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Abstract

The International Research Institute for Climate and Society has been issuing ex-
perimental seasonal tropical cyclone activity forecasts for several ocean basins since
early 2003. In this paper we describe the method used to obtain these forecasts, and
evaluate their performance. The forecasts are based on tropical cyclone-like features
detected and tracked in a low-resolution climate model, namely ECHAM4.5. The sim-
ulation skill of the model using historical observed sea surface temperatures (SSTs)
over several decades, as well as with SST anomalies persisted from the month ending
at the forecast start time, is discussed. These simulation skills are compared with skills
of purely statistically based hindcasts using as predictors observed SSTs preceding the
forecast start time. For the recent 6-year period during which real-time forecasts have
been made, the skill of the raw model output is compared with that of the subjectively
modified probabilistic forecasts actually issued.

Despite variations from one basin to another, the hindcast skills of the dynamical
and statistical forecast approaches are found, overall, to be approximately equivalent.
The dynamical forecasts require statistical post-prossessing (calibration) to be com-
petitive with, and in some circumstances superior to, the statistical models. Hence,
during the recent period of real-time forecasts, the subjective forecasts are found to
have resulted in probabilistic skill better than that of the raw model output, primarily
because of the forecasters’ elimination of the systematic bias of “overconfidence” in the
model’s forecasts. Prospects for the future improvement of dynamical tropical cyclone
prediction are considered.
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1 Introduction

Tropical cyclones (TCs) are one of the most devastating type of natural disaster. Seasonal
forecasts of TC activity could help the preparedness of coastal populations for an upcoming
TC season and reduce economical and human losses.

Currently, many institutions issue operational seasonal TC forecasts for various regions.
In most cases, these are statistical forecasts, such as the North Atlantic hurricane outlooks
produced by NOAA1, the seasonal typhoon activity forecasts of the City University of Hong
Kong (Chan et al. 1998, 2001), the Atlantic hurricane forecasts of Colorado State University
(Gray et al. 1993; Klotzbach 2007a,b), and Tropical Storm Risk (Saunders and Lea 2004).
A review of TC seasonal forecasts is found in Camargo et al. (2007b), and the skills of some
of them were discussed in Owens and Landsea (2003).

Since April 2003 the International Research Institute for Climate and Society (IRI) has
been issuing experimental dynamical seasonal forecasts for 5 ocean basins 2. In this paper,
we describe how these forecasts are produced and discuss their skills when the atmospheric
general circulation model (AGCM) is forced by predicted sea surface temperature (SST) in
a two-tiered prediction system.

The possible use of dynamical climate models to forecast seasonal TC activity has been
explored by various authors, e.g. Bengtsson et al. (1982). Although the low horizontal
resolution (2◦ − 3◦) of climate general circulation models of the early 2000s is not adequate
to realistically reproduce the structure and behavior of individual cyclones, such models are
capable of forecasting with some skill several aspects of the general level of TC activity over
the course of a season (Bengtsson 2001; Camargo et al. 2005). Dynamical TC forecasts
can serve specific applications, e.g. early warning for TC landfall activity over Mozambique
(Vitart et al. 2003) or the Philippines (Lyon and Camargo 2008). The level of performance
of dynamical TC forecasts depends on many factors, including the model used (Camargo
et al. 2005), the model resolution (Bengtsson et al. 1995), and the inherent predictability
of the large-scale circulation regimes (Vitart and Anderson 2001), including those related to
the ENSO condition (Wu and Lau 1992; Vitart et al. 1999).

In addition to IRI’s dynamically based experimental TC forecasts, such forecasts are also
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Vitart
2006), the UK Meteorological Office and the EUROpean Seasonal to Interannual Predic-
tion (EUROSIP - super-ensemble of ECMWF, UK Met Office and Metéo France coupled
models) (Vitart et al. 2007) . An important consideration is the dynamical design used
to produce the forecasts. The European dynamical TC forecasts are produced using fully
coupled atmosphere-ocean models (Vitart and Stockdale 2001; Vitart 2006). At IRI, a two-
tiered (Bengtsson et al. 1993), multi-model (Rajagopalan et al. 2002; Robertson et al. 2004)
procedure is used to produce temperature and precipitation forecasts once a SST forecast (or
set of them) is first established (Mason et al. 1999; Goddard et al. 2003; Barnston et al. 2003,
2005). The IRI experimental TC forecasts use a subset of the IRI two-tier forecast system,

1http://www.cpc.noaa.gov/products/outlooks/hurricane.shtml
2http://portal.iri.columbia.edu/forecasts
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in that only a single AGCM is used, compared with several AGCMs for surface climate. As
described below, more than one SST forcing scenario is used.

TCs in low-resolution models have many characteristics comparable to those observed,
but at much lower intensity and larger spatial scale (Bengtsson et al. 1995; Vitart et al. 1997).
The climatology, structure and interannual variability of model TCs have been examined
(Bengtsson et al. 1982, 1995; Vitart et al. 1997; Camargo and Sobel 2004). A successful
aspect of this work has been that, over the course of a TC season in a statistical sense, the
spatial and temporal distributions, as well as interannual anomalies of number and total
energy content, of model TCs roughly follow those of observed TCs (Vitart et al. 1997;
Camargo et al. 2005). There have been two general methods in which climate models are
used to forecast TC activity. One method is to analyze large-scale variables known to affect
TC activity (Ryan et al. 1992; Thorncroft and Pytharoulis 2001; Camargo et al. 2007c).
Another approach, and the one used here, is to detect and track the cyclone-like structures
in climate models (Manabe et al. 1970; Broccoli and Manabe 1990; Wu and Lau 1992),
coupled ocean-atmosphere models (Matsuura et al. 2003; Vitart and Stockdale 2001), and
regional climate models (Landman et al. 2005; Knutson et al. 2007). These methods have also
been used in studies of possible changes in TC intensity due to global climate change using
AGCMs (Bengtsson et al. 1996; Royer et al. 1998; Bengtsson et al. 2007a,b) and regional
climate models (Walsh and Ryan 2000; Walsh et al. 2004).

In Section 2 we describe how the real-time seasonal tropical forecasts are produced at
IRI. The model performance over a multi-decadal hindcast period and over the recent 6-year
period of real-time forecasting is are discussed in Section 3. A comparison of the AGCM
performance result with that of simple SST-based statistical forecasts is shown in Section 4.
The conclusions are given in Section 5.

2 Description of the real-time forecasts

The IRI climate forecast system (Mason et al. (1999)) is two-tiered: SSTs are first forecasted,
and then each of a set of atmospheric models is forced with several tropical SST forecast
scenarios. Many ensemble members of atmospheric response are produced from each model
forced with the SST scenarios. For the TC seasonal forecasts, just one atmospheric model
is used: ECHAM4.5, which is run on a monthly basis. Six-hourly output data is used,
as this fine temporal resolution makes possible detection of the needed TC characteristics.
The ECHAM4.5 was developed at the Max-Planck Institute for Meteorology in Hamburg
(Roeckner et al. 1996), and has been studied extensively for various aspects of seasonal TCs
activity (Camargo and Zebiak 2002; Camargo and Sobel 2004; Camargo et al. 2005, 2007c).

The integrations of the ECHAM4.5 model are subject to differing tropical SST forcing
scenarios (Table 1). In all scenarios, the extratropical SST forecasts consist simply of damped
persistence of the anomalies from the previous month’s observation (added to the forecast
season’s climatology), with an anomaly e-folding time of 3 months (Mason et al. 1999). In
the tropics, multi-model, mainly dynamical SST forecasts are used for the Pacific, while
statistical and dynamical forecasts are combined for the Indian and Atlantic Oceans. Statis-
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Table 1: Tropical Pacific SST forecast types used in this study. The concurrent, observed
SST (OSST) data, for non-forecast simulations (lead time less than zero), denoted as “S” in
table is the Reynolds version 2(Reynolds et al. 2002); the real time persisted SST (FSSTp)
and hindcast persisted SST (HSSTp) are undamped and then damped persisted anoma-
lies initialized from anomalies observed the previous month. The evolving anomalous SST
(FSST) was initially from the NCEP coupled model (FSST1)(Ji et al. 1998) and more re-
cently was the mean of 3 models (FSST2): the CFS(Saha et al. 2006), the LDEO-5 (here
called LDEO)(Chen et al. 2004) and the statistical constructed analogue (CA)(van den Dool
1994, 2007) models. Still later, multiple predicted SSTs were used: first as the above three
models separately (FSST3), and most recently as the 3-model mean, plus and minus a per-
turbation field representing the dominant principal component (PC) of the three models’
errors (FSST4).

SST type Period Ensembles Lead Pacific SSTs
OSST 01/1950 - 12/2005 24 S Reynolds
OSSTr 01/1970 - 12/2005 24 S Reynolds
HSSTp 01/1968 - 05/2003 12 4 persisted
FSSTp 08/2001 - 08/2007 24 4 persisted
FSST1 08/2001 - 05/2004 24 6 NCEP
FSST2 06/2004 - 01/2007 24 6 Mean: CFS, LDEO, CA
FSST3 06/2004 - 04/2007 8,8,8 6 CFS, LDEO, CA
FSST4 05/2007 - 08/2007 8,8,8 6 PC: CFS, LDEO, CA

tical forecasts play the greatest role in the tropical Atlantic. The models contributing to the
tropical SST forecasts, particularly for the Pacific, have changed during our study period as
forecast producing centers have introduced newer, more advanced prediction systems. In the
non-Pacific tropical basins during seasons having near-zero apparent SST forecast predictive
skill, damped persisted SST anomalies are used, but at a lower damping rate than that used
in the extratropics. (No damping occurs in the first 3 months, followed by linear damping
that reaches zero by month 8.) However, for seasons in which SST predictive skill is found
beyond that of damped persistence, CCA models are used in the Indian Ocean (Mason et al.
1999) and tropical Atlantic Ocean (Repelli and Nobre 2004).

Globally undamped anomalous SST persisted from the previous month, applied to the
climatology of the months being forecast, is used as an additional SST forcing scenario (called
FSSTp). In this case the 24 ensemble members of ECHAM4.5 are integrated using persisted
SST anomaly out to 5 months beyond the previous month. For example, for a mid-January
forecast, the model is forced from January - May using undamped persisted SST anomalies
from December globally3.

3 The FSSTp runs have been produced in real time from August 2001 to the present and are available also
in hindcast mode (HSSTp) over the period January 1968 to May 2003, with 12 ensemble members (Table 1).
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In the case of the non-persisted, evolving forecasted SST anomalies, the AGCM is run out
to 7 months beyond the previous month’s observed SST (e.g., for a mid-January forecast,
observed SST exists for December, and the model is forced from January to July with
evolving SST predictions). Four versions of the forecasted SST anomalies have been used
since 2001, denoted by FSSTv, v indicating the version number, from 1 to 4. The FSSTv

forecasts initially consisted of two versions of a single deemed best estimated forecast SST
scenario for tropical Pacific SST (FSST1,2) through May 2004, after which time multiple
SST scenarios began being used (FSST3,4). The single-forecast FSST1,2 fields from August
2001 to March 2007, with 24 ensemble members (Table 1) are available on line at the IRI
website.4.

From June 2004 until April 2007 the IRI used the ensemble mean SST scenarios predicted
by each of the three forecast models footnoted above for the tropical Pacific SST individually,
without averaging them, in separate runs of the AGCMs (FSST3). This design was believed
to better represent the uncertainty expressed by the spread of the ensemble mean forecast
among the three models, whose suggested ENSO states matter critically to the TC forecast
responses in most of the ocean basins. The FSST3 runs thus consist of 8 ensemble members
apiece for the tropical Pacific ensemble mean forecast scenario predicted by each of the three
respective above-mentioned models.

The idea of forcing the AGCM with multiple SST forcing scenarios was refined further
starting in May 2007, upon noting that on some occasions the ensemble mean forecasts of
the three models agreed closely with one another, while on other occasions they differed
wildly. The degree of disagreement was not believed to be more than weakly related to
forecast uncertainty, as suggested in several studies (e.g. (Kharin and Zwiers 2002; Tippett
et al. 2007)). To ensure more approximately comparable scenario differences from one year
to the next for the same forecast start time and lead time, the three scenarios were derived
based on the historical error of the 3-way superensemble mean of the models, for hindcast
verifications relative to the observed SSTs over the global tropics. The tropical SST is used
to ensure that uncertainty of the known impacts of tropical SST on atmospheric responses is
captured. The structures of the scenarios are found applying principal components analysis
(PCA) to the historical record of the error of the multi-model mean SST forecast. The three
scenarios used are (1) the 3-way multi-model ensemble mean SST forecast itself, and that
forecast (2) plus, and (3) minus, the first PC of the historical error. For this set of forecast
SST scenarios (FSST4), the perturbations to the mean vary by start month and SST forecast
lead time, but not by year.

Because use of the differing versions of the FSST forcing design was limited to only a few
years apiece, we combine the tropical cyclone forecast skill analyses using FSSTp, FSST1,
FSST2, FSST3 and FSST4 into a single real-time forecast sample based on some type of

4 From August 2001 to May 2004 the tropical Pacific SST for the FSST forecast was based solely on
the NCEP-MRF9 dynamical model (Ji et al. 1998) (FSST1); from June 2004 to February 2007, the forecast
was assembed using the average of 3 SST model predictions for the tropical Pacific: (1) the NCEP coupled
forecast system (NCEP-CFS) (Saha et al. 2006), (2) the Lamont-Doherty Earth Observatory intermediate
model version 5 (LDEO-5) (Chen et al. 2004) (an improved version of the Cane-Zebiak model Cane and
Zebiak (1985); Cane et al. (1986); Zebiak and Cane (1987)), and (3) the statistical constructed analog (CA)
model (van den Dool 1994, 2007) (FSST2)
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forecast SST, generalized as FSST in the skill results shown below.
The ECHAM4.5 was also forced with the actually observed SSTs (OSST) (Reynolds et al.

2002) prescribed during the period 1950 to the present. These AMIP-type runs provide
estimates of the upper limit of skill of the model in forecasting TC activity, discussed in
previous studies (Camargo and Zebiak 2002; Camargo and Sobel 2004; Camargo et al. 2005,
2007c). The skills presented below are broken out into three SST forcing types: (1) FSST
(for real-time forecasts), (2) HSSTp (long-term hindcast anomally-persisted SST), and (3)
OSST (long-term observed SST for AMIP-type AGCM simulations).

For any type of SST forcing, we analyze the output of the AGCM for TC activity. To
define and track TCs in the models, we used objective algorithms (Camargo and Zebiak
2002) based in large part on prior studies (Vitart et al. 1997; Bengtsson et al. 1995). The
algorithm has two parts: detection and tracking. In the detection part, storms that meet
environmental and duration criteria are identified. A model TC is identified when chosen dy-
namical and thermodynamical variables exceed thresholds calibrated to the observed tropical
storm climatology. Most studies (Bengtsson et al. 1982; Vitart et al. 1997) use a single set of
threshold criteria globally. However, to take into account model biases and deficiencies, we
use basin- and model-dependent threshold criteria, based on analyses of the correspondence
between the model and observed climatologies (Camargo and Zebiak 2002). Thus, we use a
threshold exclusive to ECHAM4.5. Once detected, the TC tracks are obtained from the vor-
ticity centroid, defining the center of the TC, using relaxed criteria appropriate for the weak
model storms. The detection and tracking algorithms have been applied to regional climate
models (Landman et al. 2005; Camargo et al. 2007a) and to multiple AGCMs (Camargo and
Zebiak 2002; Camargo et al. 2005).

Following detection and tracking, we count the number of TCs (NTC) and compute the
model accumulated cyclone energy (ACE) index (Bell et al. 2000) over a TC season. ACE
is defined as the sum of the squares of the wind speeds in the TCs active in the model at
each 6-hour interval. For the observed ACE, only TCs of tropical storm intensity or greater
are included.

The model ACE and NTC results are then corrected for bias, based on the histori-
cal model and observed distributions of NTC and ACE over the 1971-2000 period, on a
per-basin basis. Corrections yield matching values in a percentile reference frame (i.e., a
correspondence is achieved non-parametrically). Using 1971-2000 as the climatological base
period, tercile boundaries for model and observed NTC and ACE are then defined, since the
forecasts are probabilistic with respect to tercile-based categories of the climatology (below,
near, and above normal).

For each of the SST forcing designs, we count the number of ensemble members having
their NTC and ACE in a given ocean basin in the below-normal, normal and above-normal
categories, and divide by the total number of ensembles. These constitute the “raw”, objec-
tive probability forecasts. In a final stage of forecast production, the IRI forecasters examine
and discuss these objective forecasts and develop subjective final forecasts that are issued on
the IRI website. The most typical difference between the raw and the subjective forecasts is
that the latter have weaker probabilistic deviations from climatology, given the knowledge
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that the models are usually too “confident”. The overconfidence of the model may be asso-
ciated with too narrow an ensemble spread, too strong a model signal (deviation of ensemble
mean from climatology), or both of these. The subjective modification is intended to in-
crease the probabilistic reliability of the predictions. Another consideration in the subjective
modification is the degree of agreement among the forecasts, in which less agreement would
suggest greater uncertainty and thus more caution with respect to the amount of deviation
from the climatological probabilities.

The raw objective forecasts are available since August 2001. The first subjective forecast
for the western North Pacific basin was produced in real-time in April 2003. However, sub-
jective hindcasts were also produced for August 2001 through April 2003 without knowledge
of the observed result, making for 6 years of experimental forecasts.

Table 2: Ocean basins in which IRI experimental TC forecasts are issued: Eastern North
Pacific (ENP), Western North Pacific (WNP), North Atlantic (ATL), Australia (AUS) and
South Pacific (SP). Date of the first issued forecast; seasons for which TC forecasts are issued
(JJAS: June to September, ASO: August - October, JASO: July to October, ASO: August
to October, JFM: January to March, DJFM: December to March); months in which the
forecasts are issued; and variables forecasted — NTC (number of TCs), ACE (accumulated
cyclone energy).

Basin First Forecast Season Months Forecasts Are Issued Variables
ENP Mar. 2004 JJAS Mar., Apr., May, Jun. NTC, ACE
WNP Apr. 2003 JASO Apr., May, Jun., Jul. NTC, ACE
ATL Jun. 2003 ASO Apr., May, Jun., Jul., Aug. NTC, ACE
AUS Sep. 2003 JFM Sep., Oct., Nov., Dec., Jan. NTC
SP Sep. 2003 DJFM Sep., Oct., Nov., Dec. NTC

For each ocean basin, forecasts are produced only for the peak TC season, from certain
initial months prior to that season (Table 2), and updated monthly until the first month of
the peak season5. The lead time of this latest forecast is defined as being zero, and the lead
times of earlier forecasts are defined by the number of months earlier that they are issued.

The basins in which forecasts are issued are shown in Fig. 1, and the numbers of years
available for each SST scenario and basin are indicated in Table 3. In the southern hemi-
sphere (South Pacific and Australian regions), only forecasts for NTC are produced, while in
the northern hemisphere basins both NTC and ACE forecasts are issued. ACE is omitted for
the southern hemisphere because ACE is more sensitive to data quality than NTC, and the
observed TC data from the southern hemisphere is known to be of somewhat questionable
quality, particularly in the earlier half of the study period (e.g. Buckley et al. (2003)).

Forecasts for the South Pacific are a special case in terms of bias correction. The TC

5 The data available for the forecast released during the first month of the TC peak season cover only
through the end of the previous month.
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Figure 1: Definition of the ocean basin domains used in this study: Australian (AUS),
(105◦E−165◦E); South Pacific (SP), 165◦E−110W ; western North Pacific (WNP), 100◦E−

160◦W , eastern North Pacific (ENP), 160◦W − 100◦W ; and Atlantic (ATL), 100◦W − 0. All
latitude boundaries are along the equator and 40◦N or 40◦S. Note the unique boundary
paralleling Central America for ENP and ATL basins.

Table 3: Number of years for each lead and SST type. S denotes simulations, with a negative
lead time.

SST Type ENP WNP ATL
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST 6 6 6 6 — 6 6 6 6 — 6 6 6 6 7 —
HSSTp — — 35 35 — — — 35 35 — — — 35 35 35 —
OSST — — — — 56 — — — — 56 — — — — — 56
OSSTr — — — — 36 — — — — 36 — — — — — 36

SST Type AUS SP
Lead 4 3 2 1 0 S 3 2 1 0 S
FSST 6 6 6 6 6 — 6 6 6 6 —
HSSTp — — 34 34 35 — — — 34 34 —
OSST — — — — — 56 — — — — 55
OSSTr — — — — — 36 — — — — 35
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forecast season is DJFM, but we use the model output for NDJF to forecast DJFM, including
the bias correction. It was found that hindcast skill levels are appreciably higher with this
one-month offset, which we consider to be a temporal aspect of the bias correction.

The observed TC data used to correct historical model biases and for verification of the
model forecasts is the best-track data from the National Hurricane Center (Atlantic and
eastern North Pacific6) and the Joint Typhoon Warning Center (western North Pacific and
southern hemisphere 7).

3 Performance in hindcasts and real-time forecasts

NTC or ACE historical simulation and real-time predictive skill results are computed for
each ocean basin for their respective peak TC seasons. Both deterministic and probabilistic
skills are examined.

3.1 Deterministic skills

Temporal anomaly correlation skills are shown in Table 4 for NTC by lead time, for each
type of SST forcing, and likewise for ACE in Table 5. The simulation skills are shown both
for the full period of 1950-2005 and for 1970-2005, during which the TC data are known to be
of higher quality, particularly for the southern hemisphere basins. The correlations for the
real-time predictions are uncentered8. Simulation skills (OSST) are seen to be statistically
significant levels for most of the ocean basins. Skills for the 1970-2005 period (OSSTr in
Table 4) tend to exceed those for 1950-2005, due both to better average data quality and
the greater ENSO variability following 1970. Consistent with Camargo et al. (2005), highest
skills occur in the Atlantic basin with correlations of roughly 0.50, with more modest skill
levels in the other basins. Skills for zero-lead forecasts using SST anomalies persisted from
those of the most recent month (HSSTp, lead 0), as expected, are usually lower than those
of observed simultaneous SSTs. For the three northern hemisphere basins, for which both
NTC and ACE are simulated, simulation skills are higher for ACE than for NTC, as noted
also in Camargo et al. (2005). This may be related to the continuous nature of ACE as
opposed to the discrete, more nonparametric, character of NTC.

A reference forecast more difficult to beat than a random or a climatology forecast is that
of simple persistence of observed TC observation from the previous year. The correlation
score for such a reference forecast is just the 1-year autocorrelation coefficient over the 1971-
2005 base period, and is shown at the bottom of Tables 4 and 5 as “Pers”. The persistence

6http://www.nhc.noaa.gov
7https://metocph.nmci.navy.mil/jtwc.php
8 In computing the correlation skill for forecasts for much shorter periods than the climatological base

period, the sub-period means are not removed, and are not used for computing the standard deviation terms.
Instead, the longer base period means are used. This is done so that, for example, if in the sub-period the
forecasts and observations have small-amplitude out-of-phase variations but both are generally on the same
side of the longer period mean, a positive correlation would result, and we believe justifiably.
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Table 4: Correlations (×102) with observations for NTC, per basin, by lead time and SST
forecast scenario. S denotes simulations, whose lead time is negative. “Pers” denotes one
year simple persistence, with a lead potentially longer than 4 months, but shown in the
column of the longest lead. Statistically significant skills are shown in bold.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST 53 58 58 46 — -84 -82 -68 2 — 13 48 65 35 11 —
HSSTp — — 32 50 — — — 11 7 — — — 7 33 36 —
OSST — — — — 32 — — — — 21 — — — — — 40
OSSTr — — — — 37 — — — — 28 — — — — — 55
Pers 9 — — — — 33 — — — — 14 — — — — —

SST Type Australia South Pacific
Lead 4 3 2 1 0 S 3 2 1 0 S
FSST 52 40 7 -1 21 — 44 72 63 34 —
HSSTp — — -4 26 16 — — — 42 42 —
OSST — — — — — 38 — — — — 43
OSSTr — — — — — 40 — — — — 42
Pers 11 — — — — — -26 — — — —

Table 5: Correlations (×102) with observations for ACE, per basin, by lead time and SST
forecast scenario. S denotes simulations, whose lead time is negative. “Pers” denotes one
year simple persistence, with a lead potentially longer than 4 months, but shown in the
column of the longest lead. Statistically significant skills are shown in bold.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST -16 47 48 62 — 69 2 21 36 — -4 25 17 61 14 —
HSSTp — — 20 23 — — — 6 23 — — — 18 43 37 —
OSST — — — — 7 — — — — 26 — — — — — 57
OSSTr — — — — 45 — — — — 33 — — — — — 60
Pers 21 — — — — 20 — — — — 35 — — — — —-
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correlation scores are usually lower than those of the AGCM’s forecast using observed or
persisted SST, with the one exception of the NTC forecasts in Northwestern Pacific.

Real-time predictive verification skills (FSST in Tables 4 and 5) over the basins not
only have lower expected values than those using simultaneous observed SST due to the
imperfection of the predicted SST forcing, but also much greater sampling errors given only
6 to 7 cases per lead time per basin (Table 3). These skills range from near or below zero
for the western North Pacific NTC, to approximately 0.5 for the three shortest leads for the
eastern North Pacific ACE. For all basins collectively and for NTC and ACE together, the
skills approximate those of HSSTp, individual differences likely due foremost to sampling
variability. Consistent with the small sample problem, the correlations for FSST for all of
the basin-lead time combinations are statistically non-significant, as nearly 0.8 is required
for significance.

A look at the possible impact of differing SST forcing scenarios and lead times on the
real-time forecast skills is more meaningful when results for all oceans basins are combined,
lessening the sampling problem. Basin-combined skill results by lead time and SST forcing
type are shown in Table 6 for NTC and ACE. The middle panel shows NTC results for
northern hemisphere basins only, allowing a direct comparison between NTC and ACE.
Results show higher skills for forecasts of ACE than NTC, and only a very weak tendency
for decreasing skill with increasing lead time. This is summarized still further in the bottom
row of the table, showing results for NTC and ACE combined.

Skills were evaluated using additional deterministic verification measures: the Spearman
rank correlation, the Heidke skill score, and the mean squared error skill score (MSESS).
Table 7 provides an example of the four scores together, for ACE in the Northwestern
Pacific Basin. The rank correlation and Heidke skill scores are roughly consistent with
the correlation skill, allowing for expected scaling difference where the Heidke is roughly
one-half of the correlation (Barnston 1992). The MSESS, however, which uses the 1971-
2000 climatology as the zero-skill reference forecast, is comparatively unfavorable: some of
the cases having positive correlation and Heidke skills have negative MSESS results. This
outcome is attributable to a marked tendency of the model forecasts toward too great a
departure from climatological forecasts, given the degree of inherent uncertainty and thus the
relatively modest level of true predictability. Such “overconfidence” in the model forecasts,
which can be adjusted for statistically, will be discussed in more detail below in the context
of probabilistic verification, where a detrimental effect on scores comparable to that seen in
MSESS will become apparent.

3.2 Probabilistic skills

The TC forecasts were verified probabilistically using the ranked probability skill score
(RPSS), likelihood skill score, and, for the real-time forecasts, the relative operating char-
acteristics (ROC) score. All of the above measures were computed with respect to the
tercile-based categories with 1971-2000 as the base period.

RPSS (Epstein 1969; Goddard et al. 2003) measures the sum of squared errors between
categorical forecast probabilities and the observed categorical probabilities, cumulative over
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Table 6: Correlations (×102) for all basins combined, by lead time and SST forecast scenario.
S denotes simulations, whose lead time is negative. Statistically significant skills are shown
in bold. The sample size is doubled for significance evaluations for all basins combined, and
increased by 60% for the northern hemisphere basins combined, relative to the single basin
sample.

Lead 4 3 2 1 0 S
SST Type NTC all basins

FSST 38 18 35 28 27 —
HSSTp — — 1 25 27 —
OSST — — — — — 25
OSSTr — — — — — 46

SST Type NTC northern hemisphere
FSST 13 -25 17 -3 27 —
HSSTp — — 7 23 28 —
OSST — — — — — 31
OSSTr — — — — — 42

SST Type ACE northern hemisphere
FSST -4 41 29 46 41 —
HSSTp — — 17 28 29 —
OSST — — — — — 39
OSSTr — — — — — 48

SST Type NTC & ACE all basins
FSST 31 29 33 36 33 —

categories, relative to a reference (or standard baseline) forecast. The observed probabilities
are 1 for the observed category and 0 for the other two categories, and the baseline forecast
used here is the climatology forecast of a 1/3 probability for each category.

The likelihood score, related to the concept of maximum likelihood estimation (Aldrich
1997), is based on the nth root of the product of the probabilities given to the tercile cat-
egory that was indeed observed, spanning temporally over all n forecasts. This “geometric
average” probability is then compared with the same calculation done for a reference fore-
cast using climatological probabilities of 1/3, to produce a likelihood skill score. Perpetual
climatological probabilities would produce a likelihood skill score of zero, and forecasts of
100% for the correct tercile would produce a score of unity9.

Probabilistic verification using the RPSS and likelihood scores are shown for NTC and

9 Because the probabilities for the “raw” model predictions are based on the number of ensemble members
in a given tercile category divided by the total number of ensembles, and occasionally this number is zero for
the observed category, a likelihood score of 0 is produced by just one such occurrence. To circumvent this,
zero probabilities for the correct category are set to 0.01 when computing the score, which would severely
penalize the score but not “destroy” it.
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Table 7: Comparison of four skill measures (×102) for real-time forecast SSTs (FSST),
multidecadal hindcasts using persisted SST forcing (HSSTp) and simulations using observed
SST forcing (OSST and OSSTr), for ACE in the Northwest Pacific basin.

Western North Pacific ACE Lead
SST Type Score 1 0 S

FSST Correl 11 34 —
FSST Rank Cor 44 26 —
FSST Heidke 3 7 —
FSST MSESS -63 -37 —
HSSTp Correl 6 23 —
HSSTp Rank Cor -5 34 —
HSSTp Heidke 1 12 —
HSSTp MSESS -61 -27 —
OSST Correl — — 26
OSST Rank Cor — — 27
OSST Heidke — — 8
OSST MSESS — — 4
OSSTr Correl — — 33
OSSTr Rank Cor — — 39
OSSTr Heidke — — 11
OSSTr MSESS — — 10

ACE in Tables 8 - 9 and Tables 10 - 11, respectively, for both the multi-decadal simulations
and hindcasts (OSST and HSSTp), and the real-time forecasts forced by the multiple SST
prediction scenarios (FSST). These skills are mainly near or below zero. This poor result
can be attributed to the lack of probabilistic reliability of the ECHAM4.5 ensemble-based
TC predictions as is seen in many predictions made by individual AGCMs—not just for TC
activity but for most climate variables (Anderson 1996; Barnston et al. 2003; Wilks 2006).
Climate predictions by AGCMs have model-specific systematic biases, and their uncorrected
probabilities tend to deviate too strongly from climatological probabilities due to too small
an ensemble spread and/or too large a mean shift from climatology. This problem leads to
comparably poor probability forecasts, despite positive correlation skills for the ensemble
means of the same forecast sets. Positive correlations, but negative probabilistic verification
is symptomatic of poorly calibrated probability forecasts—a condition that can be remedied
using objective statistical correction precedures.

Probabilistic persistence may be a more competitive simple reference forecast than fore-
casts of climatological probabilities. Based on the weak but generally positive year-to-year
autocorrelations shown in Tables 4 and 5, we designed the persistence probabilistic fore-
casts to be 0.4 for the tercile-based category observed the previous year, and 0.3 for the
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Table 8: Ranked probability skill scores (×102) for NTC, per basin, by lead time and SST
forecast scenario. S denotes simulations, whose lead time is negative. “Pers” denotes one
year weak probabilistic persistence (see text), with a lead potentially longer than 4 months,
but shown in the column of the longest lead. Statistically significant skills are shown in bold.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST -12 8 7 -60 — -76 -52 -63 -34 — -51 -8 3 -13 -61 —
HSSTp — — -92 -80 — — — -35 -36 — — — -107 -70 -68 —
OSST — — — — -18 — — — — -5 — — — — — 3
OSSTr — — — — -24 — — — — 3 — — — — — -21
Issued 13 13 9 8 — 8 0 1 15 — -5 6 11 15 -4 —
Pers -2 — — — — -2 — — — — -2 — — — — —

SST Type Australia South Pacific
Lead 4 3 2 1 0 S 3 2 1 0 S
FSST -24 -36 -15 -74 -68 — 1 -27 -38 -27 —
HSSTp — — -40 -34 -51 — — — -28 -42 —
OSST — — — — — -32 — — — — -93
OSSTr — — — — — -21 — — — — -88
Issued 5 5 15 2 5 — 10 15 10 3 —
Pers 1 — — — — — -1 — — — —

Table 9: Ranked probability skill scores (×102) for ACE, per basin, by lead time and SST
forecast scenario. S denotes simulations, whose lead time is negative. “Pers” denotes one
year weak probability persistence (see text), with a lead potentially longer than 4 months,
but shown in the column of the longest lead. Statistically significant skills are shown in bold.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST -30 9 9 -3 — 26 -8 -1 -11 — -45 -6 -16 -6 -31 —
HSSTp — — -35 -24 — — — -40 -9 — — — -33 2 -6 —
OSST — — — — -26 — — — — 6 — — — — — 11
OSSTr — — — — -7 — — — — 13 — — — — — 16
Issued 2 0 6 10 — 15 5 5 4 — -7 10 12 15 6 —
Pers 5 — — — — 1 — — — — 2 — — — — —
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Table 10: Likelihood skill scores (×102) for NTC, per basin, by lead time and SST forecast
scenario. S denotes simulations, whose lead time is negative.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST 0 11 15 -14 — -23 -25 -21 -3 — -27 -12 0 -7 -22 —
HSSTp — — -29 -26 — — — -17 -17 — — — -38 -29 -28 —
OSST — — — — -2 — — — — -2 — — — — — -14
OSSTr — — — — -15 — — — — -15 — — — — — -28
Issued 7 7 6 6 — 3 -1 -1 7 — -1 3 5 6 -1 —

SST Type Australia South Pacific
Lead 4 3 2 1 0 S 3 2 1 0 S
FSST -2 -4 3 -9 -6 — 11 3 2 0 —
HSSTp — — -13 -11 -20 — — — -8 -11 —
OSST — — — — — -8 — — — — -21
OSSTr — — — — — -16 — — — — -26
Issued 4 5 9 5 5 — 6 10 7 5 —

Table 11: Likelihood skill scores (×102) for ACE, per basin, by lead time and SST forecast
scenario. S denotes simulations, whose lead time is negative.

SST Type Eastern Pacific Western Pacific Atlantic
Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S
FSST -10 1 9 7 — 14 -3 2 3 — -8 6 1 3 -2 —
HSSTp — — -12 -8 — — — -21 -6 — — — -14 8 2 —
OSST — — — — -8 — — — — 3 — — — — — 5
OSSTr — — — — 2 — — — — 6 — — — — — 9
Issued -1 -1 3 5 — 7 2 2 2 — -2 6 7 7 4 —
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other two categories. Resulting RPSS are shown at the bottom of Tables 8 and 9. These
weakly persistent probabilistic forecasts often have better RPSS scores than those of the
AGCM forced with persisted SST (HSSTp), and sometimes as good as or better than those
forced with observed SSTs. Rather than showing that use of the AGCM with observed or
predicted SST is unsuccessful, this outcome again shows that probabilities that deviate only
mildly from climatological probabilities, even if derived from something as simple as the TC
activity of the previous year, fare better under calibration-sensitive probabilistic verifica-
tion measures (here, RPSS) than the higher amplitude probability shifts from climatology
typically produced by today’s AGCMs without proper statistical calibration.

The probability forecasts actually issued by IRI begin with the “raw” AGCM probabil-
ities, modified to what the forecasters judge to have better probabilistic reliability. This
nearly universally involves damping the amplitude of the model’s deviation from climato-
logical probabilities. A typical adjustment might be to modify the model’s predicted prob-
abilities of 5%, 10% and 85% to 20%, 30% and 50% for the below-, near- and above-normal
categories, respectively. A less common adjustment is that of “rounding out” a bimodal
probability forecast such as 35%, 5%, and 60% to a more Gaussian distribution such as 25%,
30% and 45%. Part of the reason for sharply bimodal distributions is assumed to be the
limited (24-member) ensemble size. A still less common case for modification, and one that
does not always improve the forecast quality, is that of the forecasters’ judgement against
the model forecasts, believing there is a model bias. Such doubt can pertain also to the SST
forecast used to force the AGCM.

Tables 8, 9, 10, 11, indicate that the actually issued forecasts have better probabilistic
reliability than the forecasts of the model output. Likelihood skill scores, and especially
RPSS, are mainly positive for the issued forecasts, although modest in magnitude. This
implies that the probability forecasts of the AGCM are potentially useful, once calibrated
to correct for overconfidence or an implausible distribution shape. Such calibration could
be done objectively, based on the longer hindcast history, rather than subjectively by the
forecasters as done to first order here.

Figure 2 shows the approximately 6-year record of AGCM ensemble forecasts of NTC
and ACE at all forecast lead times for each of the ocean basins. The vertical boxes show the
inter-quartile range among the ensemble members, and the vertical dashed lines (“whiskers”)
extend to the ensemble member forecasts outside of that range. The asterisk indicates the
observation value. Favorable and unfavorable forecast outcomes can be identified, such as,
respectively, the ACE forecasts for the western North Pacific for 2002, and the ACE forecasts
for the North Atlantic for 2004.

Figure 3 shows the same forecasts, except probabilistically for each of the tercile-based
categories, both for the AGCM’s forecasts (the “x” symbols) and for the subjectively modified
publicly issued forecasts (the “o” symbols connected by lines). The AGCM’s probability
forecasts often deviate by large amounts from climatology, while the issued forecasts remain
closer to climatology. Figure 4 shows the ranked probability skill score (RPSS) of these
probability forecasts in the same format. The AGCM’s probability forecasts result in highly
variable skill (including both strongly negative and positive cases), leading to a somewhat
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Figure 2: Model (raw) forecasts (box plots and whiskers) and observations (asterisks) of
number of TCs (NTC) and accumulated cyclone energy (ACE) for all basins and leads. The
cross inside the box shows the ensemble mean, and the horizontal line shows the median.
Also shown by dotted horizontal lines are the boundaries between the tercile categories.
Panels (a) - (f) are for the northern hemisphere basins, with NTC on the left panels and
ACE on right panels, for ENP, ATL, WNP in each row, respectively. The two bottom panels
are for NTC in the southern hemisphere basins: AUS (g) and SP (h).
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Figure 3: Issued (circles) and model (crosses) probability anomalies (difference of probability
from 33.3% climatological probability values, X100) for all leads and years in each basin.
The above (below) normal category probability anomalies are given in red (blue), and the
near normal anomalies in black. The observed category is shown near top by the letters B
(below normal), N (near normal) and A (above normal). Panels (a) to (h) are arranged as
in Fig. 2,
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negative overall skill. The issued forecasts, while never reaching positive magnitudes as great
as those of some of the AGCM forecasts, also avoid negative overall skills of more than small
magnitude10. Hence, the humanly modified TC forecasts have a higher average probabilistic
skill level using RPSS.

The “over-confidence” of the AGCM forecasts is shown in more concrete terms in a
reliability (or attributes) diagram (Hsu and Murphy 1986), shown in Fig. 5. Here the corre-
spondence of the forecast probabilities with the observed relative frequency of occurrence is
shown for the above normal and below normal categories. When the forecast probabilities
closely match the observed relative frequencies, as would be desired, the lines approximate
the dotted 45◦ line. Parts (a) and (b) show, for the 6-year period of forecasts, reliabilities
for the issued forecasts and for the AGCM’s forecasts prior to subjective modification, re-
spectively. Despite the “jumpy” lines due to the small sample sizes, the lines for the issued
forecasts are seen to have slopes roughly resembling the 45◦ line, indicating favorable re-
liability, while the lines for the AGCM’s forecasts have a less obvious upward slope. The
AGCM’s forecast probabilities for the above or below normal categories of TC activity de-
viate from the climatological probabilities of 1/3 by much greater amounts than do their
corresponding observed relative frequencies (see lower inset in panels of Fig. 5), resulting in
low probabilistic forecast skill. The issued forecasts’ deviations from climatological probabil-
ities are limited by the forecasters according to the perceived level of uncertainty, and within
the restricted probability ranges an approximate correspondence to the observed relative
frequencies is achieved. The more reliable issued forecasts carry appropriately limited utility
as represented by the lack of forecast sharpness—i.e. that the forecast probabilities rarely
deviate appreciably from climatology, and from one another.

The lower panels of Fig. 5 show reliabilities for the longer historical period of AGCM hind-
casts using prescribed observed SST (OSSTr; part(c)) and persisted SST anomaly (HSSTp;
part (d)). Here the lines are smoother due to the larger sample sizes. Both diagrams show
forecasts having some information value, as the lines have positive slope, but the slopes are
considerably shallower than the 45◦ line, indicating forecast overconfidence. The slopes for
forecasts using observed SST are slightly steeper than those for forecasts using persisted
SST anomaly, as would be expected with the higher skill realized in forecasts forced by the
actually observed lower boundary conditions.

That the TC activity forecasts of the AGCM have mainly positive correlation skill is
consistent with their positive slopes in Fig. 5(b,c,d). Additionally, their mainly negative
RPSS (Tables 8 - 11) is expected when the positive slopes on the reliability diagram (Fig. 5)
are shallower than one-half of the ideal 45◦ slope=1 line (i.e. slope < 0.5) because then the
forecasts’ potential information value is more than offset by the miscalibration of the forecast
probabilities (Hsu and Murphy 1986; Mason 2004). This is consistent with the deterministic
TC forecasts having positive correlation skill but negative MSESS using climatology as the

10 Because the RPSS is computed as a sum of squares of cumulative (over tercile categories) differences
between forecast and observed probabilities, the lower limit of RPSS (-3.5) is farther below zero than the
upper limit (+1.0) is above zero. Thus, high probabilities forecasted for an incorrect category outweigh high
probabilities forecast for the correct category, and “over-confident” forecasts result in severe penalties even
when the forecasts have some positive level of information value.
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Figure 4: Ranked probability skill score (RPSS) for the issued (circles) and model (crosses)
forecasts for all leads and years in each basin. Panels (a) to (h) are arranged as in Fig. 2
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Figure 5: Reliability diagrams for above (circles ◦) and below (diamonds ⋄) normal cate-
gories: (a) issued forecasts, (b) FSST, (c) OSSTr, (d) HSSTp. The histograms (black bars
- below normal, white bars - above normal) below each plot show the percentage frequency
with which each category of probability was forecast. The circle (cross) indicates the overall
mean of the forecast probabilities for the above (below) normal categories, and the diamond
(asterisk) indicates likewise for observed relative frequencies. The vertical and horizontal
lines indicate the climatologically expected foreast probability and observed relative fre-
quency, respectively. The ideal realiability is shown by the dotted 45◦ diagonal line. The
dotted line with shallower slope is the slope above which positive skill would be realized in
RPSS, and below which (for positive slope) RPSS would be negative but correlation skill
for corresponding deterministic forcasts would usually be positive, suggesting information
value.
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reference forecast, due to forecast anomalies stronger than warranted for the expected skill
level.

Table 12: Comparison of skill (×102) between real-time probability forecasts for TC activity
based directly on the AGCM (FSST), and those issued by IRI forecasters following subjective
modification. Skills for forecasts for all five ocean basins for both NTC and ACE over the
approximately 6-year period are aggregated using RPSS, likelihood and scaled ROC area for
forecasts when above normal (AN) or below normal (BN) TC activity was observed. The
ROC score is scaled as 2 x (area - 0.5) for increased comparability to the other skill measures.

Number of forecasts 48 48 48 50
Skill Score Type

Lead 3 2 1 0
RPSS FSST -24 -12 -22 -37
RPSS Issued 9 9 8 6

Likelihood FSST 2 -1 -1 -5
Likelihood Issued 4 5 4 4
ROC (AN) FSST 37 27 28 10
ROC (AN) Issued 50 42 59 47
ROC (BN) FSST 15 14 21 15
ROC (BN) Issued 24 25 21 15

The skills of the real-time probabilistic forecasts over the approximately 6-year period
are summarized in full aggregation (over basins and TC variable) in Table 12 using the
RPSS, likelihood, and relative operating characteristics (ROC) (Mason 1982)) verification
measures. The comparisons between the objective AGCM forecast output and the actually
issued forecasts again underscore the need for calibration of AGCM forecasts that greatly
underestimates the real-world forecast uncertainty. The AGCM’s non-trivially positive scaled
ROC areas for both above and below normal observed outcomes reveal their ability to provide
useful information, as the ROC lacks sensitivity to calibration in a manner analogous to
correlation for deterministic, continuous forecasts. In this particular set of forecasts, greater
capability to discriminate above than below normal TC activity is suggested by the ROC
skills.

3.3 A favorable and an unfavorable real-time forecast

Identification of “favorable” or “unfavorable” forecasts, while straightforward when consid-
ered deterministically, is less clear when comparing an observed outcome with its correspond-
ing probability forecast. Probabilistic forecasts implicitly contain expressions of uncertainty.
The position of an observed outcome within the forecast distribution is expected to vary
across cases, and many cases are required to confirm that this variation is well described
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by the widths of the probability forecast distributions. When a particular observation lies
on a tail of the forecast distribution, it is impossible to determine whether this represents
an unfavorable forecast or if it is an expected rare case, without examining a large set of
such forecasts. The forecast distribution may be fully appropriate given the known forc-
ing signals (Barnston et al. 2005). Here, we identify “favorable” and “unfavorable” cases in
terms of the difference between the deterministic forecast (the model ensemble mean—which
usually also approximates the central tendency of the forecast probability distribution) and
the corresponding observation.

A critical aspect of the SST forcing to be forecast is the ENSO state during the peak
season. Figure 6 shows the IRI’s forecasts of the seasonal Niño3.4 index at 2 months lead
time (e.g., a forecast for Aug-Sep-Oct SST issued in mid-June, with observed data through
May) during the period of issued TC forecasts, with the corresponding observed seasonal
SST. A moderate EN occurred during 2002-03, with weak ENs in 2004-05 and late 2006. A
weak, brief La Niña (LN) condition was observed in very late 2005 and early 2006, and a
stronger LN developed during mid-2007. The average of the observed Niño3.4 SST anomaly
over the approximately 5 year period is 0.45, compared with an average 2-month lead forecast
anomaly of 0.37, indicating a small forecast bias. The uncentered correlation coefficient for
the period (where the means over the period are not removed) is in the 0.70s for forecasts for
the northern hemisphere peak seasons, and 0.80s for forecasts for the southern hemisphere
peak seasons. These correlations suggest moderately skillful forecasts of tropical Pacific SST
fluctuations for the peak TC seasons in both hemispheres.

A favorable forecast for ACE in the western North Pacific took place in 2002. Figure 2(d)
shows that the observation was in the above-normal category, and that the AGCM forecasts
were not far from this number for the four lead times. For ACE in the western North Pacific,
the ENSO condition is key, with EN (LN) associated with higher (lower) ACE. Between April
through June of 2002 it became increasingly clear that an EN was developing, although the
SST predictions contained a weaker EN that that observed (Fig. 6). Nonetheless, the SST
predictions contained ENSO-related anomaly patterns of sufficient ampliltude to force an
above normal ACE prediction that verified positively. The favorable AGCM forecasts are
shown probabilistically in Fig. 3(d), with a positive RPSS verification shown in Fig. 4(d).

An unfavorable forecast outcome occurred for ASO 2004, when the ACE in the North
Atlantic was observed to be 2.41×106 kt2, the highest on record after 1970 for this season,
but the AGCM forecasts from all five lead times were for between 0.5 and 1.0×106 kt2, only
in the near-normal category. A weak EN developed just prior to the peak season, which,
while somewhat underpredicted, was present in the SST forecasts. But despite weak EN
conditions during the 2004 peak season, NTC and especially ACE were well above normal
(Fig. 2(e,f)). A feature of the EN that likely weakened its inhibiting effect on Atlantic TC
development was its manifestation mainly in the central part of the tropical Pacific, and
underrepresentation in the Niño3 region that appears more critical. Coupling of the warmed
SSTs to the overlying atmosphere was also modest in ASO. Aspects of the SST that were
less well predicted than ENSO were those that mattered more critically in this case: the
Atlantic Multi-decadal Oscillation (AMO) (Goldenberg et al. 2001) in the North Atlantic,
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the Atlantic Meridional Mode (AMM) (Vimont and Kossin 2007) in the tropical Atlantic and
in the main development region (MDR) (Goldenberg and Shapiro 1996) in the Caribbean.
These regions developed markedly stronger positive anomalies than had been observed in
April and May or forecast for the forthcoming peak season months, and are believed to have
been a major cause of the high 2004 Atlantic TC activity level.

In both examples described above, the importance of the quality of the SST forecast for
the peak TC season in the relevant tropical and subtropical ocean regions is clear. While
ENSO-related Pacific SST is known to have some predictability, there is room for improve-
ment in capturing it; and seasonal prediction of SST in the equatorial and North Atlantic is
a yet more serious challenge.

4 Comparison with simple statistical predictions

One reasonably might ask whether the skill levels of the AGCM simulations and predictions
described above are obtainable using statistical models derived purely from the historically
observed TC data and the immediately preceding environmental data such as the wind, sea
level pressure, or SST conditions the month prior to the forecast. How much the dynamical
approach to TC prediction offers that is not obtainable using much less costly empirical
approaches is explored here for deterministic skill, using environmental predictors in multi-
ple regression. To minimize artificial skill associated with “fishing” for accidentally skillful
predictors, the following restrictions are imposed: (i) A maximum of two predictors is used
for each basin (although a predictor may be a fixed combination of more than one compo-
nent, such as a current state plus a recent rate of change); (ii) for each ocean basin, the
same predictors are used for NTC as for ACE; (iii) except for the case of Australia in which
sea level pressure is used as a predictor, all predictors are SSTs averaged over rectangular
index regions; (iv) all predictors must have a plausible physical linkage with the TC activity.
“Leave-out-one” cross-validation is applied to assess the expected real-time predictive skill
of the statistical models. We use mainly SST because of the well documented influence of
SST anomaly patterns, including in particular the state and direction of evolution of ENSO,
on the interannual variability of TC activity in most ocean basins. Statistical predictions
are made at a lead time of one-month (e.g. June SST predicting the Atlantic peak season of
ASO. A similar “prediction” is done for simulation of TC activity using predictors simulta-
neous with the center month of the peak TC season.11 The simulation predictors are usually
the same as those used for the one-month lead prediction.

The selection of the predictor SST indices is based both on previous studies and on
examination of the geographical distribution of interannual correlation between SST and the
given TC variable using 1970-2005 data. For example, Figure 7 shows the correlation field for
SST in June versus Atlantic NTC during the ASO peak season, indicating the well-known
inverse relationship with warm ENSO and positive association with the Atlantic Multi-
decadal Oscillation (Goldenberg et al. 2001)(via Atlantic SST near and North of 40◦N), which

11The second month is used for both 3-month and 4-month peak seasons.
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Figure 7: Correlations between June SST and Aug-Sep-Oct Atlantic NTC, 1970-2006. Con-
tour interval 0.1. Zero and positive (negative) contours represented by solid (dotted) lines.
The -0.1 contour is not shown.

is associated with the Atlantic Meridional Model (AMM) on interannual time-scales (Vimont
and Kossin 2007; Kossin and Vimont 2007). When September SST is used, simultaneous with
the Atlantic TC activity, these same two key regions remain important, but even stronger
correlations appear for SST in the Main Development Region (Goldenberg and Shapiro 1996)
in the North tropical Atlantic.

Table 13 identifies the two predictors used for each ocean basin for 1-month lead forecasts
and for simultaneous simulations. For non-standard SST index regions, the boundaries of
the rectangle are given. In the case of the Atlantic and western North Pacific forecasts, the
first predictor contains both a recent SST level and a recent time derivative for the same
region, to capture the ENSO status and direction of evolution. The model is applied to
data spanning the 1970-2005 period. MDR is the main development region of the Atlantic
(10◦-20◦N, 82◦-20◦W). AMO is the Atlantic multi-decadal oscillation region (here, 40◦-50◦N,
75◦W-0◦). Darwin is located in northern Australia (12.4◦S, 130.9◦E).

Many of the statistical predictors are ENSO-related. The Niño3 SST as the east-central
tropical Pacific is found more relevant to Atlantic TC activity ((Gray et al. 1993)) than the
location most central to ENSO itself (i.e. Niño3.4; (Barnston et al. 1997)). However, Niño3.4
is used as the ENSO index for Western North Pacific TC activity, the second predictor being
SST in the subtropical northeastern Pacific associated with the North Pacific atmospheric
circulation pattern found linked with that TC activity (Barnston and Livezey 1987; Chan
et al. 1998, 2001). For northeast Pacific TC activity, SST regions are selected that high-
light an ENSO-related east-west dipole in a northern subtropical latitude band, while the
South Pacific and Australia regional TC predictions, also ENSO-keyed, are tailored to their
locations south of the equator.

Table 14 indicates the strengths of relationship between each of the predictors and the
predictand, the predictors’ correlations with one another, and the resulting multiple correla-
tion coefficient first within the model development sample, and then upon using one-year-out
cross-validation. The cross-validated result—a more realistic estimate of expected skill in
real-time forecasting—can be compared with the AGCM-derived skill shown in the subse-
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Table 13: Predictors for statistical tropical cyclone 1-month lead forecasts and simulations.
The month of the two SST predictors is indicated.

Basin Season 1-month Lead Forecasts Simultaneous Simulations
1. 20◦-30◦N, 110◦-130◦W (Apr) 1. Same as forecasts, but for Jul

ENP JJAS (N subtropical version of Nino3)
2. 20◦-30◦N, 180◦-140◦E (Apr) 2. Same as forecasts, but for Jul
(N part of outer ENSO horseshoe)
1. Niño3.4 (May) + Niño3.4 change 1. Niño3.4 (Aug)

WNP JASO from Feb-Mar to May
2. 20◦-30◦N, 110◦-150◦W (May) 2. Same as forecasts, but for Aug
(NE subtropical Pacific)
1. Niño3 (Jun) + Niño3 change 1. Niño3 (Sep)

ATL ASO from Mar-Apr to Jun
2. MDR (weighted 1/3) + 2. MDR (Sep)
AMO (weighted 2/3)
1. Niño3.4 to Niño4 (Nov) 1.Same as forecasts, but for Feb

AUS JFM (5◦N-5◦S, 120◦W-160◦E)
2. Darwin SLP (SON) 2. Same as forecasts, but for JFM
1. Niño3 to Niño3.4 (Oct) 1. Same as forecasts, but for Jan

SP DJFM (5◦N-5◦S, 90◦-170◦W)
2. 25◦-35◦S, 170◦W-170◦E (Oct) 2. Same as forecasts, but for Jan
(S part of outer ENSO horseshoe)

quent column. Results for this comparison are mixed. The dynamical forecasts and simula-
tions are slightly more skillful for south Pacific NTC, and in the eastern North Pacific basin
in most cases. The statistical model produces higher skills in most cases in the Atlantic and
western North Pacific for forecasts and, for some cases, simulations. Statistical tests indicate
that none of the dynamical versus statistical skill differences are significant for the 36-case
sample size. Considering this, and the alternation of skill rank between the approaches over
the basins, there is no clear suggestion that one approach is generally superior to the other.
That the dynamical approach tended to yield higher skills in the South Pacific, and no lower
than the statistical method in the Australian region, could be related to the comparatively
lower quality of SST predictor data south of the equator, particularly in the 1970s. It is
possible that less accurate SST data would degrade the statistical forecasts more than the
AGCM forecasts forced by the SST because the SST indices used in the statistical forecasts
represent relatively smaller regions than the aggregate of the SST regions influencing the be-
havior of the AGCM. The larger areas of SST influencing the model may allow opportunity
for opposing error impacts, leading to smaller net impacts.

Some points worth noting about this methodological comparison are: (i) the statistical
models used here were kept fairly simple (limited to two adjustable coefficients, mainly
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Table 14: Diagnostics for the 2-predictor statistical tropical cyclone forecasts and simula-
tions, 1970-2005. The pr1 (pr2) columns show the correlations (×102) between the first
(second) predictor and the observed TC variable (NTC or ACE) in 2-predictor multiple re-
gression predictions at 1-month lead time, per ocean basin. Sim1 (sim2) are likewise, except
for simulations in which the SST forcing is prescribed as that observed during peak TC
season. Correlation between the two predictors is indicated in the “1vs2” column. The next
two columns show the full sample and the one-year-out cross-validated multiple regression
coefficients, the latter to be regarded as the skill estimate for real-time forecasts for com-
parison with dynamical (AGCM-based) skills, shown in the subsequent column. Dynamical
predictive skill comes from the HSSTp at 1 month lead, and simulation skill from OSSTr.

pr1 pr2 1vs2 R Rcv Dyn sim1 sim2 1vs2 R Rcv Dyn
ENP NTC 29 -30 -33 37 14 32 32 -28 -18 39 20 37
ENP ACE 40 -33 -33 45 31 20 47 -27 -18 50 35 45
WNP NTC 19 41 47 41 23 11 23 14 54 23 -6 28
WNP ACE 60 53 47 66 58 6 67 56 54 71 66 33
ATL NTC -38 49 -19 57 46 33 -45 58 -2 72 66 55
ATL ACE -27 60 -19 62 55 43 -34 47 -2 57 50 60
AUS NTC -40 -30 83 41 23 26 -44 -53 81 53 42 40
SP NTC 38 -28 -55 39 20 42 42 -37 -48 46 30 42

SST, and constant for NTC versus ACE), and may not be near-optimum; (ii) despite the
use of cross-validation, some “fishing” may still have occurred in selecting the locations
of the predictor SSTs, and there may be some artificial skill; (iii) the one-year-out cross-
validation design has a negative skill bias in truly low predictability situations (Barnston
and van den Dool 1993). Together, such caveats of opposing implications imply that the
skill comparison results should be considered as rough estimates, intended to detect obvious
skill differences. Such differences are not revealed here. One might expect that much of
the skill of a near-perfect dynamical model would be realizable by a sophisticated (e.g.,
containing nonlinearities) statistical model if accurate observed data were available, since
the observations should occur because of, and be consistent with, the dynamics of the ocean-
atmosphere system with noise added. Seasonal climate has been shown to be statistically
modeled fairly well using only linear relationships (Peng et al. 2000). However, linearity may
compromise statistical skill in forecasting some seasonal phenomena, such as TC activity with
its highly nonlinear hydrodynamics in individual storms that may not be reduced to linear
behavior even upon aggregating over an entire season.
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5 Conclusions

The International Research Institute for Climate and Society (IRI) has been issuing exper-
imental TC activity forecasts for several ocean basins since early 2003. The forecasts are
based on TC-like features detected and tracked in the ECHAM4.5 atmospheric general cir-
culation model (AGCM), at low horizontal resolution (T42). The model is forced at its lower
boundary by sea surface temperatures (SSTs) that are predicted first, using several other
dynamical and statistical models. The skill of the model’s TC predictions using historical
observed SSTs are discussed as references against which skills using several types of predicted
SSTs (including persisted SST anonmalies) are compared. The skill of the raw model out-
put is also compared with that of subjective probabilistic forecasts actually developed since
mid-2001, where the subjective forecasts attempt to correct the “overconfident” probabilistic
forecasts from the AGCM. The skills of the AGCM-based forecasts are also compared with
those from simple statistical forecasts based on observed SSTs preceding the period being
forecast.

Results show that low-resolution AGCMs deliver statistically significant, but fairly mod-
est, skill in predicting the interannual variability of TC activity. The levels of correlation skill
are comparable to the levels obtained with simple empirical forecast models—here, models
employing 2-predictor multiple regression using preceding area-average SST anomalies and
their recent time derivative. In ocean basins where observed SST predictor data is of ques-
tionable quality, statistical prediction is less effective. Despite that this same SST is used as
the boundary forcing for the AGCMs, the dynamical predictions tend to slightly outperform
the statistical predictions in this circumstance.

In a 2-tiered dynamical prediction system such as that used in this study, the effect of
imperfect SST prediction is noticeable in skills of TC activity compared with skills when the
model is forced with historically observed SSTs.

Similar to climate forecasts made by AGCMs, probabilistic reliability of the AGCM’s
forecasts for TC activity forecasts is not favorable in that the model ensemble forecasts usu-
ally deviate too strongly from the climatological distribution, due sometimes to too narrow
an ensemble spread but more often to too large a shift in the ensemble mean from clima-
tology. This “overconfidence” of the AGCM forecasts is partly due to their being based
on specific representations of the physics, including abbreviations through parametrization,
and their own hindcast performance is not taken into account in forming ensemble forecasts.
Upon subjective human intervention the forecasts are made more conservative and reliability
is improved, leading to higher probabilistic verification scores than (but similar correlation
scores to) the uncalibrated AGCM forecasts.

We plan to examine skill of other models in hopes of being able to add more information,
and hopefully skill, to our seasonal TC forecast. The problem of “overconfidence” in AGCMs
is relieved to some extent with the use of multi-model ensembles: adding additional models
should help restrain the probabilistic amplitude exhibited by a single model. Issues not
examined here are the role of AGCM spatial resolution in governing predictive skill, and
the impact of using a fully coupled dynamical system rather than a 2-tiered system as
used here. Although prospects for the future improvement of dynamical TC prediction are
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uncertain, it appears likely that additional improvements in dynamical systems will make
possible better TC predictions. As is the case for dynamical approaches to ENSO and near-
surface climate prediction, future improvements will depend on better understanding of the
underlying physics, more direct physical representation through higher spatial resolution,
and substantial increases in computer capacity. Hence, improved TC prediction should be a
natural by-product of improved prediction of ENSO, global tropical SST, and climate across
various spatial scales.
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