ns, not significant).

maximum water demand of 5 mm d−1 (300 mm for the
2 months). Rainfall above this critical value does not
benefit the tree.

The NEM rainfall and SWM rainfall shows high cor-
relation (p < 0.001) among the seven AERs. However,
these cross-region correlations were not significant for the
FIM and SIM seasons. The correlations may be weaker
as these seasons are only 2 months long. ANCP was not
significantly correlated with monsoon season tempera-
ture (maximum and minimum) of AER’s. Note, that the
significant association between coconut production and
temperature reported previously (Peiris and Thattil, 1998)
was for a specific plantation and for only the months
of June, July and December. There were no significant
associations across the seasons in use.

The model that best predicts ANCP based on monsoon
season rainfall is

Yt = 1751 + 1.26 RF(WL3)
NEM,t−1

+ 0.436 RF(WL2)
SWM,t−1 (3)

(Adjusted R2 = 0.30, p < 0.002). The predictors are
NEM rainfall in WL3 and SWM rainfall in WL2.
Equation 3 explains 30% of the variability of ANCP.
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3.3. Use of quarterly seasons to predict ANCP

Rainfall is lowest during January–March except in DL3,
IL3 and DL5 (Figure 4). It exceeds 400 mm during
October–December in all AERs.

ANCP is positively correlated (p < 0.05) with rain-
fall during January–March in all seven AERs and
July–September in all AERs except the two driest
(Table III). This is probably because water demand for
crop during these periods would not be met due to longer
dry spells leading to closure of the stomata, and a slowing
down of photosynthesis resulting in low nut production
(Peiris and Thattil, 1998). Thus regular showers during
the first 3 months in all coconut-growing areas would
increase the ANCP in the following year. The April–June
rainfall in the AERs that are in the WL2 and WL4 were
also positively correlated with ANCP.

The number of significant correlations and their mag-
nitudes are only modestly greater for quarterly rainfall
(Table III) rather than for rainfall grouped by monsoon
season (Table II).

The best model and parameters to predict ANCP from
quarterly rainfall is

Yt = 1776 + 0.875 RF(DL3)
JFM,t−1 + 0.572

RF(WL2)
JAS,t−1 + 0.297 RF(WL2)

AMJ,t−1 (4)

(Adjusted R2 = 0.44, p < 0.0001).
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Figure 4. Distribution of rainfall by quarterly seasons in the seven
agro-ecological regions that span the principal coconut growing areas.

Table III. Correlation between ANCP and quarterly rainfall in
the year prior to harvest.

AER Three month seasonal period

JFM AMJ JAS OND

IL1 0.435∗∗∗ ns 0.282∗ ns
IL3 0.391∗∗ ns 0.353∗∗ ns
WL4 0.334∗∗ 0.288∗ 0.288∗ ns
WL3 0.411∗∗ ns 0.284∗ ns
WL2 0.359∗∗ 0.386∗∗ 0.483∗∗∗ ns
DL3 0.452∗∗∗ ns ns ns
DL5 0.357∗∗ ns ns ns

(∗ p < 0.05;, ∗∗ p < 0.01; ∗∗∗ p < 0.001; ns, not significant).

All the predictor variables were significant at p = 0.05
and they were not significantly correlated with each other.
There was no significant correlation between ANCP and
quarterly seasonal temperatures.

The substantial increase of R2 from 30 to 44%
associated with Equation (4) compared with Equation (3)
suggests that quarterly rainfall is a better predictor
of ANCP than monsoon season rainfall. The variance
explained is also greater with the use of quarterly seasons.
Thus it can be concluded that the use of quarterly
seasonal rainfall is statistically more skillful than the use
of monsoon seasonal rainfall for the use of prediction
of ANCP. Further, the quarterly rainfall is a better
representation for the distribution of rainfall within a year
than monsoon rainfall.

Yet, even with the improvement, the variance explained
is still less than 50% and the residuals from both
models (Equation 3 and 4) show significant first-order
autocorrelation (p < 0.005). To address these issues we
have attempted to factor in the technology effect below.

3.4. Identification of the technology effect

Spectral analysis showed that ANCP did not have cycli-
cal patterns. The technology effect could be assumed to
be modelled by a simple time-dependant model which is
either linear: Yt = a + bt or log-linear: Yt = e(α+βt). The
linear model was not significant (Adjusted R2 = 0.06).
The log-linear model was significant (p < 0.005) and
explained 17% of variability of the ANCP. Therefore, the
log-linear model was selected as a suitable time depen-
dant model to remove the trend due to the technology
effect.

3.5. Climate effect

The ‘climate effect’ was found to be modeled better when
the rainfall indices were chosen as the quarterly rainfall
for the different AER’s for the ANCP time series. To
improve on the representation of the climate effect after
accounting for the ‘technology effect’, we revisited this
analysis with detrended ANCP data. The best model
for the ‘climate effect’ for the detrended ANCP data
includes five variables of quarterly rainfall chosen from
the seven AERs as predictors (Table IV). These five
variables explain the climate effect of the detrended
series with a cumulative R2 of 0.77 which is highly
significant. Note that there is a significant correlation
between January–March rainfall in WL3 and WL4 and
April–June rainfall in WL2 and IL3. However, including
their interaction terms did not improve the model’s R2

significantly.

3.6. Additive vs. multiplicative model

In order to choose between additive and multiplicative
models, separate regression models were developed to
explain the variability of the detrended data under the
two forms of models using backward elimination step-
wise regression method (Draper and Smith, 1966). The
statistical indicators that were used to compare the two
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Table IV. Summary of the significant parameters for the detrended data under the additive model. RF indicates rainfall, the
superscript indicates the AER and the subscript the quarter. A subscript of (t − 1) refers to the year prior to the harvest.

Predictor Coefficient SE Pr. >F Partial R2 Cumulative R2

Intercept −823.3 122.5 <0.0001 – –
RF(WL3)

JFM,t−1 0.674 0.286 0.023 0.38 0.38
RF(WL2)

AMJ,t−1 0.784 0.127 <0.0001 0.20 0.58
RF(WL4)

JAS,t−1 0.570 0.119 <0.0001 0.12 0.70
RF(WL4)

JFM,t−1 0.748 0.335 0.030 0.04 0.74
RF(IL3)

AMJ,t−1 −0.649 0.244 0.010 0.03 0.77

(Adj. R2 = 0.76, p < 0.0001).

models are shown in Table V. The Adjusted R2 is higher
for the additive model than for the multiplicative model
(Table V). Further, the DW statistic confirms that the
residual of the additive model is white noise. Thus the
additive model represents the detrended data better than
the multiplicative model.

3.7. Final ANCP prediction model

The final model which combines technology and climate
effects is of the form,

ANCPt = µ + exp(α + βt) +
5∑

i=1

θi
∗ RFi,t−1 (5)

and provides a highly significant fit to the data (p <

0.001). µ is the intercept, θi (i = 1,2,3,4 and 5) are the
parameters of the predictor variable RFi,t−1 and α and β

are the parameters of the log-linear model. Equation 5
accounted for 94% of the inter-annual variability of

ANCP (Figure 5) and the correlation between observed
and modeled values was 0.83 which improves on the
correlation (R = 0.73) for the ARIMA model. The lead
time of the model is up to 15 months. Thus, ANCP
realized at the end of the next year can be predicted by
October based on the quarterly rainfall of the first three
quarters of the current year.

The error between the model and the production;
ranges between −10 to +10%, with the exception of a
25% under-prediction in 1988. Forward predictions of
the ANCP using the model for 2003 and 2004 led to
errors of 6.5 and 7.0% respectively. The model predicts
2715 million nuts for 2005.

4. Conclusions

A regression model that incorporates quarterly rainfall
for the year prior to harvest along with a scheme that
accounts for the ‘technology effect’ explains a substantial
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Figure 5. The observed and predicted annual coconut production based on Equation 5.

Table V. Comparison of statistical indicators between two models to incorporate both climate and technology in prediction
(additive vs multiplication).

Model Statistical Indicator

Significance
level

Number of
significant
variables

Adj.
R2

DW
statistic

Residual
autocorrelation

of lag 1

Additive p < 0.0001 5 0.76 1.768 0.101 (p > 0.005)
Multiplicative p < 0.0001 3 0.67 1.444 0.305 (p < 0.005)
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portion (94%) of the inter-annual variability of coconut
production in Sri Lanka. The correlation between the
observed and simulated models was 0.83 (p < 0.001).
The prediction of ANCP for 2003 and 2004 based
on this model gave predictions that were only 6.5%
and 7.0% away from the observed. The use of rainfall
seasons which are based on quarters consistent with the
agricultural seasons improves markedly upon the use of
monsoon seasons in the skill of ANCP predictions.

ANCP is sensitive to rainfall during January–March
and to a lesser degree during July–September in the
principal coconut growing regions. In coconut growing
areas the periods during January to March and July
to August generally have more dry spells which has
more significant impact for coconut yield. ANCP is
not sensitive to the rainfall during the wettest quarter
from October to December. ANCP was not significantly
sensitive to regional temperature trends. The use of
quarterly rainfall is more skillful than the use of monsoon
rainfall to predict ANCP and is of greater utility.

The annual yield can be predicted 15 months in
advance from observed rainfall. The prediction lead-time
of the seasonal rainfall based models can potentially be
extended from 15 months to about 24 months by the use
of available seasonal climate forecasts (Hansen, 2002).
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