
An Algebra for Integration and Analysis of Ponder2
Policies

Hang Zhao
Department of Computer Science

Columbia University
zhao@cs.columbia.edu

Jorge Lobo
IBM T. J. Watson Research Center

USA
jlobo@us.ibm.com

Steven M. Bellovin
Department of Computer Science

Columbia University
smb@cs.columbia.edu

Abstract—Traditional policies often focus on access control re-
quirement and there have been several proposals to define access
control policy algebras to handle compositions and interactions.
Recently, obligations are increasingly being expressed as part of
security policies. However, their compositions and interactions
have not yet been studied adequately. In this paper, we propose
a policy algebra capturing both access control and obligation
policies. The algebra consists of two policy constants and six
basic operations. It provides language independent mechanisms
to manage policies. As a concrete example, we instantiate the
algebra for the Ponder2 policy language.

I. INTRODUCTION

Maintaining security policies in dynamic environments such
as mobile networks or virtual environments where devices
in the network or entities in the virtual organization share
resources requires mechanisms to compose and integrate secu-
rity policies. Prior to this work, we have proposed an algebra
for firewall policy integration [10]. It will be interesting to see
how the algebra could cope with high level policy languages.
An algebra for fine-grained integration of XACML policies is
introduced in [8]. XACML [1] is the OASIS standard language
for specification of access control policies. Their algebra
consists of four basic operators and two policy constants and is
able to support the specification of a wide range of integration
constraints.

Traditional security policies largely focus on the specifi-
cation and management of access control requirement [3],
[9], however the availability of services in many applications
often further requires obligation requirements (see for example
in [5]). The questions of how to understand the interactions
between access control policies and obligation polices, and
how to integrate and compose policies to enforce consistency
in a policy-based system, have not yet been adequately inves-
tigated. Therefore, in this paper, we further extend the algebra
defined in [8] by introducing obligation requirement to support
the integration and analysis of Ponder2 policies.

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

The rest of the paper is organized as follows. SECTION
II introduces background knowledge concerning the algebra
for XACML policies and the Ponder2 language. SECTION III
presents the detailed policy algebra, discusses its properties
and expressiveness. Mechanisms for policy integration and
analysis are described in SECTION IV. Finally, SECTION V
concludes the paper.

II. BACKGROUND

In this section, we introduce some background knowledge
for subsequent discussions. We start with a summary of
XACML policy algebra [8], then present an overview of
Ponder2 policy language [4], [7] and preliminary notions of
policy semantics adopted in our work.

A. An Algebra for XACML Policies

Let P be a 3-valued access control policy. They define the
semantics of P as a 2-tuple

〈
RP

Y , RP
N

〉
, where RP

Y and RP
N

is the set of requests that are permitted and defined by P
respectively. P can be viewed as a function mapping each
request to a value in {Y, N,NA}, determining that whether
the request is allowed (Y ), denied (N ) or not-applicable
(NA). The Fine-grained Integration Algebra (FIA) is given
by 〈Σ, PY , PN , +, &,¬, Πdc〉, where Σ is a vocabulary of
attributes names and their domains, PY and PN are two policy
constants which permits and denies everything respectively,
+ and & are two binary operators, and ¬ and Πdc are two
unary operators. Operators on policies are described as set
operations. The integration of policies may involve multiple
operators based on the definition of FIA expressions (see [8]
for a detailed description).

B. An Overview of Ponder2

The Ponder2 [7] language provides a common means of
specifying security policies that map onto various access
control implementation mechanisms for firewalls, operating
systems, databases etc. It primairly supports two types of
policies: authorization policies that defines which actions are
permitted under given circumstances and obligation policies
that define which actions should be performed in response to
an event occurring if specific conditions are fulfilled. Ponder2
specifies policies in a subject-action-target (SAT) format, in

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161435066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


additional to optional fields such as constraints, triggers etc.
For example1, an authorization policy looks like the following:

auth+ /sensor/temperature → /pda.reportTemp()
which permits temperature sensors to perform the reportTemp
action on pda. The following obligation policy specifies that
the oxygen saturation sensor should be activated when the
heart-rate is above 100.

on heartrate(hr) do if hr ≥ 50 then /sensor/os.activate()
Ponder2 provides two types of authorization policies,

namely positive authorization auth+ and negative authoriza-
tion auth-. Only one type of obligation policy is specified in
Ponder2, stating that a subject is obliged to perform certain
action on that target. An obligation policy can be enforced only
if the corresponding authorization policy has been specified
in the system. An event field specifies the trigger of the
obligation. Optional constraints may apply to both types of
policies. These constraints are evaluated against the state of
the system.

C. Policy Semantics

We propose a simple yet powerful notation of policy seman-
tics to capture both authorization and obligation requirement
to study their composition and interaction. Our representation
can be easily instantiated to support a large variety of policy
languages.

DEFINITION 1. A security policy is defined as an eval-
uation function P : ST × A → D, where ST is the
set of system states, A represents a finite set of actions
and D denotes the set of decision tuples {〈Da,Do〉} =
{〈Y, Y 〉 , 〈Y,NA〉 , 〈N, NA〉 , 〈NA, NA〉}. The function P
takes a system state st ∈ ST and an action a ∈ A as input,
and returns a decision tuple 〈da, do〉 determining whether a is
authorized and obliged to execute in state st.

Our semantics also support three-valued policies when
evaluating an authorization request. But the obligation of the
execution of an action may exist (Y ) or may not (NA).2

Note that the set of decision tuples does not include 〈N, Y 〉
and 〈NA, Y 〉 to ensure policy consistency since an obligation
intuitively implies the corresponding positive authorization in
the system. In an implementation, the system states ST will
most likely encodes concepts like principals, i.e. the entity that
will execute the action, and a target, where the action will be
executed and any other detail required by the execution of the
action.

DEFINITION 2. Let S be the set of subjects, T be the set of
targets, A be the set of actions, E be the set of event triggers
and C be the set of conditional constraints. We can now define
system states as ST = E × C ×S ×T . This definition allows
a system state to be described as st = 〈e, c, s, t〉 consisting
of an event trigger e ∈ E , the conditional constraint c ∈ C,
subject s ∈ S and target t ∈ T in Ponder2.

1Examples taken from [7].
2We do not consider negative obligations in our model. Because negative

obligations can be easily transformed into access control requirement like
refrain policies, and thus can be enforced directly.

Now we can easily transform a Ponder2 policy using the
above definition. TABLE I illustrates some sample policies
for a conference reviewing system. Policies {P1, P2, ..., P5}
are written in Ponder2 language, which are transformed into
{P ′1, P ′2, ..., P ′5}.

P1 auth+ a=/author→p=/paper /paper.read() when submit(a,p)=T
P2 auth+ r=/reviewer→p=/paper /paper.read() when assign(r,p)=T
P3 auth+ r=/reviewer→p=/paper /paper.review() when assign(r,p)=T
P4 auth− a=/author→p=/paper /paper.read(), /paper.review() when submit(a,p)=T
P5 on assign(r,p)=T r=/reviewer p=/paper do /reviewer→/paper.review()
P ′

1 P ′
1(〈submit(a,p)=T, a=/author, p=/paper〉 , read()) = 〈Y, NA〉

P ′
2 P ′

2(〈assign(r,p)=T, r=/reviewer, p=/paper〉 , read()) = 〈Y, NA〉
P ′

3 P ′
3(〈assign(r,p)=T, r=/reviewer, p=/paper〉 , review()) = 〈Y, NA〉

P ′
4 P ′

4(〈submit(a,p)=T, a=/author, p=/paper〉 , {read(), review()}) = 〈N, NA〉
P ′

5 P ′
5(〈assign(r,p)=T, r=/reviewer, p=/paper〉 , review()) = 〈Y, Y 〉

TABLE I
SAMPLE POLICIES FOR A CONFERENCE REVIEWING SYSTEM

DEFINITION 3. Our first algebra components are the fol-
lowing two policy constants P+ : ST × A → 〈Y,NA〉 and
P− : ST ×A → 〈N, NA〉. More precisely, P+ specifies that
every authorization request will be allowed in any state and
no obligation is required in the system; whereas P− says that
any authorization request is denied therefore no obligation is
required.

It is quite common in a policy-managed system to adopt
a default authorization policy: every action is allowed or
every action is forbidden. Firewall policy is such an example.
Ponder2 also allows the policy administrator to specify a
default authorization policy, such as ALL+ or ALL-. Normally,
default obligation requirements are not specified during system
initialization. The two policy constants allow us to represent
default authorization requirement in the system.

III. AN ALGEBRA FOR POLICIES

We are now ready to introduce the algebra extended from
[8]. We first define the syntax and semantics of the basic
algebraic operations and then discuss their properties and
expressiveness in details.

A. Basic Algebraic Operations

The algebra consists of the two constant policies P+ and P−
and six basic algebraic operations: addition (+), intersection
(&), subtraction (−), projection (Π), and two negation opera-
tions, one for authorizations (¬a) and another for obligations
(¬o). Let P1 and P2 be two policies to be combined, and PI

be the result from combination. For the ease of our discussion,
we introduce three binary operators ⊕,⊗,	 in TABLE II. The
first column of each matrix are the evaluation results of P1

with respect to an input (st, a) and the first row are the results
of P2 with respect to the same input. Each entry denotes the
effect of integrating P1 and P2 using ⊕,⊗,	 respectively. The
effect of two negation operators ¬a and ¬o are also described
in TABLE II.
Addition(+). Addition of P1 and P2 results in an integrated
policy PI equivalent to the union of the two.



P1(st, a)⊕ P2(st, a) 〈Y, Y 〉 〈Y, NA〉 〈N, NA〉 〈NA, NA〉
〈Y, Y 〉 〈Y, Y 〉 〈Y, Y 〉 〈NA, NA〉 〈Y, Y 〉
〈Y, NA〉 〈Y, Y 〉 〈Y, NA〉 〈NA, NA〉 〈Y, NA〉
〈N, NA〉 〈NA, NA〉 〈NA, NA〉 〈N, NA〉 〈N, NA〉
〈NA, NA〉 〈Y, Y 〉 〈Y, NA〉 〈N, NA〉 〈NA, NA〉

P1(st, a)⊗ P2(st, a) 〈Y, Y 〉 〈Y, NA〉 〈N, NA〉 〈NA, NA〉
〈Y, Y 〉 〈Y, Y 〉 〈Y, NA〉 〈NA, NA〉 〈NA, NA〉
〈Y, NA〉 〈Y, NA〉 〈Y, NA〉 〈NA, NA〉 〈NA, NA〉
〈N, NA〉 〈NA, NA〉 〈NA, NA〉 〈N, NA〉 〈NA, NA〉
〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉

P1(st, a)	 P2(st, a) 〈Y, Y 〉 〈Y, NA〉 〈N, NA〉 〈NA, NA〉
〈Y, Y 〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈Y, Y 〉
〈Y, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈Y, NA〉
〈N, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈N, NA〉
〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉 〈NA, NA〉

P (st, a) 〈Y, Y 〉 〈Y, NA〉 〈N, NA〉 〈NA, NA〉
¬aP (st, a) 〈N, NA〉 〈N, NA〉 〈Y, NA〉 〈NA, NA〉
¬oP (st, a) 〈Y, NA〉 〈Y, Y 〉 〈N, NA〉 〈NA, NA〉

TABLE II
POLICY COMBINATION MATRIX FOR OPERATORS ⊕,⊗,	,¬a,¬o

PI = P1 + P2, such that
PI(st, a) = P1 + P2(st, a)

= P1(st, a)⊕ P2(st, a)
Intersection(&). Intersection of P1 and P2 results in policy
PI equivalent to the conjunction of the two.

PI = P1&P2, such that
PI(st, a) = P1&P2(st, a)

= P1(st, a)⊗ P2(st, a)
Negation(¬a,¬o). Negation of a policy P returns PI

which permits (denies) all requests denied (permitted) by P .
The operator ¬a is used to negate the result of evaluating
an authorization request. It does not modify the obligation
part with the only exception that ¬aPI(st, a) = 〈N, NA〉
if P (st, a) = 〈Y, Y 〉 (since 〈N, Y 〉 is not valid). Similarly,
the operator ¬o is used to negate the evaluation result of an
obligation request without touching the authorization part.

PI = ¬P , such that
PI(st, a) = ¬P (st, a), where ¬ ∈ {¬a,¬o}

Subtraction(−). Subtracting policy P2 from P1 results
in the policy PI which applies only to those requests that
P2 does not apply to. Also the subtraction operation can be
expressed in terms of {+, &,¬a,¬o}.

PI = P1 − P2, such that
PI(st, a) = P1 − P2(st, a)

= P1(st, a)	 P2(st, a)
= (P1 + ¬aP2)&(P1 + ¬oP2)(st, a)

Projection(Π). The projection operation is used to extract a
portion of a given policy P . Let c(ST ×A) be a computable
subset of ST × A. The projection operation restricts the
policy P based on the specified evaluation result of request
(st, a) ∈ c(ST × A). The usper-index 〈da, do〉 is optional. If
it does not appear, the second condition in the “if” is ignored.

PI = Π〈da,do〉
c(ST ×A)P , such that

PI(st, a) = Π〈da,do〉
c(ST ×A)P (st, a)

=

 〈da, do〉 if (st, a) ∈ c(ST × A)
and P (st, a) = 〈da, do〉

〈NA, NA〉 otherwise
So far we have defined the policy algebra consisting of

two policy constants and six basic operations. Note that the
integration of policies may involve a sequence of operations
as discussed in [8].

B. Properties and Expressiveness of the Algebra

The policy algebra has all the algebraic properties listed in
[8] except for those involving negation operations. Instead, we
have the following properties:

1) ¬a(P1 + P2) = ¬aP1 + ¬aP2;
2) ¬a(P1&P2) = ¬aP1&¬aP2;
3) P+ = ¬aP−, P− = ¬aP+;
4) ¬o¬oP = P .

In section II, we introduced two constant policies P+ and P−.
The other two constant policies PY : ST × A → 〈Y, Y 〉 and
PNA : ST × A → 〈NA, NA〉 can be produced using P+

and P−. For example, PY = ¬oP+ and PNA = P+ + P− =
P+&P−.

COROLLARY of THEOREM 3 in [8]. Given any policy inte-
gration matrix M , let M(P1, P2) be the result of integrating
policies P1 and P2 using matrix M . We can always find
an algebra expression E such that E(P1, P2) = M(P1, P2),
where E consists of {P+, P−, +,−, &,¬a,¬o, Π}. Therefore,
our algebra is complete and the detailed proof is removed for
space conservation.

IV. POLICY INTEGRATION AND ANALYSIS

In this section, we describe mechanisms for policy integra-
tion and analysis using algebraic operations defined previously.

A. Policy Integration and Analysis

The integration of policies P1, P2, ..., Pn can be easily
expressed as PI = P1 + P2 + ... + Pn. The result of
policy integration PI permits requests that are permitted by
at least one of the policies; It denies requests that are denied
by at least one of them. If a request is permitted by one
policy but denied by another policy, PI returns 〈NA, NA〉
and does not make decision on the request. Sometimes, we
may also want to extract desired parts of individual policies
and then combine them into an integrated one. We can, for
example, take the allows from P1 and the denies from P2 using
PI = Π〈Y,do1〉P1 +Π〈N,do2〉P2. As we discussed in SECTION
II, it is quite common in a policy-managed system to adopt
a default authorization policy: every action is allowed (P+)
or every action is forbidden (P−). Therefore, any request that
is evaluated to 〈NA, NA〉 by the integrated policy PI will
take the result specified by the default policy Pd. Thus we
have P ′I = PI + (Pdef −PI), where Pdef ∈ {P+, P−,¬oP+}
depending on the system initialization.

It has been long recognized that merely providing a policy
editing tool to ensure correct policy syntax is not sufficient.
Policies can interact with each other, often with undesirable
effects as pointed by [2]. With the support of policy algebra,
we can perform policy analysis upon enforcement.



1) Dominance Check: Dominance check is important since
any ineffective policy must not be deployed so that CPU cycles
are not wasted on evaluating it. We say that a policy P is
dominated by the already existing policy P ′ if P is ineffective
when added into the policy set because of the existence of
policy P ′, i.e. there is no resource in the domain whose
operation will not be affected by P . For example, a policy
that permit the creation of usernames only “username ≥ 4”
is dominated by another policy for which “4 ≤ username
≤ 10”. Given two policies P and P ′, we say that P is
dominated by P ′ if and only if P + P ′ = P ′ or P&P ′ = P .
This definition also applies to two sets of policies. Given
PI = P1 + P2 + ... + Pm and P ′I = P ′1 + P ′2 + ... + P ′n, we
say that PI is dominated by P ′I if and only if PI + P ′I = P ′I
or PI&P ′I = PI .

2) Coverage Check: When specifying policies for man-
agement systems, the administrator may want to know if
explicit policies have been defined for a certain range of input
parameters. The input parameters of our interests would be
certain set of system states ST , and action set A. That is,
given a computable subset c(ST ×A) of ST ×A, we want to
make sure that Πc(ST ×A)P (st, a) 6= 〈NA, NA〉 for all input
requests (st, a) ∈ c(ST × A). Similarly, coverage check can
also be performed upon a set of policies.

3) Conflict Detection and Resolution: Policy conflicts can
arise due to omissions, errors or conflicting requirement of
the administrators specifying the policies. For example, there
may be two authorization policies which permit and forbid the
same activity; or an obligation policy may define an activity
which is forbidden by a negative authorization policy. We say
that two policies are in conflict if they cannot be satisfied
simultaneously [6]. Given two policies P1 and P2, we know
that they conflict with each other if and only if P1(st, a) 6=
P2(st, a) for some (st, a) ∈ ST ×A The key point for conflict
resolution is to assign proper precedence between policies.
There are three possibilities:
• PI1 = P1 + (P2 − P1): gives higher precedence to P1.

That is, PI(st, a) = P1(st, a) for all (st, a) such that
P1(st, a) 6= P2(st, a).

• PI2 = P2 + (P1 − P2): gives higher precedence to P2.
Similarly, PI(st, a) = P2(st, a) for all (st, a) such that
P1(st, a) 6= P2(st, a).

• PId
= (P1 +P2)+(Pdef−(P1 +P2)) solves the conflicts

by applying the default policy to requests that receive
conflicting results from P1 and P2.

B. Examples in Ponder2

In this subsection, we provide some concrete examples
of Ponder2 policy analysis. TABLE I lists a few sample
policies {P1, P2, ..., P5} written in Ponder2 language. They
are transformed into {P ′1, P ′2, ..., P ′5} using the proposed policy
semantics.

EXAMPLE 1: As an example of policy combination, we can
perform PI = P ′1+P ′2 to obtain the integrated policy PI . More
precisely, for a request (st, a), we have PI(st, a) = 〈Y,NA〉
if and only if st ∈ {〈 submit(a,p)=true, a=/author, p=/paper 〉,

〈assign(r,p)=T, r=/reviewer, p=/paper 〉} and a = read(); Oth-
erwise, PI(st, a) = 〈NA, NA〉. That is, the integrated policy
PI allows both the author and the assigned reviewer to read
the paper. Similarly, we could perform P ′I = P ′2 + P ′3 and the
resulting policy P ′I allows the reviewer to read and review the
assigned paper.

EXAMPLE 2: By combining P ′3 and P ′5, we observe that
P ′I = P ′3 + P ′5 = P ′5. This is because in the proposed policy
semantics, the enforcement of an obligation policy implies that
the corresponding authorization requirement must be specified
to ensure consistency.

EXAMPLE 3: We notice that P ′1 and P ′4 conflict with each
other. Because P ′1(st, a) = 〈Y, NA〉 but P ′4(st, a) = 〈N, NA〉
when st ∈ {〈 submit(a,p)=T, a=/author, p=/paper 〉} and a =
read(). We can solve this conflict by giving precedence to P ′1.
That is, P ′I = P ′1 + (P ′2 − P ′1), such that P ′I(st, read()) =
〈Y,NA〉 and P ′I(st, review()) = 〈N, NA〉. Thus, we allow
the author to read his own paper but he cannot review it.
In reality, it is the system administrator’s decision to assign
precedence among conflicting policies.

V. CONCLUSION

To address the importance of obligation policies, and
study the interaction between authorization and obligation
requirements, we propose an algebra for Ponder2 policies,
and provide mechanisms for policy integration and analysis
using the algebraic operations.For future work, we would
like to accomplish the algebra implementation using Ponder2
language. We also plan to study the interaction between access
control policies and obligation policies in great depth. For
example, the current version of the algebra is not able to handle
obligations that may depend on more than one system state.
We would like to improve it in the future work.

REFERENCES

[1] “Extensible access control makeup language (xacml) version 2.0,” OASIS
Standard, 2005.

[2] D. Agrawal, J. Giles, K. won Lee, and J. Lobo, “Policy ratification,” in
Proceedings of IEEE Policy 2005, 2005.

[3] P. Bonatti, S. D. C. di Vimercati, and P. Samarati, “An algebra for
composing access control policies,” ACM Transactions on Information
and System Security (TISSEC), vol. 5, no. 1, pp. 1–35, Feb. 2002.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in Proceedings of IEEE Policy 2001, 2001.

[5] K. Irwin, T. Yu, and W. H. Winsborough, “On the modeling and analysis
of obligations,” in ACM Conference on Computer and Communications
Security (CCS), 2006.

[6] E. C. Lupu and M. Sloman, “Conflicts in policy-based distributed
systems management,” in IEEE Transactions on Software Engineering,
vol. 25, no. 6, 1999, pp. 852–869.

[7] E. Lupu, N. Dulay, A. S. Filho, S. Keoh, M. Sloman, and K. Twidle,
“Amuse: Autonomic management of ubiquitous e-health systems,” in
Concurrency and Computation: Practice and Experience, wiley, 2007.

[8] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “An algebra for fine-
grained integration of xacml policies,” CERIAS Tech Report 2001-124,
Purdue University, 2007.

[9] D. Wijesekera and S. Jajodia, “A propositional policy algebra for
access control,” ACM Transactions on Information and System Security
(TISSEC), vol. 6, no. 2, pp. 286–325, May 2003.

[10] H. Zhao and S. M. Bellovin, “Policy algebras for hybrid firewalls,” in
Annual Conference of ITA (ACITA) 2007, 2007.


