
MEF: Malicious Email Filter
A UNIX Mail Filter that Detects Malicious Windows Executables

Matthew G. Schultz and Eleazar Eskin
Department of Computer Science

Columbia University
{mgs,eeskin }@cs.columbia.edu

Erez Zadok
Department of Computer Science

State University of New York at Stony Brook
ezk@cs.sunysb.edu

Manasi Bhattacharyya, and Salvatore J. Stolfo
Department of Computer Science

Columbia University
{mb551,sal }@cs.columbia.edu

Abstract

We presentMalicious Email Filter, MEF, a freely dis-
tributed malicious binary filter incorporated into Proc-
mail that can detect malicious Windows attachments by
integrating with a UNIX mail server. The system has
three capabilities: detection of known and unknown ma-
licious attachments, tracking the propagation of mali-
cious attachments and efficient model update algorithms.

The system filters multiple malicious attachments in
an email by using detection models obtained from data
mining over known malicious attachments. It leverages
preliminary research in data mining applied to malicious
executables which allows the detection of previously un-
seen, malicious attachments. In addition, the system pro-
vides a method for monitoring and measurement of the
spread of malicious attachments. Finally, the system also
allows for the efficient propagation of detection mod-
els from a central server. These updated models can be
downloaded by a system administrator and easily incor-
porated into the current model. The system will be re-
leased under GPL in June 2001.

1 Introduction

A serious security risk today is the propagation of ma-
licious executables through email attachments. A ma-
licious executable is defined to be a program that per-
forms a malicious act, such as compromising a system’s
security, damaging a system or obtaining sensitive infor-
mation without the user’s permission. Recently there
have been some high profile incidents with malicious
email attachments such as the ILOVEYOU virus and
its clones. These malicious attachments caused signifi-
cant damage in a short time. TheMalicious Email Filter
(MEF) project provides a tool for the protection of sys-
tems against malicious email attachments.

An email filter that operates within a mail to detect
malicious Windows binaries has many advantages. Op-

erating from a mail server, the email filter could automat-
ically filter the email each host receives. The mail server
could either wrap the malicious email with a warning ad-
dressed to the user, or it could block the email depending
upon the server’s settings. All of this could be done with-
out the server’s users having to scan attachments them-
selves or having to download updates for their virus scan-
ners. This way the system administrator can be responsi-
ble for updating the filter instead of relying on end users.
We present such a system on a UNIX implementation of
sendmail using procmail.

The standard approach to protecting against malicious
emails is to use a virus scanner. Commercial virus scan-
ners can effectively detect known malicious executables,
but unfortunately they can not detect unknown malicious
executables reliably. The reason for this is that most of
these virus scanners aresignature based. For each known
malicious binary, the scanner contains a byte sequence
that identifies the malicious binary. However, an un-
known malicious binary, one without a pre-existing sig-
nature, will most likely go undetected.

We built upon preliminary research at Columbia Uni-
versity on data-mining methods to detect malicious bina-
ries [2]. The idea is that by using data-mining, knowl-
edge of known malicious executables can be generalized
to detect unknown malicious executables. Data mining
methods are ideal for this purpose because they detect
patterns in large amounts of data, such as byte code, and
use these patterns to detect future instances in similar
data along with detecting known instances. Our frame-
work usedclassifiersto detect malicious executables. A
classifier is a rule set, or detection model, generated by
the data mining algorithm that was trained over a given
set of training data.

The goal of this paper is to describe a data mining
based filter which integrates with Procmail’s pre-existent
security filter [3] to detect malicious executables. The
MEF system is an application of more theoretical re-
search into this problem [10]. The data mining-based de-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tection system within MEF is a preliminary system that
will become more accurate and efficient as our research
progresses, and new data sets are analyzed. It uses a
scoring system based on a data mining classifier to de-
termine whether or not an attachment may be malicious.
If an attachment’s score is above a certain threshold it is
considered malicious.

This work expanded upon Procmail’s pre-existant fil-
ter which already defangs active-content HTML tags to
protect users who read their mail from a web brower or
HTML-enabled mail client. Also, if the attachment is
labeled as malicious, the system “mangles” the attach-
ment name to prevent the mail client from automatically
executing the attachment. It also has built in security
filters such as long filenames in attachments, and long
MIME headers, which may crash or allow exploits of
some clients. This filter lacks the ability to automatically
update its list of known malicious executables leaving
the system vulnerable to attacks by new and unknown
viruses. Furthermore, its evaluation of an attachment is
based solely on the name of the executable and not the
contents of the attachment itself. We replaced this sig-
nature based detection algorithm with our data mining
classifier that added the ability to detect both the set of
known malicious binaries and a set of previously unseen,
but similar malicious binaries. Although the MEF imple-
mentation was designed for the data mining-based detec-
tion system, any method to evaluate binaries including a
standard signature based scanner can be used.

Since the methods and classifier models we describe
are probabilistic, we provide a means of determining
whether a binary wasborderline. A borderline binary is
a program that has similar probabilities for both classes
(i.e. could be either a malicious executable or a benign
program). As a parameter of the filter, the system admin-
istrator may specify what a borderline case is. Guidelines
on how to set this parameter are described in detail later.
If it is a borderline case then along with the option to
wrap it as a malicious program there is an option in the
network filter to send a copy of the malicious executable
to a central repository such as CERT. There, it can be
examined by human experts. After analysis by virus ex-
perts, the model can be updated to be more accurate by
including these borderline cases.

The detection model generation works as follows.
The binaries are first statically analyzed to extract byte-
sequences, and then the classifiers are generated by ana-
lyzing a subset of the data. Then the classifier (or detec-
tion model) is tested on a set of previously unseen data.
We implemented a traditional, signature-based algorithm
to compare its performance with the data mining algo-
rithms. Using standard statistical cross-validation tech-
niques, the data mining-based framework for malicious
binary detection had a detection rate of 97.76%, over

double the detection rate of a signature-based scanner.
The organization of the paper is as follows. In Sec-

tion 2, we present the system features and their integra-
tion with Procmail. In Section 3, we detail the methods
that are employed to track the propagation of malicious
attachments. Section 4 describes how the detection al-
gorithms work, and their results. Section 5 discusses the
system’s performance, and Sections 6 and 7 conclude the
paper and discuss future work.

2 Incorporation into Procmail

MEF filters malicious attachments by replacing the sig-
nature based virus filter found in Procmail with a data
mining generated detection model. Procmail is a pro-
gram that processes email messages looking for particu-
lar information in the headers or body of each message,
and takes actions based on what it finds [11]. Currently
the mail server supported is sendmail. MEF uses a proc-
mail script to extract attachments from emails and save
them temporarily based on their name. The script then
runs the filter on each attachment.

The filter first decodes each binary and then examines
the binary using a data mining classifier. It evaluates the
attachment by comparing it to all the byte strings found
with it to the byte-sequences contained in the detection
model. The system calculates the probability of the bi-
nary being malicious, and if it is greater that its likeli-
hood of being benign then the executable is labeled ma-
licious. Otherwise, the binary is labeled benign. This is
reported as a score back to Procmail, and then is used
to either send the mail along untouched, or the entry is
logged as the attack and email is wrapped with a warn-
ing. The log is a collection of information about the at-
tachment. Exactly what this information is depends upon
the configuration of the system.

2.1 Borderline Cases

Borderline binaries are binaries that have similar proba-
bilities of being benign and malicious (e.g. 50% chance
it is malicious, and 50% chance it is benign). The bi-
naries are important to keep track of because they are
likely to be mislabeled, so they should be included in the
training set. To facilitate this, the system archives the
borderline cases, and at periodic intervals the collection
of borderline binaries is sent back to a central server by
the system administrator.

Once at the central repository, these binaries can then
be analyzed by experts to determine whether they are ma-
licious or not, and subsequently included in the future
versions of the detection models. Any binary that is de-
termined to be a borderline case will be forwarded to the



repository and wrapped with a warning as though it were
a malicious attachment.

A simple metric to detect borderline cases and redirect
them to an evaluation party is to define a borderline case
to be a case where the difference between the probability
it is malicious and the probability it is benign is above a
threshold. This threshold is set based on the policies of
the host.

For example in a secure setting, the threshold could be
set at 20%. In this case all binaries that have a 60/40 split
are labeled as borderline. In other words, binaries with a
60% chance (according to the model) of being malicious
and 40% chance of being benign would be labeled bor-
derline, and vice versa. This setting can be determined
by the system administrator or left on the default setting
of 51.25/48.75, a threshold of 2.5%.

Receiving borderline cases and updating the detec-
tion model is an important aspect of the data mining ap-
proach. The larger the data set that is used to generate
models then the more accurate the detection models will
be. This is because borderline cases are executables that
could potentially lower the detection and accuracy rates
by being misclassified, so they should be trained over.

2.2 Update Algorithms

This system will require updates periodically, and in the
following section we detail the update algorithm. After
a number of borderline cases have been received, it is
necessary to generate a new detection model, and subse-
quently distribute updated models.

A new model is first generated by running the data
mining algorithm on the new data set that contained the
borderline cases along with their correct classification,
and the previous data set. This model will then be dis-
tributed.

Updating the models is accomplished by distributing
portions of the models that changed, and not the entire
model. This is important because the detection models
are large. In order to avoid constantly sending a large
model to the filters, the administrator has the option of
receiving this smaller file. Using the update algorithm,
the older model can then be updated. The full model
will also be available to provide additional options for
the system administrator.

Efficient update of the model is possible because the
underlying representation of the models is probabilistic.
As is explained later, the model is a count of the num-
ber of times that each byte string appears in a malicious
program versus the number of times that it appears in
a benign program. An update model can then be easily
summed with the older model to create a new model.

In future versions of MEF, the model will be made
available for the system administrator on a public ftp site.

If a system administrator subscribes to the mailing list
then when a new model is made available, the system
administrator will receive an email. The email will detail
where the model is located, what version it is, and in-
clude a form of authentication. At the ftp site the model
will be available to download as either an upgrade from
a previous version, or as a full model. An archive of old
models will also be kept on the ftp site.

There are also a host of options for automatically re-
ceiving the updates. One way to distribute the email is
just to attach the update to the notification email. Then
the administrator could update the model later without
having to ftp it. In the future, a program included in the
email filter could automatically poll the central server to
see if a new model is available and then download it and
update the current model. These last methods have not
yet been implemented.

3 Monitoring the Propagation of Email At-
tachments

Tracking the propagation of email attachments is bene-
ficial in identifying the origin of malicious executables,
and in estimating a malicious attachment’s prevalence.

The monitoring works by having each host that is us-
ing the system log all malicious attachments, and the bor-
derline attachments that are sent to and from the host.
This logging may or may not contain information about
the sender or receiver depending on the privacy policy of
the host.

In order to log the attachments, we needed a way to
obtain a unique identifier for each attachment. We did
this by using the MD5 algorithm [9] to compute a unique
number for each binary attachment. The input to MD5
was the hexadecimal representation of the binary. These
identifiers were then kept in a log along with other infor-
mation such as whether the attachment was malicious, or
benign and with what certainty the system made those
predictions.

The logs of malicious attachments are then sent back
to the central server according to the policy of each host.
Some hosts may wish to never send these logs, and can
turn the feature off, while other hosts could configure the
system to only send logs of borderline cases, etc.

After receiving the logs, the system measures the
propagation of the malicious binaries across hosts. From
these logs it can be estimated how many copies of each
malicious binary were circulating the Internet, and these
reports will be forwarded back to the community, and
used for further research.

The current method for detailing the propagation of
malicious executables is for an administrator to report an
attack to an agency such asWildList [8]. The wild list



is a list of the propagation of viruses in the wild and a
list of the most prevalent viruses. This is not done au-
tomatically, but instead is based upon a report issued by
an attacked host. Our method would reliably, and auto-
matically detail a malicious executable’s spread over the
Internet.

4 Methodology for Building Data Mining
Detection Models

We gathered a large set of programs from public sources
and defined a learning problem with two classes:ma-
licious and benignexecutables. Each example in the
data set is a Windows or MS-DOS format executable,
although the framework we present is applicable to other
formats. To standardize our data-set, we used MacAfee’s
[6] virus scanner and labeled our programs as either ma-
licious or benign executables.

We split the dataset into two subsets: thetraining set
and thetest set. The data mining algorithms used the
training set while generating the rule sets, and after train-
ing we used a test set to test the accuracy of the classifiers
on a set of unseen examples.

4.1 Data Set

The data set consisted of a total of 4,301 programs
split into 3,301 malicious binaries and 1,000 benign pro-
grams. The malicious binaries consisted of viruses, Tro-
jans, and cracker/network tools. There were no duplicate
programs in the data set and every example in the set
is labeled either malicious or benign by the commercial
virus scanner. All labels are assumed to be correct.

All programs were gathered either from FTP
sites, or personal computers in the Data Min-
ing Lab at Columbia University. To obtain the
dataset please contact us through our website
http://www.cs.columbia.edu/ids/mef/.

4.2 Detection Algorithms

We statically extracted byte sequencefeaturesfrom each
binary example for the learning algorithms. Features in
a data mining framework are properties extracted from
each example in the data set, such as byte sequences, that
a classifier uses to generate detection models. These fea-
tures are then used by the algorithms to generate detec-
tion models. We usedhexdump[7], an open source tool
that transforms binary files into hexadecimal files. After
we generated the hexdumps we produced features in the
form displayed in Figure 1 where each line represents a
short sequence of machine code instructions.

646e 776f 2e73 0a0d 0024 0000 0000 0000
454e 3c05 026c 0009 0000 0000 0302 0004
0400 2800 3924 0001 0000 0004 0004 0006
000c 0040 0060 021e 0238 0244 02f5 0000
0001 0004 0000 0802 0032 1304 0000 030a

Figure 1: Example Set of Byte Sequence Features

4.3 Data Mining Approach

The classifier we incorporated into Procmail was a Naive
Bayes classifier [1]. A naive Bayes classifier computes
the likelihood that a program is malicious given the fea-
tures that are contained in the program. We assumed that
there were similar byte sequences in malicious executa-
bles that differentiated them from benign programs, and
the class of benign programs had similar sequences that
differentiated them from the malicious executables.

The model output by the naive Bayes algorithm la-
bels examples based on the byte strings that they con-
tain. For instance, if a program contained a significant
number of malicious byte sequences and a few or no be-
nign sequences, then it labels that binary as malicious.
Likewise, a binary that was composed of many benign
features and a smaller number of malicious features is
labeled benign by the system.

The naive Bayes algorithm computed the probability
that a given feature was malicious, and the probability
that a feature was benign by computing statistics on the
set of training data. Then to predict whether a binary, or
collection of hex strings was malicious or benign, those
probabilities were computed for each hex string in the bi-
nary, and then the Naive Bayes independence assumption
was used. The independence assumption was applied in
order to efficiently compute the probability that a binary
was malicious and the probability that the binary was be-
nign.

One draw back of the naive Bayes method was that
it requires more than 1 GB of RAM to generate its de-
tection model. To make the algorithm more efficient we
divided the problem into smaller pieces that would fit in
memory and generated a classifier for each of the sub-
problems. The subproblem was to classify based on ev-
ery 16 subsets of the data organized according to the first
letter of the hex string.

For this we trained sixteen Naive Bayes classifiers so
that all hex strings were trained on. For example, one
classifier trained on all hex strings starting with an “A”,
and another on all hex strings starting with a “0”. This
was done 16 times and then a voting algorithm was then
used to combine their outputs.

A more thorough description along with an example,
can be found in a companion paper [10].



4.4 Signature-Based Approach

To compare our results with traditional methods we im-
plemented a signature based method. First, we calculated
the byte-sequences that were only found in the malicious
executable class. These byte-sequences were then con-
catenated together to make a unique signature for each
malicious executable example. Thus each malicious ex-
ecutable signature contained only byte-sequences found
in the malicious executable class. To make the signature
unique, the byte-sequences found in each example were
concatenated together to form one signature. This was
done because a byte-sequence that was only found in one
class during training could possibly be found in the other
class during testing [4], and lead to false positives when
deployed.

The virus scanner that we used to label the data set
contained signatures for every malicious example in our
data set, so it was necessary to implement a similar
signature-based method. This was done to compare the
two algorithms’ accuracy in detecting new malicious ex-
ecutables. In our tests the signature-based algorithm was
only allowed to generate signatures for the same set of
training data that the data mining method used. This al-
lowed the two methods to be fairly compared. The com-
parison was made by testing the two methods on a set of
binaries not contained in the training set.

4.5 Preliminary Results

To quantify the performance of our method we computed
statistics on the preformance of the data mining-based
method versus the signature-based method. We are inter-
ested in four quantities in the experiments. They are the
counts fortrue positives, true negatives, false positives,
andfalse negatives. A true positive, TP, is an malicious
example that is correctly tagged as malicious, and a true
negative, TN, is a benign example that is correctly classi-
fied as benign. A false positive, FP, is a benign program
that has been mislabeled by an algorithm as malicious,
while a false negative, FN, is a malicious executable that
has been mis-classified as a benign program.

Theoverall accuracyof the algorithm is calculated as
the number of programs the system classified correctly
divided by the total number of binaries tested. Thede-
tection rateis the number of malicious binaries correctly
classified divided by the total number of malicious pro-
grams tested.

We estimated our results for detecting new executables
by using 5-fold cross validation [5]. Cross validation is
the standard method to estimate the performance of pre-
dictions over unseen data. For each set of binary profiles
we partitioned the data into five equal size partitions. We
used four of the partitions for training a model and then

evaluated that model on the remaining partition. Then
we repeated the process five times leaving out a different
partition for testing each time. This gave us a reliable
measure of our method’s accuracy on unseen data. We
averaged the results of these five tests to obtain a mea-
sure of how the algorithm performs in detecting new ma-
licious executables.

4.6 Performance on New Executables

Table 1 displays the results. The data mining algorithm
had the highest detection rate, 97.76% compared with
the signature based method’s detection rate of 33.96%.
Along with the higher detection rate the data min-
ing method had a higher overall accuracy, 96.88% vs.
49.31%. The false positive rate at 6.01% though was
higher than the signature based method, 0%.

Figure 2 displays the plot of the detection rate vs.
false positive rate usingReceiver Operation Characteris-
tic curves [13]. Receiver Operating Characteristic (ROC)
curves are a way of visualizing the trade-offs between
detection and false positive rates. In this instance, the
ROC curve show how the data mining method can be
configured for different environments. For a false posi-
tive rate less than or equal to 1% the detection rate would
be greater than 70%, and for a false positive rate greater
than 8% the detection rate would be greater than 99%.

Profile Detection False Positive Overall
Type Rate Rate Accuracy
Signature Meth. 33.96% 0% 49.31%
Data Mining Meth. 97.76% 6.01% 96.88%

Table 1: The results of testing the algorithms over new
examples. Note the Data Mining Method had a higher
detection rate and accuracy while the Signature based
method had the lowest false positive rate.

4.7 Performance on Known Executables

We also evaluated the performance of the models in
detecting known executables. For this task, the algo-
rithms generated detection models for the entire set of
data. Their performance was then evaluated by testing
the models on the same training set.

As shown in Table 2, both methods detected over 99%
of known executables. The data mining algorithm de-
tected 99.87% of the malicious examples and misclassi-
fied 2% of the benign binaries as malicious. However, we
have the signatures for the binaries that the data mining
algorithm misclassified, and the algorithm can include
those signatures in the detection model without lower-
ing accuracy of the algorithm in detecting unknown bi-
naries. After the signatures for the executables that were



Profile Detection False Positive Overall
Type Rate Rate Accuracy
Signature Meth. 100% 0% 100%
Data Mining Meth. 99.87% 2% 99.44%

Table 2: Results of the algorithms after testing on known
programs. In this task both algorithms detected over 99%
of known malicious programs. We explain later the data
mining algorithm can be boosted to have 100% accuracy
by using some signatures.

misclassified during training had been generated and in-
cluded in the detection model, the data mining model had
a 100% accuracy rate when tested on known executables.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

D
et

ec
tio

n 
R

at
e

False Positive Rate

More Secure

Fewer False Positives

Data Mining Method
Signature Based Method

Figure 2: ROC: This figure shows how the data mining
method can be configured to have different detection and
false positive rates by adjusting the threshold parameter.
More secure settings should choose a point on the data
mining line towards the right, and applications needing
fewer false alarms should choose a point towards the left.

5 System Performance

The system requires different time and space complexi-
ties for model generation and deployment.

5.1 Training

In order for the data mining algorithm to quickly gen-
erate the models, it requires all calculations to be done
in memory. The algorithm consumed space in excess of
a gigabyte of RAM. By splitting the data into smaller
pieces, the algorithm was done in memory with no loss
in accuracy.

The training of a classifier took 2 hours 59 minutes
and 49 seconds running on a Pentium III 600 Linux ma-
chine with 1GB of RAM. The classifier took on average

2 minutes and 28 seconds for each of the 4,301 binaries
in the data set.

5.2 During Deployment

Current work is being done to make the system accu-
rate on a system with smaller memory. At this point in
development, only systems that have a 1GB or more of
memory can use our models. The amount of system re-
sources taken for using a model are equivalent to the re-
quirements for training a model. So on a Pentium III 600
Linux box with 1GB of RAM it would take on average 2
minutes 28 seconds per attachment.

The ongoing work we are doing is to make the model
small enough to be loaded into a computer with 128MB
of RAM without losing more than 5% in accuracy. If this
is accomplished then the resources required in CPU time
and memory will be notably reduced.

There are other options in making the system perform
its analysis faster such as sharing the load over several
computers. These options are not currently being ex-
plored, but they are open problems that the community
should examine. We are primarily concerned with im-
proving the space complexities of the algorithm without
sacrificing a significant amount accuracy.

6 Conclusions

The first contribution that we presented in this paper
was a freely distributed filter for Procmail that detected
known malicious Windows executables and previously
unknown malicious Windows binaries from UNIX. The
detection rate of new executables was over twice that of
the traditional signature based methods, 97.76% com-
pared with 33.96%.

One problem with traditional, signature-based meth-
ods is that in order to detect a new malicious executable,
the program needs to be examined and a signature ex-
tracted from it and included in the anti-virus database.
The difficulty with this method is that during the time re-
quired for a malicious program to be identified, analyzed
and signatures to be distributed, systems are at risk from
that program. Our methods may provide a defense dur-
ing that time. With a low false positive rate the inconve-
nience to the end user would be minimal while providing
ample defense during the time before an update of mod-
els is available.

Virus scanners are updated about every month, and
240–300 new malicious executables are created in that
time (8–10 a day [12]). Our method may catch roughly
216–270 of those new malicious executables without the
need for an update whereas traditional methods would
catch only 87–109. Our method tested on a particular



data set more than doubles the detection rate of signature
based methods.

Secondly, we presented a system that improves it’s ac-
curacy by regenerating models after receiving borderline
cases. This feature is of interest because as more servers
and clients use this system the system will receive ad-
ditional borderline cases. Training on these borderline
cases will increase the accuracy of the filter.

Finally, the system has the optional ability to moni-
tor the propagation of malicious attachments. Depend-
ing upon the user specified setting, email tracking can
be turned on or off. If tracking is turned on then statis-
tics can be generated detailing how a malicious binary
attacked a system and propagated. If tracking is turned
off then the system loses no accuracy in detecting mali-
cious attachments.

The system that we presented detected malicious Win-
dows binaries from UNIX, and detected new examples
of similar malicious binaries because of the data min-
ing algorithms. It tracked the propagation of email at-
tachments, and with the inclusion of borderline cases it
will become more accurate with time. Also with a larger,
more realistic data set work can be done to show the al-
gorithm is practical.

7 Future Work

One of the most important areas of future work for this
application is the development of more efficient algo-
rithms. The current probabilistic method requires a ma-
chine with a significant amount of memory to generate,
and employ the classifiers. This memory requirement
makes the computation of the models expensive.

To make the algorithms use less space will require the-
oretical bounds on how to prune features from the data
without losing accuracy. The details of how the pruning
may work is beyond the scope of this paper.

After developing more efficient algorithms, the next
most important work to be done is generating a more
complete data set. The current, malicious data set, 3,301
examples, is smaller than the known number of malicious
programs, 50,000+ examples. Work needs to be done
with industry or security sources to develop a standard
data set consisting of infected programs, macro and vi-
sual basic viruses, and many different sets of benign data.
1

On more obvious future work would be to incorporate
the system into Windows and Macintosh mail servers and
clients. This would require work with the individual ven-
dors because their systems are not open-sourced. As a

1We are currently working on establishing such a data set with
Cigital, http://www.cigital.com, but more resources are needed. If
you would like to work with us please contact us at our website
http://www.cs.columbia.edu/ids/mef.

result of our system being freely available, these vendors
could work with us to incorporate it or they could do it
themselves.

Another potential future work of this filter is to make
it into a stand alone virus scanner. Once the system has
been fully completed, and thoroughly tested in the real
world it would be possible to port the algorithms to dif-
ferent operating systems, such as Windows, or Macin-
tosh.

This scanner could be run in a similar manner to tra-
ditional virus scanners. A user could run the system at
bootup, or when required and analyze all the files on a
personal computer. This requires though that the sys-
tem be efficient enough to run on older computers with
slower processors, and less memory.

8 Software Availability

The software described in this paper can be downloaded
from http://www.cs.columbia.edu/ids/mefin June 2001.

References

[1] D.Michie, D.J.Spiegelhalter, and C.C.Taylor.Ma-
chine learning of rules and trees. Ellis Horwood,
1994.

[2] MEF Group. Malicious Email Filter Group.
Published as Online publication, 2001.
http://www.cs.columbia.edu/ids/mef.

[3] John Hardin. Enhancing E-Mail Security
With Procmail. Online publication, 2001.
http://www.impsec.org/email-tools/procmail-
security.html.

[4] Jeffrey O. Kephart and William C. Arnold. Au-
tomatic Extraction of Computer Virus Signatures.
4th Virus Bulletin International Conference, pages
pages 178-184, 1994.

[5] R Kohavi. A study of cross-validation and boot-
strap for accuracy estimation and model selection.
IJCAI, 1995.

[6] MacAfee. Homepage - MacAfee.com. Published as
Online publication, 2001. http://www.mcafee.com.

[7] Peter Miller. Hexdump. Pub-
lished as Online publication, 2001.
http://www.pcug.org.au/ millerp/hexdump.html.

[8] Wildlist Organization. Virus description of viruses
in the wild. Published asOnline Publication, 2001.
http://www.f-secure.com/virus-info/wild.html.



[9] Ronald L. Rivest. The MD5 Message Digest Algo-
rithm. Published asInternet RFC 1321, April 1992.

[10] Matthew G. Schultz, Eleazar Eskin, Erez Zadok,
and Salvatore J. Stolfo. Data Mining Methods for
Detection of New Malicious Executables.To ap-
pear in IEEE Symposium on Security and Privacy,
May 2001.

[11] Stephen R. van den Berg and Philip Guen-
ther. Procmail. Online publication, 2001.
http://www.procmail.org.

[12] Steve R. White, Morton Swimmer, Edward J. Pring,
William C. Arnold, David M. Chess, and John F.
Morar. Anatomy of a Commercial-Grade Im-
mune System.IBM Research White Paper, 1999.
http://www.av.ibm.com/ScientificPapers/White/
Anatomy/anatomy.html.

[13] KH Zou, WJ Hall, and D Shapiro. Smooth non-
parametric ROC curves for continuous diagnostic
tests.Statistics in Medicine, 1997.


