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Abstract  Most estimates of the skill of atmospheric general circulation models (AGCMs) for 

forecasting seasonal climate anomalies have been based on simulations with actual observed sea 

surface temperatures (SSTs) as lower boundary forcing. Similarly estimates of the climatological 

response characteristics of AGCMs used for seasonal-to-interannual climate prediction frequently rest 

on historical simulations using "perfect" SST forecasts. This paper examines the errors and biases 

introduced into the seasonal climate response of an AGCM forced with persisted SST anomalies, 

which are generally considered to constitute a good prediction of SST in the first 3-month season. 

However, the added uncertainty introduced by the predicted SST anomalies weakens, and in some 

cases nullifies, the skill of atmospheric predictions that is possible given perfect SST forcing. The use 

of persisted SST anomalies also leads to changes in local signal-to-noise characteristics. Thus, it is 

argued that seasonal-to-interannual forecasts using AGCMs should be interpreted relative to historical 

runs that were subject to the same strategy of boundary forcing used in the current forecast in order to 

properly account for errors and biases introduced by the particular SST prediction strategy. Two case 

studies are examined to illustrate how the sensitivity of the climate response to predicted SSTs may be 

used as a diagnostic to suggest improvements to the predicted SSTs. 
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1 Introduction 

The predictability of seasonal climate anomalies results primarily from the influence 

of slowly evolving boundary conditions, and most notably sea-surface temperatures 

(SSTs), on the atmospheric circulation (Palmer and Anderson 1994; Goddard et al. 

2001). Because of feedbacks between the ocean and the atmosphere, the coupled 

system may be predictable in some regions of the tropics a year or more in advance 

(Barnston et al. 1994; Latif et al. 1994, 1998; Neelin et al. 1998), although 

operational forecast skill is more realistically limited to lead-times of a few months 

(Barnston et al. 1999a; Landsea and Knaff 2000; Mason and Mimmack 2002). At 

shorter lead-times of about three months or less, but beyond the period in which 

forecast skill from initial conditions remains discernible (Brankovic et al. 1990, 1994; 

Brankovic and Palmer 2000), changes in the boundary conditions are sufficiently 

slow compared to the predictability limit for the atmosphere alone that seasonal 

climate forecasting is possible even in the absence of detailed projections of the 

evolution of the boundary layer. Throughout much of the tropical oceans, and in some 

areas of the mid-latitudes, the autocorrelation of monthly SST anomalies (SSTAs) 

remains greater than 0.5 at lags of six months or more (Fig. 1). Because the ocean is 

more slowly evolving than the atmosphere, the assumption that current anomalous 

conditions will persist over the next season provides an accurate forecast of oceanic 

conditions for the next few months in many regions. Forecasts for persistent SST 

anomalies out to 3 months lead cannot be outscored by even the most sophisticated 

forecast models (Latif et al. 1994, 1998; Stockdale et al. 1998; Goddard et al. 2001). 

Although boundary conditions provide predictability of the atmosphere at 

seasonal timescales, the inherent variability of the atmosphere requires seasonal 

climate forecasts be expressed probabilistically (e.g. Barnston et al. 1999b; Mason et 

al. 1999; Goddard et al. 2001). Forecast ensembles are a standard method of 

estimating the uncertainty in seasonal climate by sampling the distribution of possible 

climate outcomes. However, ensembles may not provide reliable estimates of forecast 

uncertainty due to model errors; in other words, the chaotic evolution of the 

atmosphere is not the only source of forecast uncertainty. Systematic model errors 

can be corrected statistically (Ward and Navarra 1998; Feddersen et al. 1999; Mason 
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et al. 1999), but these errors are likely to be conditional upon the state of the 

boundary forcing (Mo and Wang 1995), which, in turn, is subject to its own forecast 

uncertainty. Most estimates of the forecast skill and structures of systematic forecast 

errors of AGCMs are based on model simulations using observed SSTs (e.g. 

Brankovic et al. 1994; Ferranti et al. 1994; Brankovic and Palmer 1997; Mason et al. 

1999). Since model simulations forced with observed SSTs provide an indication of 

model performance assuming perfect SST forecasts, estimates of the skill of 

operational model predictions are generally overestimated, and model systematic 

errors introduced by the predicted SSTs may not be estimated at all. It is important to 

know what uncertainties in the forecasts of seasonal climate result from imperfect 

SST forecasts (Barnett 1995). 

 
In this paper, the contributions of imperfect SST forecasts to seasonal forecast 

uncertainties are investigated. The focus is on identifying possible causes for loss of 

skill in forecasting precipitation that may arise from using persisted SSTAs as forcing 

for dynamical atmospheric models. Because of its large social implications for many 

parts of the world, attention is focused on potential prediction skill of precipitation. 
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Comparisons between the precipitation hindcasts and simulations are used to identify 

where skill is lost as a result of imperfect SST forecasts, and hence to identify key 

ocean areas where short lead-time SST forecasts need to be improved. 

 

2 Data and methods 

2.1 Model and Experimental Design 

The ensemble model experiments used in this analysis were run using the 

ECHAM3.6 atmospheric general circulation model (AGCM), configured at spectral 

truncation T42 (approximately 2.8° horizontal resolution) and with 18 vertical levels. 

Further details of this AGCM can be found in DKRZ (1992). 

Two sets of ensembles were created. "Simulation" runs were generated by forcing 

the AGCM with observed simultaneous monthly-mean SSTs. An ensemble of 10 

simulation runs is available for the period 1950?present. The initial conditions of the 

ensemble members differed from each other by one model-day of weather when the 

simulation began with 1949. The integrations proceeded continuously from 1949 to 

present day conditions, and the first year was discarded. "Hindcast" runs refer to 

forecasts that were made retrospectively for the purpose of assessing the forecast 

method (Ward et al. 1993). The hindcasts were forced by persisting the observed 

SSTA from one month through the following 3-month season. The persisted anomaly 

is added to the evolving climatological cycle of SST to obtain the full SST forcing. 

For the hindcast runs, 5 member ensembles were generated using initial conditions 

from the ensemble members of the simulation set. Hindcast ensembles were made for 

4 non-overlapping seasons: the March ?  May (MAM) hindcasts use persisted SSTA 

from February; the June ?  August (JJA) hindcasts use persisted SSTA from May; the 

September ?  November (SON) hindcasts use persisted SSTA from August; and, the 

December ?  February (DJF) hindcasts use persisted SSTA from November. These 

seasonal hindcasts cover the 27-year period 1970?1996 (26-year period 1970/71 ?  

1996/97 for DJF). 
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The analysis period is that common to both sets of AGCM runs: 1970?1996. This 

27-year long record is used to identify regions that are sensitive to errors introduced 

by persisted SSTA forcing of the AGCM. The performance analysis of both ensemble 

sets considers the ensemble-mean response of the model. Since the hindcasts have 

only 5 members, while the simulations contain 10 members, for the sake of a fairer 

comparison the ensemble-mean of the simulation was calculated using only 5 of the 

available members. A large pool of other potential combinations of 5 ensemble 

members for the simulations provides an estimate of the range in skill due to the 

model's uncertainty in the ensemble-mean response when the number of ensemble 

members is insufficient to resolve the forecast probability distribution (Kumar et al 

2001). The results in Section 3 shown from the random selection of 5 simulation 

members are representative of the median in the range of skill levels locally. 

 

2.2 Observational Data 

SST. The Reynold's observed SST dataset from the Climate Prediction Center of the 

National Weather Service (Smith et al. 1996) was used as boundary forcing in the 

AGCM experiments. These SST data are provided as monthly averages on a 2° grid. 

The data were interpolated spatially to the effective grid resolution of T42, and then 

linearly interpolated to daily values as the AGCM stepped through the integrations. 

 

Precipitation. The precipitation verification data were obtained from the Climate 

Research Unit of the University of East Anglia. The observed climatological data 

covering the 1961?1990 period comes from up to 19,800 stations, which are mapped 

onto a 0.5° grid over land treating elevation dependency explicitly. Grid points are 

filled in using thin plate splines in regions where rain gauges are missing or sparse 

(New et al. 1999). The monthly anomalies, from a less dense network of stations, are 

estimated locally and then combined with the high-resolution climatology to obtain 

the total precipitation fields. In regions of sparse data coverage of anomalies, most 

notably over parts of central Africa and the Middle East, angular distance weighting 

was used to interpolate the values spatially (New et al, 2000). The final gridded data 
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set contains no missing data. The high resolution data were up-scaled to the T42 grid 

for comparison with the AGCM precipitation fields. 

 

3 Results 

3.1 Simulation v hindcast skill 

In an operational forecast setting, the skill of rainfall predictions from an AGCM is 

unlikely to be as great as the potential prediction skill estimated from simulations 

forced with the simultaneous observed SSTs. The loss of skill in the operational 

context is greatest in regions where the climate is sensitive to errors in predicted SST 

anomalies. The sensitivity of an AGCM to persisted SST anomalies, can be estimated 

by comparing the ensemble-mean anomaly correlations from the simulation to those 

from the hindcast. To the extent that the magnitude or structure of dynamically 

important SST anomalies evolves through the season in any particular year, persisted 

SST anomalies will not accurately reflect the observed forcing of the system. An 

erroneous signal will then be generated in the AGCM's climate, and a loss of skill 

will be reflected in weakened anomaly correlations for the hindcasts compared to the 

simulations. 

The anomaly correlations for the simulations indicate that potential prediction 

skill is high in only very few regions for any one season in this model (Fig. 2a-d, top 

panels). This weakness in the predictability of precipitation is a typical property of 

current state-of-the-art AGCMs (e.g. Peng et al. 2000), and may be an inherent 

property of precipitation variability for much of the globe. Despite the poor skill 

globally, the tropics clearly display potential skill (Fig. 2a-d, top panels), with the 

highest correlations typically found over northern South America, tropical Africa, and 

the Indonesia region. 

In Fig. 2a-d, the bottom panels show the anomaly correlations for the hindcasts. 

The same coherent regions of skill identified in the simulations are, in general, 

captured by the persisted SSTA hindcasts, which suggests that using persisted SSTA 

constitutes a reasonable SST prediction for one-season lead time. However, even 



8 

 
though the hindcasts replicate much of the regional prediction skill, the anomaly 

correlation coefficients are often significantly less than were obtained with the 

simulations. In some cases, such as over western Africa in June ?  August and over 

eastern Africa in September ?  November, large and coherent regions in which the 
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model had good simulation skill have weak hindcast skill. The loss of prediction skill 

over these two areas is examined in further detail below. 
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3.2 Changes in the model's climate signal and noise 

In addition to reductions in skill because of erroneous boundary forcing, forecast 

quality may be adversely affected by changes in characteristics of the model 

climatology under different approaches to prescribing SSTs. Relative to simulations 

forced with the actual simultaneous observed SST anomalies, the climate predictions 

may contain systematic biases in the model's local signal and noise characteristics. 

Prediction biases in the seasonal response of the model can impact profoundly the 

interpretation of the predicted anomalies. The model's ensemble distribution for a 

particular season and year acquires meaning only relative to the climatological 

response of the ensemble members over many previous years for that same season. 

Thus the ensemble distribution for a particular season should be interpreted relative to 

historical runs that were subject to a similar boundary forcing strategy. Examples 

given below illustrate how differences in the model's response could be 

misinterpreted if a prediction forced with persisted SST anomalies were judged 

relative to the response characteristics of the simulation runs. 

Signal and noise are two characteristics typically used to describe model response. 

In terms of the ensemble distribution, the signal represents the mean shift of the 

distribution, while the noise represents the spread of possible outcomes about that 

mean response. For an AGCM the model signal can be estimated by the ensemble-

mean variance, which represents the model's repeatable response to a given SST 

boundary condition (i.e. that in a particular season and year), averaged over many 

years (Anderson and Stern, 1996; Zwiers, 1996; Rowell, 1998). The signal, or 

externally forced variance, is defined here as: 

2
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where
iA  is the ensemble-mean value for a particular year, i, which summed over all n 

years, gives the ensemble-mean climatological value, ? ?A . Model noise, or internally 

forced variance, refers to the average deviation of the individual ensemble members 

from the model's mean response. Noise is defined here as: 
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where ija  represents the individual ensemble member, j, for a particular year, i, which 

summed over all ensemble members, m, leads to the ensemble mean value, iA . 

The time-averaged signal-to-noise ratio is often used to represent model potential 

predictability (Madden, 1976; Lau, 1985; Chervin, 1986; Shea and Madden, 1990; 

Rowell, 1995). When the external variance forced by the boundary conditions 

exceeds the internal variance of the atmosphere, it implies that a deterministic signal 

can be discerned above the noise in the system and may be predictable. This type of 

potential predictability does not necessarily indicate skill: the model may respond to 

boundary forcing in a manner inconsistent with observations. In nature, it is not 

possible to separate the boundary forced 'signal' from the internal 'noise' of the 

atmosphere, because observations yield only one realization. Thus, these components 

of the variability must be approximated using an ensemble of AGCM integrations. As 

the number of ensemble members increases, this approximation should become 

better, although the signal-to-noise ratio will remain specific to the particular AGCM. 

With the small number of ensemble members used for the experiments in this paper, 

the noise patterns are likely to be partly projected onto the signal patterns (Rowell, 

1995, Venzke, 1999), but the assumption here is that this contamination is similar 

enough between the two experiments that comparisons are valid. 

Figures 3?5 show the average signal-to-noise characteristics of the simulation and 

hindcast experiments for the individual tropical ocean basins in each of the four 

seasons. One cannot assume a priori how the signal and noise characteristics will 

change locally subject to predicted SSTA. Overall, these characteristics remain 

similar to those seen in the simulation runs. Of particular interest are the cases for 
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which the signal changes noticeably but the strength and pattern of the noise fields 

remains similar between the simulation and hindcast runs. For example, over the 

tropical Atlantic in JJA (Fig. 3b), the AGCM responds much more dramatically to the 

persisted SSTAs than to the simultaneous anomalies, but the overall internal variance 
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remains effectively unchanged. The strengthened signal in the hindcast experiment 

leads to an increase in the signal-to-noise ratio over parts of coastal western Africa by 

a factor of 5 or more compared to the simulation (Fig 3b, bottom row). Similarly, the 

external variance for SON over the Indian Ocean is strengthened given the persisted 
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SSTA (Fig. 4c, upper row), particularly in the Indonesian region, while the overall 

magnitude of the internal variance does not change (Fig. 4c, middle row). Again, the 

signal-to-noise ratio is greater in the hindcast experiment, particularly towards the 

eastern and western edges of the Indian Ocean basin (Fig 4c, bottom row). 
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These biases in both the strength and placement of the hindcast signal, relative to 

that from the simulations, must result at least in part from systematic errors in the 

characteristics of the SSTAs prescribed in the hindcasts. How SST errors relate 

physically to errors in the model's climate response is explored in the following 
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section for the two case studies highlighted above: western Africa in JJA and 

eastern Africa and Indonesia for SON. 
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3.3 Case Studies 

3.3.1 JJA ?  Western Africa and the tropical Atlantic Ocean 

Western Africa during the JJA season exhibits one of the most severe examples of 

loss in prediction skill using persisted SSTA (Figure 2b). The simulation using the 

actual SSTA demonstrates statistically significant skill over much of western Africa, 

particularly over the Gulf of Guinea region. When predicting JJA precipitation using 

persisted SSTA from May observations, the size of the region over which there is 

prediction skill decreases greatly, and for the small region of remaining skill, the 

anomaly correlation is 20?50% weaker than that of the simulations. 

As a first order approximation of the systematic SSTA errors resulting in this loss 

of prediction skill, canonical correlation analysis (CCA) was applied to the seasonally 

averaged difference fields of SST and rainfall. The difference fields are defined as the 

actual minus the predicted (i.e. persisted) SSTA and as the ensemble mean simulation 

rainfall minus the hindcast rainfall. The CCA maximizes correlation between the two 

fields using weighted combinations of the first 5 EOFs from each of the difference 

fields. For the SST difference, dSST, the EOFs were constructed using covariance 

matrices, which emphasize the magnitude of the errors in the SST forcing. For the 

precipitation difference field, dPCP, correlation matrices were used for the EOFs, 

which highlight any systematic shift in rainfall patterns regardless of the strength of 

the differences. 

The first CCA mode shows a meridional structure in both SSTA and precipitation 

(over land) differences (Fig. 6). This structure implies that when predicted SSTA is 

too warm in the equatorial region and too cool off the west coast at approximately 

10?N there is a southward shift of the AGCM precipitation response. Using persisted 

SSTA with this error pattern, more rainfall appears in the Gulf of Guinea region and 

less to the north than would have been simulated with the actual SSTA. The principal 

component time series of dPCP and dSST for this first CCA mode correlate at 0.84 

and describe 15% of the dPCP variance and 17% of the dSST variance. A similar 

pattern emerges from a CCA analysis of the actual precipitation variability related to 

SST variability in both the observations and the AGCM over this region (not shown), 

with similar correlation between the pattern time series, and a similar fraction of 
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variance explained. The similarity between the error and actual CCA analyses is not 

surprising because much of the precipitation variability for JJA in this region is 

governed by the anomalous position of the ITCZ over the Atlantic (Ward 1998). 

Climatologically, the ITCZ migrates northward in June ?  August and reaches its 

northern-most latitude by the end of the season. If equatorial SST is warmer than 



28 

normal, equatorial sea level pressure will be lower than normal, and anomalous 

equatorward flow will be induced. This anomalous tropical circulation causes the 

ITCZ to reside closer to the equator than normal for this season, bringing higher 

rainfall totals to the Gulf of Guinea region and lower rainfall over the Sahel (Lamb 

1978a, 1978b; Lough 1986; Ward 1998). 

Unfortunately, even though the first mode of the error fields is similar to the first 

mode of the full variability, this structure does not appear as a cleanly evolving mode 

during any particular JJA season. The intra-seasonal SSTA field in the tropical 

Atlantic contains considerable noise, fluctuating greatly from one month to the next, 

as reflected in the weak persistence of SSTA at this time of year (Fig. 1b). Methods 

used to predict tropical Atlantic SST have been unable to improve upon a forecast of 

persistence south of the equator for any season (Penland and Matravosa, 1998; 

Landman and Mason 2001; Repelli and Nobre, 2001). 

The first CCA mode of the SSTA error is largely due to seasonal changes in local 

SSTA variance. In May, the SSTA variance shows a local maximum off the west 

coast of Africa at approximately 10?N (Fig. 7a). The strength of the SSTAs in that 

region typically drops off dramatically by June, and remains negligible throughout 

JJA (Fig. 7b-d). Conversely, the equatorial variance of SSTA is small in May, but 

grows in June and July. Thus persisting May SSTA through JJA in the tropical 

Atlantic imposes SSTA signals that are likely to disappear, or at least weaken, in the 

coming forecast season north of the equator and does not specify signals that may 

develop during the forecast season on and to the south of the equator. 

The difference in signal-to-noise ratios between the simulation and hindcast runs 

also may result in part from the seasonal changes in local SSTA variance. Due to the 

month-to-month noise in the tropical Atlantic SSTA, the equatorial variance of May 

SSTA is very similar to that of the JJA seasonal average (Fig. 7a vs. Fig. 7e), even 

though the SSTA variance of June and of July is stronger. Therefore, the stronger 

precipitation signal generated by the hindcast experiments (Fig. 3b) must be due to at 

least one of two possible causes. First, the presence of the stronger SSTA variance in 

May seen off the western coast of Africa (Fig. 7a) and known to be associated with 

the precipitation error between the two experiments (Fig. 6) may be overly 

influencing the JJA forecasts. In this case, merely damping the observed SSTA in that 
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region should bring the signal into better agreement with that of the simulation. 

Second, the tropical precipitation may be exhibiting a non-linear response to 

equatorial SSTA. The equatorial region exerts a significant influence on the 

differences in precipitation over the West Africa region (Fig. 6). If it is assumed that 

the equatorial SSTA dominates the precipitation variability and that precipitation 

anomalies are linearly related to SSTA, then the rainfall signals should be 
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approximately equal if the SSTA variance is approximately equal in both 

experiments. But, such equivalence is not seen in the precipitation variance even 

though the variance fields of the prescribed seasonal SSTA are of similar magnitude 

in the equatorial region. These two hypotheses require explicit experimentation, 

however, before their relative impacts can be determined. 

The sensitivity of the Atlantic ITCZ to errors in the SSTA also affects the rainfall 

signal over northern South America. However compared to western Africa, the 

simulation skill over South America is higher and covers a larger area so that a 

reduction in skill of similar magnitude to that exhibited over western Africa still 

leaves a substantial region with significant operational predictability under this 

method of SST prediction. 

This case study has focussed on the season JJA for western Africa; however, JAS 

more accurately defines the rainy season for the Sahel region of western Africa. Ward 

et al. (1993) showed that AGCM predictions over the Sahel region for JAS improved 

when June SSTA was persisted instead of May SSTA. This result is consistent with 

the climatological evolution of SSTA variance patterns (Fig. 7). Thus shorter-lead 

forecasts made at the beginning of the season may prove more useful to decision 

makers. The main caveat from the preceding results is that potential prediction skill 

cannot currently be realized over this region from forecasts produced using May 

observations, or earlier, due to lack of forecast skill for equatorial/south tropical 

Atlantic SSTA. 

 

3.3.2 SON ?  Eastern Africa and the Indian Ocean 

Persisted SSTAs lead to significant reduction in skill over eastern Africa also, 

particularly over Kenya and northern Tanzania during the SON season (Fig. 2c). This 

season approximates the rainy season over the Greater Horn of Africa region, which 

peaks in October ?  December (OND) for Kenya, being slightly earlier to the north 

and later to the south of Kenya as the ITCZ migrates southward during the end of the 

year. Variability of the OND rainy season over East Africa has a well-known 

statistical relationship with ENSO (Ropelewski and Halpert, 1987; Ogallo, 1988; 

Beltrando, 1990; Nicholson and Kim, 1997; Mason and Goddard, 2001). For the 

SOND season, the most robust teleconnection with ENSO is experienced in October 
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and November when large-scale OLR anomalies are found over the Indian Ocean 

sector in phase with those over the tropical Pacific and out of phase with those over 

the Maritime continent (Mutai and Ward, 2000). In September the large-scale OLR 

structure does not appear over the Indian Ocean sector, possibly because of an 

influence of the seasonal background state of the atmosphere (Mutai and Ward 2000). 

Although East Africa and the Indian Ocean sector do exhibit climate variability 

associated with ENSO, modeling studies have shown that appropriate changes in 

Indian Ocean SST are necessary to reproduce the correct rainfall variability over East 

Africa at the end of the year (Goddard and Graham, 1999). Using observational data 

alone, it is difficult to separate the importance of ENSO relative to that of the Indian 

Ocean since SST variability in these two ocean basins is highly correlated, with the 

tropical Pacific variability leading by approximately 3 months (e.g. Goddard and 

Graham, 1999; Venzke et al, 2000). When the forcings from the two basins are 

isolated, it can be shown that tropical Pacific SST anomalies applied to this AGCM 

without the appropriate anomalies in the Indian Ocean lead to a rainfall response over 

East Africa opposite to that obtained with full global SST or even Indian Ocean SST 

anomalies alone (Goddard and Graham, 1999). 

The 3-month lead time of tropical Pacific to Indian Ocean variability combined 

with the tendency of ENSO evolution to phase-lock to the seasonal cycle implies that 

SON is an important season for the evolution of SSTAs in the Indian Ocean basin. 

Generally, ENSO events first appear and begin to grow in the Northern Hemisphere 

Spring. Assuming that the lead-time between the Pacific and the Indian Ocean is 

relatively independent of the time of year, August SSTa in the Indian Ocean will 

reflect May or June conditions in the tropical Pacific when the ENSO event is just 

beginning to evolve. In November, the SSTA in the Indian Ocean will reflect 

August/September conditions in the tropical Pacific when the ENSO event is fairly 

mature. Thus rapid growth of ENSO, usually seen in the middle of the year, will 

appear as rapid development of SSTAs in the Indian Ocean only during the later part 

of the year (i.e. SON). Figure 8a illustrates the differences in persistence 

characteristics of the Indian Ocean and Pacific Ocean described above. By August, 

the SSTAs in the tropical Pacific are well established, and their persistence is high 

through the end of the year when the magnitude of ENSO SSTA usually peaks. On 
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the other hand, SSTA in the Indian Ocean is evolving at this time and neither the 

strength nor pattern of SSTA seen in August is persistent through SON. This is 

particularly clear when the linear trend that imparts some persistence through this 

season is removed (Fig. 8b). 



33 

Because the Indian Ocean SSTA is central to reproducing rainfall variability over 

East Africa, the skill of an AGCM will be negatively impacted by the absence of this 

evolution in SSTA. The loss in skill seen over East Africa (Figure 2c-upper versus 

2c-lower) appears primarily due to errors in prescribed SSTA over the Indian Ocean, 

as shown by the first CCA mode of the precipitation and SSTA difference fields (Fig. 

9). When an El Ni?o event grows, positive SSTAs develop in the Indian Ocean that 
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are larger in SON than in August. With the warm SSTA in the central Indian Ocean 

comes increased rainfall over East Africa, so persisting August SSTA through SON 

will lead to less rainfall over East Africa than seen in the simulations (Fig. 9). Notice 

also that the strongest loading in the SST pattern shown in Figure 9 coincides largely 

with the areas of weakest correlation of August versus November SSTA (Fig. 8b). 

Furthermore, the time series of the SSTA difference pattern correlates significantly to 

the change in NINO3.4 from August to SON (r=0.45) (r=0.34 for the actual SON 

NINO3.4 index). Both of the above findings suggest that rapid evolution of ENSO is 

related to the lack of persistence in the Indian Ocean during SON. 

Unlike the case of West Africa rainfall and Atlantic Ocean SSTA, the outlook for 

East Africa predictability is more promising. The strong influence of the tropical 

Pacific variability, which is largely predictable, especially once the evolution of an 

ENSO event has begun (Landsea and Knaff, 2000; Landman and Mason 2001), and 

the relatively slow time scale of that evolution, implies that predictions for the Indian 

Ocean can improve upon persistence. Even the simplest of predictions of Indian 

Ocean SSTA for SON based on tropical Pacific temperatures improves upon 

persistence over most of the Indian Ocean. Root mean squared errors are smaller over 

most of the Indian Ocean basin for predictions of SON SSTA by using a simple linear 

regression model with August NINO3.4 anomalies as the only predictor compared to 

using persistence of August SSTA (not shown). Using more sophisticated models to 

predict Indian Ocean sea temperature anomalies, further improvements are likely to 

be achieved, and it seems reasonable to expect these improvements to result in more 

accurate forecasts of SON precipitation of eastern Africa. 

 

4 Discussion and summary 

Sea surface temperature anomalies (SSTA), especially in the tropics, typically vary 

slowly enough that a prediction of persistence is difficult to beat at lead times out to 3 

or 4 months. However, when atmospheric general circulation models (AGCMs) are 

used to predict seasonal climate, errors in the predicted SSTs can translate into 

significant losses in predictive skill. By comparing long historical runs of an AGCM 
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forced with both observed SSTs and persisted SSTA, the errors introduced by 

imperfect boundary conditions are revealed. 

Operational skill levels of AGCMs must include the uncertainty inherent in the 

SST predictions. Under persisted SSTA forcing the ECHAM3.6 AGCM retains much 

of the precipitation skill seen under simulation forcing. However, several regions that 

exhibit good simulation skill are poorly predicted in an operational setting using 

persisted SSTA. Even over regions for which true prediction skill remains significant, 

the magnitude of the skill measure is often reduced implying that skill levels will be 

overestimated if based only on simulation runs. 

Systematic biases in a model's response to predicted SSTs must also be 

quantified. Biases introduced by the particular SST forecast strategy are likely to be 

translated into biases in the ensemble distribution. Such biases directly affect the 

interpretation of the strength of a seasonal climate anomaly and its associated 

uncertainty by altering the mean seasonal signal and/or noise characteristics. 

Although signal-to-noise ratios are often used to indicate potential predictability in a 

model, regional changes in signal-to-noise do not appear responsible for the loss of 

skill in the ECHAM3.6 runs. Rather, relative to the simulations, the persisted SSTA 

runs typically yield a stronger signal-to-noise ratio for precipitation in regions where 

correlation skill is weaker. The change in signal-to-noise characteristics results 

primarily from an increase in the local precipitation signal with little change in the 

regional noise levels. If not properly accounted for, such a bias would lead a 

forecaster to suggest that the magnitude of a seasonal rainfall anomaly will be much 

stronger than is actually being indicated. The enhancement of signal, particularly in 

the tropics, may be related to the fixed pattern of SSTA forcing the AGCM for the 3-

month season in places where the observed SSTA is more variable from month to 

month. Such a hypothesis would require regional precipitation to respond non-

linearly to local SSTA. Preliminary analysis suggests this is possible, but it is not 

conclusive, requiring further experimentation. The enhancement of signal may also be 

due to important changes in the magnitude of local SSTA variance, such as that due 

to the seasonal evolution of SSTA variance patterns. 

The systematic error biases apparent between the simulation and persisted 

hindcast runs and the SST-related causes for those biases were examined through two 
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case studies. In West Africa during the JJA rainy season, errors in the SST anomalies 

over the tropical Atlantic contribute most significantly to loss of skill over the region. 

The structure of the SSTA error is well defined with a maximum of one sign along 

the equatorial Atlantic and a maximum of opposite sign off the western coast of West 

Africa, from Mauritania to Liberia. This error pattern in SSTA results in an erroneous 

meridional shift of the ITCZ analogous to the relationship between interannual 

tropical Atlantic SST variability and West Africa rainfall variability that has been 

well documented. However, the evolution of SSTA in the tropical Atlantic from May 

to August is noisy, and may not be easily predictable. The SSTA error in the tropical 

Atlantic during JJA does bear some resemblance to the seasonal evolution of SSTA 

variance. Regions where locally high variance dies off rapidly during the forecast 

season could be preferentially damped. Still important variability is developing in the 

equatorial Atlantic during the JJA season, a situation that even modified persistence 

cannot handle. At this time statistical and dynamical predictions of equatorial and 

south Atlantic SSTA cannot beat persistence, thus the potential to predict JJA (or 

JAS) rainfall over West Africa using SST information prior to June remains low. 

The second case study focussed on East Africa during the SON rainy season. 

Here, errors in the Indian Ocean SSTA are responsible for loss of skill in the persisted 

hindcasts. These errors are largely due to the influence of the tropical Pacific on 

SSTA variability in the Indian Ocean. Since ENSO events undergo rapid growth 

during the middle of the year, and their impact on the Indian Ocean is seen 

approximately three months later, SON represents a season of potentially rapidly 

changing SSTA in the Indian Ocean. Persisting August SSTA misses this evolution in 

the Indian Ocean leading to substantial discrepancies in the rainfall anomalies over 

East Africa. The strong relationship between the Indian Ocean and the Pacific Ocean 

suggests that predictions of SSTA for the Indian Ocean can improve upon 

persistence. 

As illustrated in these case studies, identifying in what way the imperfect SST 

predictions are biasing the model response, such as the sign, magnitude, and/or intra-

ensemble variance, and in what regions the imperfect SST predictions are most 

influential are important steps towards improving SST predictions and associated 

climate predictions. 
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