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Abstract Most estimates of the skill of atmospheric general circulation models (AGCMs) for
forecasting seasonal climate anomalies have been based on simulations with actual observed sea
surface temperatures (SSTs) as lower boundary forcing. Similarly estimates of the climatological
response characteristics of AGCMs used for seasonal-to-interannual climate prediction frequently rest
on historical simulations using "perfect” SST forecasts. This paper examines the errors and biases
introduced into the seasonal climate response of an AGCM forced with persisted SST anomalies,
which are generally considered to constitute a good prediction of SST in the first 3month season.
However, the added uncertainty introduced by the predicted SST anomalies weakens, and in some
cases nullifies, the skill of atmospheric predictions that is possible given perfect SST forcing. The use
of persisted SST anomalies also leads to changes in local signal-to-noise characteristics. Thus, it is
argued that seasonal-to-interannual forecasts using AGCMs should be interpreted relative to historical
runs that were subject to the same strategy of boundary forcing used in the current forecast in order to
properly account for errors and biases introduced by the particular SST prediction strategy. Two case
studies are examined to illustrate how the sensitivity of the climate response to predicted SSTs may be
used as a diagnostic to suggest improvementsto the predicted SSTs.



1 Introduction

The predictability of seasond climate anomdies results primarily from the influence
of dowly evolving boundary conditions, and most notably sea-surface temperatures
(SSTs), on the amospheric circulation (PAmer and Anderson 1994; Goddard et al.
2001). Because of feedbacks between the ocean and the atmosphere, the coupled
system may be predictable in some regions of the tropics a year or more in advance
(Barnston et d. 1994; Latif et a. 1994, 1998, Nedin e d. 1998), dthough
operationd forecast <kill is more redidicaly limited to lead-times of a few months
(Barngton et d. 1999a; Landsea and Knaff 2000; Mason and Mimmack 2002). At
shorter lead-times of about three months or less, but beyond the period in which
forecast <kill from initid conditions remains discernible (Brankovic et d. 1990, 1994;
Brankovic and Pamer 2000), changes in the boundary conditions are sufficiently
dow compared to the predictability limit for the atmosphere aone that seasond
climate forecasting is possble even in the absence of detalled projections of the
evolution of the boundary layer. Throughout much of the tropica oceans, and in some
aess of the mid-latitudes, the autocorredaion of monthly SST anomdies (SSTAS)
remains geater than 0.5 a lags of sx months or more (Fig. 1). Because the ocean is
more dowly evolving than the amosphere, the assumption that current anomalous
conditions will persst over the next season provides an accurate forecast of oceanic
conditions for the next few months in many regions. Forecasts for perssent SST
anomalies out to 3 months lead cannot be outscored by even the most sophisticated
forecast models (Latif et a. 1994, 1998; Stockdale et a. 1998; Goddard et al. 2001).
Although boundary conditions provide predictability of the atmosphere at
seasona  timescales, the inherent variability of the amosphere requires seasond
climate forecasts be expressed probabiligtically (e.g. Barnston et d. 1999b; Mason et
a. 1999; Goddard et al. 2001). Forecast ensembles are a standard method of
esdimating the uncertainty in seasond climate by sampling the didribution of possble
climate outcomes. However, ensembles may not provide reliable estimates of forecast
uncertainty due to mode erors, in other words, the chaotic evolution of the
amosphere is not the only source of forecast uncertainty. Systematic mode errors

can be corrected statisticaly (Ward and Navarra 1998; Feddersen et a. 1999; Mason
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et d. 1999), but these erors are likely to be conditiond upon the date of the
boundary forcing (Mo and Wang 1995), which, in turn, is subject to its own forecast
uncertainty. Most estimates of the forecast skill and structures of systematic forecast
erors of AGCMs ae based on modd smulations usng observed SSTs (eg.
Brankovic et d. 1994; Feranti et a. 1994; Brankovic and Pamer 1997; Mason &t al.
1999). Since modd smulations forced with observed SSTs provide an indication of
modd peformance assuming perfect SST forecads, edimates of the skill of
operationd modd predictions are generdly overestimated, and mode systematic
erors introduced by the predicted SSTs may not be estimated at dl. It is important to
know what uncertainties in the forecasts of seasond dimate result from imperfect
SST forecasts (Barnett 1995).

Figute 1. Number of menths fiown initial conditiohs when lagged aule—cottelation of SSTA dieps below 0.5. Conlout at
+irenths indicales Legions whete the lagged amlo—<cottelation of S5TA is greatet than 0.5 thieugh the end of
the fitsl fotecast season.

In this paper, the contributions of imperfect SST forecasts to seasona forecast
uncertanties are investigated. The focus is on identifying possible causes for loss of
kill in forecadting precipitation that may arise from using perssted SSTAs as forcing
for dynamicd amospheric modds Because of its large socid implications for many
pats of the world, atention is focused on potentid prediction skill of precipitation.
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Comparisons between the precipitation hindcasts and smulaions are used to identify
where ill is logt as a result of imperfect SST forecasts, and hence to identify key
ocean areas where short lead-time SST forecasts need to be improved.

2 Data and methods

2.1 Model and Experimental Design

The ensamble modd expeiments used in this andyss were run udng the
ECHAM3.6 amospheric general circulation modd (AGCM), configured at spectra
truncation T42 (gpproximady 2.8° horizontal resolution) and with 18 verticd levels.
Further details of this AGCM can be found in DKRZ (1992).

Two sets of ensembles were crested. "Simulation” runs were generated by forcing
the AGCM with observed smultaneous monthly-mean SSTs. An ensemble of 10
smulaion runs is avalable for the period 1950?present. The initid conditions of the
ensamble members differed from each other by one modd-day of westher when the
smulation began with 1949. The integrations proceeded continuoudy from 1949 to
present day conditions, and the firsdt year was discarded. "Hindcast" runs refer to
forecasts that were made retrospectively for the purpose of assessing the forecast
method (Ward et a. 1993). The hindcasts were forced by persisting the observed
SSTA from one month through the fallowing 3-month season. The perssted anomaly
Is added to the evolving dimatologicd cycle of SST to obtan the full SST forcing.
For the hindcast runs, 5 member ensembles were generated using initid conditions
from the ensemble members of the smulaion set. Hindcast ensembles were made for
4 non-overlapping seasons. the March ? May (MAM) hindcasts use perssted SSTA
from February; the June ? August (JJA) hindcasts use perssted SSTA from May; the
September ? November (SON) hindcasts use perssted SSTA from August; and, the
December ? February (DJF) hindcasts use perssted SSTA from November. These
seasona  hindcasts cover the 27-year period 197071996 (26-year period 1970/71 ?
1996/97 for DJF).



The andysis period is that common to both sets of AGCM runs. 1970?1996. This
27-year long record is used to identify regions that are senstive to errors introduced
by perasted SSTA forcing of the AGCM. The performance andyss of both ensemble
sets consders the ensemble-mean response of the modd. Since the hindcasts have
only 5 members, while the smulations contain 10 members, for the sake of a farer
comparison the ensemble-mean of the smulation was cdculated usng only 5 of the
avalable members. A large pool of other potentid combinations of 5 ensemble
members for the dmulations provides an edimae of the range in <kill due to the
modd's uncertainty in the ensemble-mean response when the number of ensemble
members is insufficient to resolve the forecast probability didribution (Kumar & d
2001). The results in Section 3 shown from the random sdlection of 5 smulaion
members are representative of the median in the range of skill levelslocaly.

2.2 Observational Data

SST. The Reynold's observed SST dataset from the Climate Prediction Center of the
Nationd Westher Service (Smith et d. 1996) was used as boundary forcing in the
AGCM experiments. These SST data are provided as monthly averages on a 2° grid.
The data were interpolated spatidly to the effective grid resolution of T42, and then
linearly interpolated to daily vaues as the AGCM stepped through the integrations.

Precipitation. The precipitation verification data were obtaned from the Climate
Research Unit of the Universty of East Anglia The observed cdimatologica data
covering the 1961?1990 period comes from up to 19,800 stations, which are mapped
onto a 0.5° grid over land tregting devation dependency explicitly. Grid points are
filled in ugng thin plate splines in regions where rain gauges ae missSng or sparse
(New et d. 1999). The monthly anomalies, from a less dense network of dtations, ae
edimaed locdly and then combined with the high-resolution climatology to obtain
the totd precipitation fidds. In regions of sparse data coverage of anomdies, most
notebly over pats of centrd Africa and the Middle East, angular distance weighting
was used to interpolate the vaues spatidly (New et d, 2000). The find gridded data



st contains no missng data. The high resolution data were up-scaled to the T42 grid
for comparison with the AGCM precipitation fields.

3 Results

3.1 Simulation v hindcast skill

In an operationa forecast etting, the <kill of rainfdl predictions from an AGCM is
unlikely to be as great as the potentid prediction skill edimated from smulations
forced with the smultaneous observed SSTs. The loss of skill in the operationd
context is grestest in regions where the climate is sendtive to errors in predicted SST
anomdies. The sengtivity of an AGCM to perssted SST anomalies, can be estimated
by comparing the ensemble-mean anomdy corrdations from the smulation to those
from the hindcast. To the extent that the magnitude or dtructure of dynamicaly
important SST anomdies evolves through the season in any particular year, perssted
SST anomdies will not accurately reflect the observed forcing of the sysem. An
erroneous signd will then be generated in the AGCM's dimate, and a loss of «ill
will be reflected in weskened anomay corrdations for the hindcasts compared to the
smuléions.

The anomdy corrdations for the dmulations indicate that potentid prediction
kil is high in only very few regions for any one season in this modd (Fig. 2a-d, top
pandls). This weskness in the predictability of precipitation is a typicd property of
current state-of-the-at AGCMs (eg. Peng et d. 2000), and may be an inherent
property of precipitation varigbility for much of the globe Despite the poor skill
globdly, the tropics dearly display potentid <kill (Fig. 2a-d, top panels), with the
highest corrdations typicdly found over northern South America, tropica Africa, and
the Indonesaregion.

In Fg. 2ad, the bottom pands show the anomaly correations for the hindcasts.
The same coherent regions of <kill identified in the smulations are, in gened,
captured by the perssed SSTA hindcasts, which suggests that using persisted SSTA

conditutes a reasonable SST prediction for one-season lead time. However, even
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though the hindcasts replicate much of the regionad prediction sill, the anomdy
correlation coefficients are often dgnificantly less than were obtained with the

gamulations. In some cases, such as over western Africa in June ? August and over

eastern Africa in September ? November, large and coherent regions in which the
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Figute 2b. Sune as Figute 2a, but for [14 19701996,

modd had good smulation skill have wesk hindcast skill. The loss of prediction skill
over these two aress is examined in further detail below.
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3.2 Changes in the model's climate signal and noise

In addition to reductions in skill because of eroneous boundary forcing, forecast
qudity may be adversdy affected by changes in characterisics of the modd
climaology under different gpproaches to prescribing SSTs. Rdative to amulaions
forced with the actud smultaneous observed SST anomadlies, the climate predictions
may contain systemdtic biasesin the modd's loca signa and noise characteristics.

Prediction biases in the seasond response of the modd can impact profoundly the
interpretation of the predicted anomadies. The modd's ensemble digribution for a
paticular season and year acquires meaning only redive to the climatologica
response of the ensemble members over many previous years for that same season.
Thus the ensemble digtribution for a particular season should be interpreted relative to
higorica runs that were subject to a smilar boundary forcing drategy. Examples
gven bdow illusrate how differences in the modd's response could be
misnterpreted if a prediction forced with perdsed SST anomdies were judged
relaive to the response characteristics of the smulation runs.

Signd and noise are two characterigtics typicaly used to describe modd response.
In terms of the ensemble digribution, the sgnd represents the mean shift of the
digribution, while the noise represents the spread of possble outcomes about that
mean response. For an AGCM the modd signd can be estimated by the ensemble-
mean variance, which represents the mode's repeatable response to a given SST
boundary condition (i.e. that in a particular season and year), averaged over many
years (Anderson and Stern, 1996; Zwiers, 1996; Rowell, 1998). The dgnd, or
externdly forced variance, is defined here as:

21 [ )
7o = ap 2 A ? A%, (1)

where A is the ensemble-mean vaue for a particular year, i, which summed over dl n

years, gives the ensemble-mean dimaologica vaue, “A%. Modd noise, or internaly
forced variance, refers to the average deviaion of the individua ensemble members

from the modd's mean response. Noise is defined here as:
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where a; represents the individua ensemble member, |, for a particular year, i, which
summed over dl ensemble members, m, leads to the ensemble mean value, A .

The time-averaged dgnd-to-noise ratio is often used to represent modd potentia
predictability (Madden, 1976; Lau, 1985; Chervin, 1986; Shea and Madden, 1990;
Rowdl, 1995). When the externa variance forced by the boundary conditions
exceeds the interna variance of the amosphere, it implies that a determinigtic Sgna
can be discerned above the noise in the sysem and may be predictable. This type of
potentia predictability does not necessarily indicate kill: the modd may respond to
boundary forcing in a manner incongstent with obsarvations. In nature, it is not
possble to separate the boundary forced 'sgnd’ from the internad 'noise of the
amosphere, because observations yied only one redization. Thus, these components
of the variability must be gpproximated usng an ensemble of AGCM integrations. As
the number of ensamble members increases, this gpproximation should become
better, athough the sgna-to-noise raio will reman specific to the particular AGCM.
With the smal number of ensemble members used for the experiments in this paper,
the noise patterns are likely to be partly projected onto the sgnd paiterns (Rowell,
1995, Venzke, 1999), but the assumption here is that this contamination is smilar
enough between the two experiments that comparisons are vaid.

Figures 3?5 show the average signal-to-noise characterigtics of the smulation and
hindcast experiments for the individua tropicad ocean basins in esch of the four
seasons. One cannot assume a priori how the signa and noise characterigtics will
change locdly subject to predicted SSTA. Overdl, these chaacteridics reman

dmilar to those seen in the smulaion runs. Of particular interest are the cases for

13
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which the sgnad changes noticesbly but the strength and pattern of the noise fidds
remans dmilar between the smulaion ad hindcast runs. For example, over the
tropical Atlantic in JJA (Fig. 3b), the AGCM responds much more dramaticdly to the
persasted SSTAs than to the smultaneous anomadlies, but the overal internd variance

14
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Figute 3b. Sune as Figute 32, cxcepl for [1A 1970-1996.

remans effectively unchanged. The drengthened dgnd in the hindcast experiment
leads to an increase in the dgnd-to-noise ratio over parts of coastad western Africa by
a factor of 5 or more compared to the smulation (Fig 3b, bottom row). Smilarly, the
externad variance for SON over the Indian Ocean is drengthened given the perssted
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SSTA (Fig. 4c, upper row), paticularly in the Indonesan region, while the overdl
magnitude of the internd variance does not change (Fig. 4c, middle row). Agan, the
ggnd-to-noise ratio is grester in the hindcast experiment, particularly towards the
eastern and western edges of the Indian Ocean basin (Fig 4c, bottom row).
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These biases in both the strength and placement of the hindcast signd, relative to
that from the smulations, mugt result a least in pat from sysematic erors in the
characteristics of the SSTAs prescribed in the hindcasts. How SST erors relate
physcdly to erors in the modd's climae response is explored in the following
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section for the two case dudies highlighted above: western Africa in JJA and
eastern Africaand Indonesiafor SON.
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3.3 Case Studies

3.3.1 JJA ? Western Africa and the tropical Atlantic Ocean

Western Africa during the JJA season exhibits one of the most severe examples of
loss in prediction skill usng perssed SSTA (Figure 2b). The smulaion using the
actud SSTA demondrates detidicdly dgnificant kill over much of western Africa,
paticulaly over the Gulf of Guinea region. When predicting JJA precipitation using
perssted SSTA from May obsarvations, the sze of the region over which there is
prediction skill decreases gredtly, and for the smdl region of remaning skill, the
anomaly correation is 20?50% weaker than that of the smulations.

As a first order approximation of the sysematic SSTA erors resulting in this loss
of prediction sKill, canonicd corrdation andyss (CCA) was agpplied to the seasondly
averaged difference fidds of SST and rainfdl. The difference fidds are defined as the
actud minus the predicted (i.e. perssted) SSTA and as the ensemble mean smulation
ranfal minus the hindcast rainfdl. The CCA maximizes corrdation between the two
fields usng weghted combinations of the fird 5 EOFs from each of the difference
fidds. For the SST difference, dSST, the EOFs were congtructed using covariance
matrices, which emphasize the magnitude of the erors in the SST forcing. For the
precipitation difference field, dPCP, corrdaion matrices were used for the EOFsS,
which highlight any sysemdtic shift in ranfdl patterns regardless of the drength of
the differences.

The firsds CCA mode shows a meridiona sructure in both SSTA and precipitation
(over land) differences (Fig. 6). This Sructure implies that when predicted SSTA is
too wam in the equatoria regon and too cool off the west coast a approximately
10N there is a southward shift of the AGCM precipitation response. Using persisted
SSTA with this error pattern, more rainfdl gppears in the Gulf of Guinea region and
less to the north than would have been smulated with the actud SSTA. The principa
component time series of dPCP and dSST for this firss CCA mode correlate at 0.84
and describe 15% of the dPCP variance and 17% of the dSST variance. A smilar
pattern emerges from a CCA andyss of the actud precipitation variability related to
SST variability in both the observations and the AGCM over this region (not shown),

with gmilar corrdaion between the pattern time series, and a sSmilar fraction of
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vaiance explaned. The smilarity between the error and actud CCA andyses is not
aurprisng because much of the precipitaion variability for JJA in this region is
governed by the anomaous podtion of the ITCZ over the Atlantic (Ward 1998).
Climatologicdly, the ITCZ migraes northward in June ? August and reaches its
northern-mogt letitude by the end of the season. If equatorid SST is warmer than
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normal, equatoria sea leve pressure will be lower than normd, and anomaous
equatorward flow will be induced. This anomaous tropicd circulation causes the
ITCZ to resde cosr to the equator than normd for this season, bringing higher
ranfdl totds to the Gulf of Guinea region and lower ranfal over the Sahd (Lamb
1978a, 1978b; Lough 1986; Ward 1998).

Unfortunately, even though the fire mode of the error fields is amilar to the firg
mode of the full variability, this structure does not gppear as a cleanly evolving mode
during any paticular 1A season. The intraseasond SSTA fidd in the tropicd
Atlantic contains consderable noise, fluctuating greetly from one month to the next,
as reflected in the weak persstence of SSTA a this time of year (Fig. 1b). Methods
used to predict tropica Atlantic SST have been unable to improve upon a forecast of
perssence south of the equator for any season (Penland and Matravosa, 1998;
Landman and Mason 2001; Repelli and Nobre, 2001).

The firs CCA mode of the SSTA error is largely due to seasond changes in loca
SSTA vaiance. In May, the SSTA vaiance shows a locd maximum off the west
coast of Africa a approximaidly 10N (Fig. 7a). The strength of the SSTAs in that
region typicaly drops off dramaticdly by June, and remans negligible throughout
JJA (Fig. 7b-d). Conversdy, the equatorid variance of SSTA is smdl in May, but
grows in June and July. Thus perssing May SSTA through JJA in the tropicd
Atlantic imposes SSTA dgnds that are likely to disappear, or at leest wesken, in the
coming forecast season north of the equator and does not specify signds that may
develop during the forecast season on and to the south of the equator.

The difference in sgnd-to-noise ratios between the smulation and hindcast runs
aso may reault in part from the seasona changes in locad SSTA variance. Due to the
month-to-month noise in the tropicd Atlantic SSTA, the equatorid variance of May
SSTA is very amilar to that of the JJA seasond average (Fig. 7a vs. Fig. 7€), even
though the SSTA vaiance of June and of July is dronger. Therefore, the stronger
precipitation sgna generated by the hindcast experiments (Fig. 3b) must be due to at
least one of two possble causes. Firdt, the presence of the stronger SSTA variance in
May seen off the western coast of Africa (Fig. 7a) and known to be associated with
the precipitation error between the two experiments (Fig. 6) may be ovely
influencing the JJA forecadts. In this case, merdy damping the observed SSTA in that
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region should bring the dgnd into befter agreement with that of the Smulaion.
Second, the tropicd precipitation may be exhibiting a nontlinexr response to
equatorid SSTA. The eguatorid region exets a dgnificat influence on  the
differences in precipitation over the West Africa region (Fig. 6). If it is assumed that
the equatorid SSTA dominates the precipitation variability and that precipitation

anomdies ae linearly rdaed to SSTA, then the ranfadl dgnds should be
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goproximately equal if the SSTA vaiance is approximady equa in both
experiments. But, such equivdence is not seen in the precipitation variance even
though the variance fields of the prescribed seasond SSTA are of smilar magnitude
in the equatorid region. These two hypotheses require explicit experimentation,
however, before their relative impacts can be determined.

The sengtivity of the Atlantic ITCZ to erors in the SSTA dso dffects the rainfal
ggnd over northen South America However compared to western Africa, the
amulaion skill over South America is higher and covers a lager area 0 that a
reduction in skill of smilar magnitude to that exhibited over wesern Africa dill
leaves a subdantiad region with dgnificant operationad predictability under this
method of SST prediction.

This case study has focussed on the season JJA for western Africa; however, JAS
more accurately defines the rainy season for the Sahd region of western Africa Ward
et a. (1993) showed that AGCM predictions over the Sahel region for JAS improved
when June SSTA was pearssted ingead of May SSTA. This result is consgtent with
the cliimaologicad evolution of SSTA variance patens (Fig. 7). Thus shorter-lead
forecasts made a the beginning of the season may prove more useful to decision
mekers. The main caveat from the preceding results is that potential prediction s«ill
cannot currently be redized over this region from forecasts produced usng May
obsarvetions, or earlier, due to lack of forecast skill for equatorial/south tropical
Atlantic SSTA.

3.3.2 SON ? Eastern Africa and the Indian Ocean
Perssted SSTAs lead to dgnificant reduction in skill over eastern Africa dso,
paticularly over Kenya and northern Tanzania during the SON season (Fig. 2c). This
Season gpproximates the rainy season over the Greater Horn of Africa region, which
peaks in October ? December (OND) for Kenya, being dightly earlier to the north
and later to the south of Kenya as the ITCZ migrates southward during the end of the
year. Vaiability of the OND rany season over Eas Africa has a wdl-known
datisticd relaionship with ENSO (Ropelewski and Hapert, 1987; Ogadlo, 1988;
Betrando, 1990; Nicholson and Kim, 1997; Mason and Goddard, 2001). For the
SOND season, the most robust teleconnection with ENSO is experienced in October
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and November when large-scde OLR anomaies are found over the Indian Ocean
sector in phase with those over the tropical Pacific and out of phase with those over
the Maritime continent (Mutai and Ward, 2000). In September the large-scale OLR
sructure does not gppear over the Indian Ocean sector, possibly because of an
influence of the seasond background state of the atmosphere (Mutai and Ward 2000).

Although Eagt Africa and the Indian Ocean sector do exhibit climate variagbility
associsted with ENSO, moddling studies have shown that appropriate changes in
Indian Ocean SST are necessary to reproduce the correct rainfal variability over East
Africa a the end of the year (Goddard and Graham, 1999). Using observationd data
done, it is difficult to separate the importance of ENSO rdative to that of the Indian
Ocean snce SST vaiahility in these two ocean basins is highly correated, with the
tropicd Pacific variability leading by agpproximatdy 3 months (eg. Goddard and
Graham, 1999; Venzke et d, 2000). When the forcings from the two basins are
isolated, it can be shown that tropica Pecific SST anomdies gpplied to this AGCM
without the gpropriate anomalies in the Indian Ocean lead to a rainfdl response over
East Africa opposte to that obtained with full globa SST or even Indian Ocean SST
anomdies done (Goddard and Graham, 1999).

The 3-month lead time of tropical Pacific to Indian Ocean vaiability combined
with the tendency of ENSO evolution to phase-lock to the seasond cycle implies that
SON is an important season for the evolution of SSTAs in the Indian Ocean basin.
Generdly, ENSO events firs appear and begin to grow in the Northern Hemisphere
Soring. Assuming that the lead-time between the Pecific and the Indian Ocean is
relatively independent of the time of year, August SSTa in the Indian Ocean will
reflect May or June conditions in the tropica Pecific when the ENSO event is just
beginning to evolve. In November, the SSTA in the Indian Ocean will reflect
August/September  conditions in the tropicd Pacific when the ENSO event is fairly
mature. Thus rapid growth of ENSO, usudly seen in the middle of the year, will
appear as rapid development of SSTAs in the Indian Ocean only during the later part
of the year (i.e SON). Figure 8a illudrates the differences in persstence
characterigtics of the Indian Ocean and Pecific Ocean described above. By Augudt,
the SSTAs in the tropicd Pacific are well edtablished, and their persstence is high
through the end of the year when the magnitude of ENSO SSTA usudly pesks. On
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the other hand, SSTA in the Indian Ocean is evolving a this time and neither the
gsrength nor pattern of SSTA seen in August is persgent through SON. This is

paticularly cler when the linear trend that imparts some perssence through this
season isremoved (Fig. 8b).
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Because the Indian Ocean SSTA is centrd to reproducing rainfal variability over
East Africa, the skill of an AGCM will be negatively impacted by the absence of this
evolution in SSTA. Thelossin skill seen over Eagt Africa (Figure 2¢-upper versus

2c-lower) appears primarily dueto errorsin prescribed SSTA over the Indian Ocean,

as shown by thefirs CCA mode of the precipitation and SSTA difference fields (Fig.
9). When an El Ni=o event grows, positive SSTAs develop in the Indian Ocean that
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arelarger in SON than in August. With the warm SSTA in the centra Indian Ocean
comes increased rainfdl over East Africa, 0 perssting August SSTA through SON
will leed to lessrainfal over East Africathan seen in the smulations (Fig. 9). Notice
a0 that the strongest loading in the SST pattern shown in Figure 9 coincides largely
with the areas of weakest correlation of August versus November SSTA (Fig. 8b).
Furthermore, the time series of the SSTA difference pattern corrdates sgnificantly to
the change in NINO3.4 from August to SON (r=0.45) (r=0.34 for the actual SON
NINO3.4 index). Both of the above findings suggest that rapid evolution of ENSO is
related to the lack of persstence in the Indian Ocean during SON.

Unlike the case of West Africa rainfdl and Atlantic Ocean SSTA, the outlook for
East Africa predictability is more promisng. The drong influence of the tropica
Pecific variability, which is largdy predictable, especidly once the evolution of an
ENSO event has begun (Landsea and Knaff, 2000; Landman and Mason 2001), and
the relativdly dow time scae of that evolution, implies that predictions for the Indian
Ocean can improve upon persstence. Even the smplest of predictions of Indian
Ocean SSTA for SON based on tropica Pecific temperatures improves upon
persstence over most of the Indian Ocean. Root mean squared errors are smaller over
most of the Indian Ocean basin for predictions of SON SSTA by usng a smple linear
regresson model with August NINO3.4 anomdies as the only predictor compared to
usng persgence of August SSTA (not shown). Usng more sophisticated models to
predict Indian Ocean sea temperaiure anomadies, further improvements are likey to
be achieved, and it seems reasonable to expect these improvements to result in more
accurate forecasts of SON precipitation of eastern Africa.

4 Discussion and summary

Sea surface temperature anomaies (SSTA), especidly in the tropics, typicdly vary
dowly enough that a prediction of persstence is difficult to beat at lead times out to 3
or 4 months. However, when amospheric generd circulation modes (AGCMs) are
used to predict seasond climate, errors in the predicted SSTs can trandate into
ggnificant losses in predictive skill. By comparing long historicd runs of an AGCM
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forced with both observed SSTs and persisted SSTA, the erors introduced by
imperfect boundary conditions are revealed.

Operaiond kil levdls of AGCMs mug include the uncertainty inherent in the
SST predictions. Under perdsted SSTA forcing the ECHAM3.6 AGCM retains much
of the precipitation skill seen under smulation forcing. However, severd regions that
exhibit good smulaion skill are poorly predicted in an operationad setting using
perssed SSTA. Even over regions for which true prediction skill remains significant,
the magnitude of the skill messure is often reduced implying that skill levels will be
overesimated if based only on smulation runs,

Sysematic biases in a modd's response to predicted SSTs must aso be
quantified. Biases introduced by the particular SST forecast drategy are likdy to be
trandated into biases in the ensemble didribution. Such biases directly affect the
interpretation of the drength of a seasond climate anomdy and its associated
uncertainty by dtering the mean seasond dSgnd andlor noise characteridics.
Although dgnd-to-noise ratios are often used to indicate potentid predictability in a
moded, regiond changes in dgnd-to-noise do not appear responsible for the loss of
sill in the ECHAMS3.6 runs. Rather, rdative to the smulations, the perssted SSTA
runs typicadly yidd a dronger sgnd-to-noise ratio for precipitation in regions where
correlation skill is wesker. The change in dgnd-to-noise characteristics results
primarily from an increese in the locad precipitation dgnd with little change in the
regiond noise levels. If not properly accounted for, such a bias would lead a
forecaster to suggest tha the magnitude of a seasond rainfal anomady will be much
gronger than is actudly being indicated. The enhancement of signd, particulaly in
the tropics, may be reated to the fixed pattern of SSTA forcing the AGCM for the 3
month season in places where the observed SSTA is more varigble from month to
month. Such a hypothess would require regiona precipitation to respond non
linearly to locd SSTA. Prdiminary anadyss suggeds this is possble, but it is not
conclusive, requiring further experimentation. The enhancement of dgnd may dso be
due to important changes in the magnitude of loca SSTA variance, such as that due
to the seasonal evolution of SSTA variance patterns.

The sysematic error biases gpparent between the smulation and perssted

hindcast runs and the SST-related causes for those biases were examined through two
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case dudies. In West Africa during the JJA rainy season, errors in the SST anomalies
over the tropical Atlantic contribute mogt dgnificantly to loss of skill over the region.
The dructure of the SSTA eror is wel defined with a maximum of one sgn dong
the equatorid Atlantic and a maximum of opposte sgn off the western coast of West
Africa, from Mauritania to Liberia This error pattern in SSTA results in an erroneous
meridiond shift of the ITCZ andogous to the rdationship between interannua
tropicd Atlantic SST variability and West Africa ranfal variability that has been
well documented. However, the evolution of SSTA in the tropicd Atlantic from May
to August is noisy, and may not be easly predictable. The SSTA eror in the tropica
Atlantic during JJA does bear some resemblance to the seasond evolution of SSTA
vaiance. Regions where locdly high variance dies off rapidly during the forecast
season could be preferentidly damped. Still important varigbility is developing in the
equatorid Atlantic during the JJA season, a Stuation that even modified persstence
canot handle. At this time datisicd and dynamica predictions of equatorid and
south Atlantic SSTA cannot beat perdstence, thus the potentid to predict JJA (or
JAS) rainfdl over West Africausing SST information prior to June remains low.

The second case study focussed on East Africa during the SON rainy season.
Here, erors in the Indian Ocean SSTA are responsible for loss of sill in the persisted
hindcags. These erors are largdy due to the influence of the tropicd Pacific on
SSTA vaiadility in the Indian Ocean. Since ENSO events undergo rapid growth
during the middle of the year, and ther impact on the Indian Ocean is seen
gpproximately three months later, SON represents a season of potentidly rapidly
changing SSTA in the Indian Ocean. Perssting August SSTA misses this evolution in
the Indian Ocean leading to subgtantid discrepancies in the rainfdl anomdies over
East Africa The drong reationship between the Indian Ocean and the Pacific Ocean
suggests that predictions of SSTA for the Indian Ocean can improve upon
persistence.

As illustrated in these case dudies, identifying in what way the imperfect SST
predictions are biasng the modd response, such as the sign, magnitude, and/or intra-
ensemble variance, and in what regions the imperfect SST predictions ae most
influentid are important steps towards improving SST predictions and associated
climate predictions.
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