
Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security

T1B2 1555 United States Military Academy, West Point, NY, 15–17 June 2005

Towards Collaborative Security and P2P Intrusion Detection

Michael E. Locasto, Janak J. Parekh, Angelos D. Keromytis, Salvatore J. Stolfo

Abstract— The increasing array of Internet–scale threats
is a pressing problem for every organization that utilizes the
network. Organizations have limited resources to detect and
respond to these threats. The end-to-end (E2E) sharing of
information related to probes and attacks is a facet of an
emerging trend toward “collaborative security.”

The key benefit of a collaborative approach to intrusion
detection is a better view of global network attack activ-
ity. Augmenting the information obtained at a single site
with information gathered from across the network can pro-
vide a more precise model of an attacker’s behavior and in-
tent. While many organizations see value in adopting such a
collaborative approach, some challenges must be addressed
before intrusion detection can be performed on an inter–
organizational scale.

We report on our experience developing and deploying
a decentralized system for efficiently distributing alerts to
collaborating peers. Our system, Worminator, extracts rele-
vant information from alert streams and encodes it in Bloom
Filters. This information forms the basis of a distributed
watchlist. The watchlist can be distributed via a choice of
mechanisms ranging from a centralized trusted third party
to a decentralized P2P-style overlay network.

I. Introduction

As the threat to critical infrastructure computer net-
works grows, the ability to rapidly and correctly identify,
rank, and react to probes and attacks is of acute impor-
tance. The exchange of alert data between administrative
domains can effectively supplement the knowledge gained
from local sensors. Intrusion detection systems (IDS’s) are
typically constrained within one administrative domain. In
such an environment, information about the global state of
network attack patterns is necessarily unexamined. Global
information can aid organizations in ranking and address-
ing threats that they do perceive and alerting organizations
to threats they would not otherwise have recognized.

Most current IDS’s do not adequately address the need
for information exchange. In addition, the fail–open nature
of IDS’s makes them a natural target for attacks [1]. Any
distributed IDS must enforce mechanisms that support the
reliability of its nodes as well as the integrity and confiden-
tiality of the alerts exchanged between those nodes. We
propose a collaborative distributed approach to intrusion
detection and present a system that addresses the chal-

M. E. Locasto: Columbia University, New York, NY.
J. J. Parekh: Columbia University, New York, NY.
A. D. Keromytis: Columbia University, New York, NY
S. J. Stolfo: Columbia University, New York, NY

lenges of information sharing.
Challenges for Collaboration Several problems
must be addressed before intrusion alert information can be
safely distributed among cooperating sites. First, the cur-
rently observable rates of alert generation preclude the use
of solutions incorporating a centralized system to aggre-
gate and correlate alert information. Administrators need
a reasonable chance to respond to the threats that are per-
ceived by the system; replicating all alert information and
forwarding it to a common central node places consider-
able trust in that node and risks both a single point of fail-
ure and the increasing congestion of the network near that
node. Third, exchanging alert data in a full mesh quadrat-
ically increases bandwidth requirements. Fourth, informa-
tion exchange between administrative domains needs to be
carefully managed, as proprietary or confidential network
data may escape the boundary of each domain. Finally,
any partitioning of the alert information into distinct sets
defined by the different domains may cause information loss
by disassociating data that should have been considered in
the same context.

II. Related Work

Previous work on distributed intrusion detection has fo-
cused mainly on the exchange of data within a single orga-
nization. Much of this work has focused on distributed col-
lection and centralized correlation [2]. The DShield project
[3] is an example of a centralized repository that receives in-
trusion alerts from many distributed sources. Only recently
has research been performed on systems that support the
exchange of data between administrative domains. Cup-
pens and Miege [4], [5] discuss methods for cooperatively
correlating alerts from different types of intrusion detection
systems. DOMINO [6] is an overlay network that utilizes
the Chord [7] protocol to distribute alert information based
on a hash of the source IP address.

CARDS is a prototype distributed intrusion detection
system that uses “attack trees”, or pre-defined sequences
of attack steps. CARDS decomposes global representations
of distributed attacks into smaller units (called detection
tasks) that correspond to the distributed events indicating
the attacks, and then executes and coordinates the detec-
tion tasks in the places where the corresponding events are
observed. While fast algorithms for signature and string
matching exist, the best known are of complexity O(n log3

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

n). One notable follow–up work is constructing new attack
sequences [8] to keep the signature database up to date.

Krugel et al. [9] propose a peer-to-peer system that rec-
ognizes attacks in a distributed manner. The system is
interesting because their results indicate two things. First,
only a relatively small number of messages (seldom more
than two in their experiments) need to be exchanged to
determine an attack is in progress. Second, their work
confirms that a peer–to–peer approach to decentralized in-
trusion detection is feasible and appropriate. However, the
system requires that attack signatures be known a priori.

The research closest to ours in aim and scope is the re-
cent work by Lincoln, Porras, and Shmatikov [10]. The
authors present a scheme for Internet–scale collaborative
analysis of information security threats and claim that it
provides strong privacy guarantees to contributers of alerts.
The authors sanitize and replicate alert data to enable alert
correlation between cooperating peers. While the authors
are mostly concerned with the scrubbing of alerts, we exam-
ine the need for the construction of an efficient distribution
mechanism as well as alert privacy.

Huang and Wicks [11] presents an exploration of the rel-
evant features of attacks, concluding that reconstructing
attack strategies is the appropriate method for balancing
the cost of distributed correlation with the utility of global
knowledge.

A recent study by Moore et al. [12] defines the resources
needed to counter worm propagation. They conclude that
a response needs to be mounted in 2-3 minutes and that
participation of nearly all major AS’s is required to be effec-
tive. The authors are pessimistic about the preparedness
of the general Internet for preventing and containing worm
outbreaks. Their results suggest that both technological
and administrative issues must be addressed before any ef-
fective defense can be mounted against such Internet–wide
threats. While these numbers are specifically derived in the
context of quarantining Internet worms, their results show
that current and foreseeable threats demand a cooperative
and collaborative approach to achieving security.

Secure multi-party computation (SMC), initiated by [13],
[14], [15], [16]), is one of the most fundamental achieve-
ments of cryptography in the last two decades. Du and
Atallah [17] briefly discuss privacy-preserving intrusion de-
tection in the course of enumerating practical applications
of Secure Multi-Party Computation. The authors of [10]
specifically avoid the use of SMC approaches due to their
cost.

III. Architecture

We adopt two mechanisms in order to cope with the dif-
ficulties of distributed correlation and the potential volume
of data being correlated. First, the construction of Bloom
filters by Worminator is employed to protect the confiden-
tiality of the data being exchanged between domains. Sec-

ond, efficient information exchange is accomplished with a
distributed correlation scheduling algorithm. The schedul-
ing algorithm dynamically calculates subsets of correlation
peers that should communicate to exchange Bloom filters.
Since information is also compacted by the Bloom filter,
correlation between peers becomes extremely cost-effective
in terms of bandwidth and processing power.

A key motivating factor for organizations to join a collab-
oration group in performing distributed intrusion detection
is that participants can implement fast mitigation strate-
gies against threats they otherwise would not have known
about. For example, DOMINO illustrates the advantage of
small blacklists (around 40 entries) that retain their efficacy
even when data is fairly stale. Other responses include the
content filtering strategies proposed by Moore et al. [12],
prosecution, or military action.

A. Requirements

From our discussion above, a set of requirements that
guides the design of our system has emerged:

1. The exchange of alert information must not leak poten-
tially sensitive data.
2. Large alert rates hide stealthy activity; any reasonable
solution must deal with or reduce the effects of these rates.
3. Centralized repositories are single points of failure and
likely unable to correlate the burgeoning amount of alerts.
4. Exchanging alerts in a full mesh quadratically increases
the complexity of the problem.
5. Any solution that partitions data among nodes risks in-
formation loss by disassociating evidence that should be
considered in the same context.

We make several assumptions about the environment the
system exists in and the alert information the system ex-
changes. Our assumptions and choices are intended to
carefully balance the requirements of data privacy with
the need to derive useful information and actionable in-
telligence from the alert exchange.

The environment and user base for a collaborative dis-
tributed intrusion detection system is an important con-
sideration. We envision cohorts of 25 to 100 organizations
exchanging information. Such cohorts can be organizations
with similar interests, such as universities, financial institu-
tions, military or government networks, energy companies,
news organizations, etc.

The sheer volume of alert streams is a critical considera-
tion in the design and evaluation of any distributed intru-
sion detection system. The size of current (and foreseeable)
alert streams demands low–cost processing and correlation.
Alert streams can threaten to dominate network bandwidth
if they are unnecessarily replicated.

Perhaps the most important decision we make is to em-
ploy the use of “watchlists,” or lists of IP addresses sus-
pected of subversive behavior. The task of the distributed
detection system is not to analyze the network or host

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 31

events of other domains, but rather to correlate summaries
of alerts to identify attackers. Therefore, watchlists encap-
sulate the appropriate information to exchange.

B. Preserving Privacy

While IDS alerts themselves could be distributed, there
are two substantial disadvantages to doing this: first, or-
ganizations may have privacy policies or concerns about
sharing detailed IP data, some of which might uncover who
they normally communicate with. Second, these alert files
grow rapidly given substantial traffic. While parameters
may be tweaked to reduce potential noise, a preferable so-
lution would be to encode the relevant information in a
compact yet useful manner.

We provide a compact format via the use of Bloom filters.
A Bloom filter is a one-way data structure that supports
two operations: insertion and verification, e.g., while no
data can be extracted after being inserted in the Bloom fil-
ter, it is probabilistically possible to see if specific data has
been inserted if presented a second time to the Bloom fil-
ter. This is accomplished by creating a compact bit vector
(typically between 215 – 220 entries). Entries are indexed
by the hash of the original data, i.e., a high-quality hash
of original data (in this case, IPs and port information) is
generated, broken up into parts, and these parts are used
as indices into the bit vector. Each resolved index in the
bit vector is set to 1. This process is typically repeated
multiple times (for different parts of the hash and/or dif-
ferent hashes), thereby increasing resiliency to noise or data
saturation. Verification is similar to insertion; instead of
actually setting bits, the bit vector is examined to deter-
mine if the bits are already set. Therefore, the IDS parses
its alert output and generates Bloom filters corresponding
to (for example) IP/port endpoint data.

Since Bloom filters are compact one-way data structures,
we get three benefits:

• Compactness: A Bloom filter smaller than 10k bits in
size is still able to accurately verify tens of thousands of
entries.
• Resiliency, even when the Bloom filter is decreased in
size: When the Bloom filter is saturated, it starts giv-
ing false positives (i.e., multiple data entries resolve to the
same locations in the bit vector), but never gives false neg-
atives. The false positives can be ameliorated by tuning or
by correlation against multiple alert lists.
• Security: By utilizing a one-way data structure, organi-
zations can correlate watchlists without releasing actual IP
data, satisfying privacy needs while being able to partici-
pate. If further security from outside observers is needed,
the dissemination protocol can be encapsulated in a secure
tunnel, like SSL, thereby only granting Bloom filter access
to the set of participants in the alert list correlation.

C. Distributed Correlation

A distributed correlation function must overcome the
problems of a centralized model while balancing the infor-
mation loss inherent in partitioning alert data among dif-
ferent nodes. The most straightforward way to accomplish
distribution (forwarding all data from every node to every
other node) involves a quadratic increase in the amount of
data exchanged.

More sophisticated approaches are based on two dif-
ferent theories. The first approach, which mirrors tradi-
tional DHT-based P2P networks, creates an explicit map-
ping from alert data (specifically, source and target IP ad-
dresses) to particular correlation nodes. The reasoning be-
hind this approach is that source and target IP addresses
are the two most important features (besides target port) of
alert data. With data about various machines collected in
one node, the majority of correlation can be accomplished
at that node without communicating with other nodes (ex-
cept to distribute results of global interest).

The shortcoming of this approach is that nodes become
special cases of the centralized model: they are single points
of failure for information pertaining to the IP address range
being hashed. In addition, participants in the system may
be uncomfortable with storing their raw alert information
at a single node. This approach invests too much trust in
each node. While a self–healing approach like Chord [7] can
ameliorate the loss of a node, previous information stored
at that node is at best lost temporarily (for example, in
the case of a denial of service,) or corrupted (in the case of
the node being compromised). Some of these shortcomings
can be mitigated by replicating the data to some number of
other nodes; however, it is not clear what the appropriate
balance is between fault–tolerance through replication and
utilization of network bandwidth and storage space. If data
is replicated to every other node, we see an unacceptable
quadratic increase in the cost of the system. Furthermore,
while DHT-based overlays provide a fast lookup() opera-
tion, the performance of such networks under churn (rapid
series of join() and leave() operations) is questionable [18].

The second theory attempts to address the limitations
of the first approach by introducing a dynamic mapping
between nodes and content. This dynamic overlay network
(as opposed to the largely static mappings of traditional
DHT-based overlay networks) implicitly incorporates the
notion of churn and does not need to spend time rebuild-
ing neighbor (finger) tables. We observe that a theoretical
optimal schedule exists for communicating information. If
an oracle existed in the network that answered with the
appropriate subset of nodes that should talk given a par-
ticular alert, links could be established between these nodes
without talking to nodes with irrelevant data (e.g., without
a lookup() operation).

In this model, we assume that there is a set of nodes S

of size N . We assume that there is some reliable mech-

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 32

anism for any subset of nodes to communicate with each
other. There is some discrete unit of knowledge K, that if
known would provide evidence of a distributed scan. Dur-
ing a distributed scan, some subset of S is scanned and
now contains a piece of knowledge Ki.

Normally, this knowledge would be discarded as insignif-
icant. However, the optimal schedule allows this set of
nodes to perfectly guess which of its neighbors also con-
tains a piece of K. Note that each node could also find
this information out via the O(N 2) full mesh method of
asking each other node in the network. However, we assert
that this method is too costly in terms of trust, network
bandwidth, and disk storage.

The key idea in this optimal schedule is that the cor-
rect subsets of nodes are always communicating. In order
to mimic this behavior, the (approximately) correct nodes
must talk to each other at (approximately) the right time.
One way of accomplishing such a schedule is to pick rela-
tionships at random. Another way is to employ a publish-
subscribe scheme.

D. Whirlpool: Network Scheduling

There is a clear need for efficient alert correlation in
large–scale distributed networks. To address this need, we
introduce the notion of network scheduling: the control-
lable formation and dissolution of relationships between
nodes and groups of nodes in a network. These relation-
ships can be envisioned as a dynamic overlay. Our network
scheduling mechanism is a procedure for coordinating the
exchange of information between the members of a corre-
lation group. The mechanism is controlled by a dynamic
and parameterizable correlation schedule.

Our approach is predicated on the previously described
theoretical model of the optimal correlation schedule, the
shortcomings of a fully interconnected mesh of correlation
nodes, and the limitations of the ideal centralized approach
to large–scale correlation. The main difficulty is that nodes
would most likely discard data that in truth belong to a
distributed alert. We must develop a mechanism whereby a
node can quickly conference with other peers and determine
whether or not a local alert is noise or signifies part of a
distributed alert.

The basic architecture of network scheduling is a set of
dynamic federations. Nodes that join and leave these fed-
erations at various rates. The variance in rates is intended
to allow federation groups to retain some stability while
expediting the import of new information into the group.
Furthermore, this mechanism can be augmented with a dis-
tributed learning algorithm that assists in promoting alerts
discovered by the distributed correlation.

IV. Implementation

A. Worminator

The Worminator platform supports compact watchlist
correlation via the replication and use of Bloom filters [19]
and uses the Antura network intrusion detection system
[20], [21] to generate alerts. The Antura NIDS has been
demonstrated to be an order-of-magnitude better at de-
tecting long-term stealthy scans than competing products.

Our initial proof-of-concept version of Worminator ran
at specific intervals on the computer running the Antura
sensor, parsed its alert output, and generated Bloom filters
corresponding to IP/port endpoint data. These alerts were
then transmitted to a centralized node using HTTP, and
correlation was manually initiated after-the-fact by down-
loading these Bloom filters from the centralized node. This
proof-of-concept prototype demonstrated the feasibility of
the idea: in preliminary tests that correlated results from
installations of Worminator at two academic sites, three
common sources of stealthy surveillance were detected: one
each in Beijing, the Phillippines, and a small western US
community college. These sources are most probably in-
terested in the test sites to discover weakly protected (but
usually more powerful and better connected) university or
research machines.

We have since evolved this version to better handle com-
munication latency and privacy requirements. The current
version of Worminator is completely pluggable, and sup-
ports different sensor and alert types, correlators, and com-
munication frameworks. Just as importantly, it supports
continuous validation; alerts from the sensor are exchanged
immediately, and correlation runs real-time to glean data
as soon as possible to help prepare defenses against pending
attacks or fast-moving worms.

The goal is to enable sites to maintain a secure watchlist
of alerts seen locally and from other sites, and to generate
a warnlist of significant threats if they have been corre-
lated as having been seen at multiple sites. This warnlist
can then be reported to network administrators or could be
directly mapped to firewall rules to prevent impending at-
tacks. Depending on privacy policies, these local warnlists
may also be explicitly replicated to other sites to enable a
fast global-scale response.

Worminator consists of approximately 9,500 lines of Java
code, and leverages a number of J2EE (Java 2 Enter-
prise Edition) providers, including the PostgreSQL JDBC
provider (for querying databases), the Tomcat JSP/Servlet
container (for the user interface), and the JBossMQ JMS
provider (for event transport).

V. Results

A. Worminator collaborative site experiment

The new version of Worminator was deployed at four dif-
ferent sites in the Northeast: two at Columbia (one on the

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 33

perimeter of the Computer Science network and the other
on the perimeter of a campus dorm), one at a company
in midtown Manhattan, and the last a research institution
in Washington, D.C. The Antura sensor was used as the
source of alerts at each site, and Java Message Service, a
publish-subscribe communication infrastructure, was lever-
aged to support event distribution amongst the sites. This
configuration was run for approximately 96 hours. Infor-
mation on source IPs and scan times were exchanged.

During the time, approximately 550,000 alerts were gen-
erated and exchanged. By far the most of these alerts
(roughly 75%) were at the Computer Science network. In
addition to traffic passing through the perimeter of the CS
network, the CS sensor sees internal traffic between CS ma-
chines. (Ordinarily, the dorm network might be more satu-
rated with malicious traffic, but this data was taken during
Spring Break, when many undergraduates leave campus.
The dorm sensor was also deployed later than the other
sites, and had run for approximately two days.)

Source # alerts Alerts/hr # src IPs
CS 420425 4379 5226

Dorm 9838 204 290
Midtown 11394 118 1831
Wash DC 116560 1214 22568

Fig. 1. Statistics on the watchlist : Sites, number of alerts exchanged,
and number of source IPs detected.

As Figure 1 implies, IPs generated more than one alert
in some instances; nevertheless, the number of IPs is very
large for each site, making individual alerting difficult. A
total of 29,731 unique IPs were seen. Next, we ran queries
to determine which sources were seen at two, three, or four
sites.

of sites # common src IPs % reduction
Two 170 99.5%
Three 18 99.93%
Four 1 99.996%

Fig. 2. Statistics on the warnlist : the number of source IPs detected
at two, three, and at four collaborating sites.

The reduction by examining the set of common sources
is remarkable – only 18 of the 29,731 original source IPs
were observed at three sites. While this does not neces-
sarily discount the other 29,713 IPs, the likelihood that
legitimate traffic exists between three of these four unre-
lated sites is extremely low, and simple port analysis can
help confirm this hypothesis. Note that, due to reduced
activity at the dorm site, conclusions about the number
of common sources at all four sites is preliminary at best,
but the one site that matched originated from China. Fur-
ther analysis from the CS sensor revealed that the machine
was probing destination ports 1026 and 1027 – used by

the Windows Messenger service [22], strongly suggesting
this IP was doing wholesale “pop-up” Internet spamming.
While its activity may have been benign, such a source is
clearly indicative of undesirable traffic, and leveraging the
warnlist makes it easy to block such sources, be it undesir-
able or outright malicious.

We also performed some preliminary analysis on the two-
site data to determine if a significant geographic distribu-
tion existed (e.g., if more scans originated from any partic-
ular site). Figure 3 illustrates the results of the top eight
countries (which comprise 87% of the total scans – every
other country contributed two or less IPs to the overall
total).

CN

49%

HK

7%

JP

9%

KR

3%

PL

2%

TR

2%

TW

2%

US

26%

Fig. 3. Geographic distribution of attacks by country for 2-site-
detected scans.

As the chart shows, China dominates, with nearly 49%
of the top eight countries and 41% overall amongst all
countries. This suggests that, despite the “great firewall
of China”, outbound scans and probes are unaffected and
continue to propagate to a broad cross-section of the Inter-
net.

One interesting footnote: while performing analysis on
the two-site data, two alerts were generated for the IP
128.9.168.45. Reverse DNS revealed the URL to be
http://ptr.isi.edu, which turns out to be an Internet
mapping server performing “low-volume” scans. Indeed,
this source comprised only .00007% of the total alert ex-
change, yet we were able to focus on the source with a
minimum of effort.

This analysis only scratches the tip of the iceberg; it be-
comes clear, however, that useful data can easily be gleaned
with just a few sites exchanging alerts. We plan to in-
crease the number of participating sites, which will greatly
increase the depth and breadth of the types of sources of
surveillance and we expect it to further validate our ap-
proach.

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 34

B. Alert Rates

Intrusion detection systems face the very real threat of
information loss from the sheer rate of available informa-
tion. Schaelicke et al. [23] are decidedly pessimistic about
the ability of relatively powerful commodity hardware and
network links to absorb peak alert loads, noting that an IDS
is effectively neutralized by the loss of alert data resulting
from a database unable to keep up with incoming network
data. This problem is compounded if multiple NIDS sen-
sors report to the same database system. DShield reports
about 10 million alert records added daily. Figure 4 shows
the increase in contributed data per month between Jan-
uary 2002 and May 2003.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

0 2 4 6 8 10 12 14 16 18

to
ta

l m
on

th
ly

 a
le

rt
 r

ec
or

ds

month number

DShield Alert Volume per Month Jan 2002 - May 2003

records

Fig. 4. DShield monthly alert record contributions. The graph is not
cumulative, but rather shows the rapid increase in contributed
alert information per month as DShield grew in popularity.

Event reduction and aggregation is a critical part of our
system. Since we construct watchlists from very little in-
formation (an IP address and a port), we are interested
in ways of combining different alert information. Reduc-
tion can be accomplished by filtering events either at the
source sensor or prior to correlation processing. As a triv-
ial example of the latter, consider a series of 100 basic IDS
alerts with the same source and destination IP information
and alert type information (e.g., “Host X probed host Y
on port Z”). These alerts can be reduced to a single alert
and a frequency. If a significant portion of alert streams
are amenable to this type of reduction, we can either per-
form more expensive processing on the resulting stream,
or produce actionable intelligence more rapidly. Inexpen-
sive reduction strategies (like logically grouping attacking
IP source addresses in the same /24 subnet) can result in
substantial compression, as is aggregation of multiple scan
alerts (one per port) by a single source into one overall
alert announcing a scan. For an example of the successful
application of these reduction strategies,

C. Network Schedule Evaluation

To evaluate the effectiveness of the Whirlpool network
scheduling, we compare it against a full mesh distribution
scheme and a random selection distribution scheme. To
that end, we introduce a Bandwidth Effective Utilization
Metric (BEUM). The BEUM is defined as:

BEUM =
1

t ∗ B

where t is the average number of time units it takes the dis-
tribution scheme to detect an attack and B is the amount
of bandwidth used by the distribution mechanism during
that period. B is defined in terms of the total number of
nodes, N , communicating via the distribution mechanism.
Thus, for a full mesh scheme we have:

B = N ∗ (N − 1)

and the time to discover an attack is t = 1. The BEUM for
a full mesh distribution strategy is therefore 1

N∗(N−1) . For

a system of 100 nodes, the BEUM for a full mesh is 1
9900

The BEUM for a particular schedule where groups are
kept at roughly

√
N is different and based on the calcula-

tion of the bandwidth consumed, B:

BEUM =
1

t ∗ B

B = N ∗
√

N

In general, if t ≤
√

N , this particular schedule wins.
Specifically, for a system of 100 nodes, the BEUM is 1

1000t
.

If t ≤ 9, this schedule is a better choice than a full mesh.
Many other schedules are possible to balance the tradeoffs
between bandwidth, coverage, and latency and we are ex-
ploring methods for identifying optimal schedules given a
set of constraints.

We simulated a randomized scheduling strategy for a sys-
tem of 100 nodes (performed over 1000 trials). Our simula-
tions indicate that on average, it takes 6 time units before
an attack is detected using a repeated random schedule.
This time unit requirement satisfies the requirement for
t ≤ 10 we derived for the BEUM. Figure 5 shows that even
though some pathological outliers exist, the vast majority
of attacks are detected in a relatively short time.

VI. Conclusions

Distributed intrusion detection is a powerful tool against
sophisticated adversaries that do not generate high–
visibility events that can be easily caught by traditional
means. In this paper, we seek to overcome two challenges:
the disclosure of potentially sensitive information to col-
laborating entities, and the tradeoff between latency and
bandwidth used for exchanging information.

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 35

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

of

 ti
m

e
sl

ic
es

 b
ef

or
e

at
ta

ck
 d

et
ec

te
d

trial #

random detection

time slices

Fig. 5. Number of time slices until random distribution detects an
attack. The average number for this particular data plot is 6 time
slices.

Worminator creates compact watchlists of IP addresses
encoded in Bloom Filters. The use of Bloom Filters mini-
mizes the amount of sensitive information exposed to third
parties (that are participating in the distributed IDS),
without hampering the detection effort itself. Furthermore,
this compact representation lessens the impact of the dis-
tributed computation on the network and simplifies the
correlation process itself.

One of the key contributions of this paper is the intro-
duction of the notion of a dynamic overlay that follows a
particular schedule to avoid the problems associated with
churn in P2P networks. The system creates federations of
nodes that exchange the watchlist and varys the rate at
which nodes join and leave these groups. Our experiments
and simulations show that even a randomized schedule can
detect distributed attacks within an average of six exchange
periods without using an unacceptable amount of band-
width to distribute alert information to peers.

We will continue to study methods for low cost alert
distribution and propagation. In addition, we envision de-
veloping metrics for ranking the threat level for particular
“verticals”, or groups of organizations. The deployment
of collaborate distributed intrusion detection allows and
organization to take mitigation and preemptive threat re-
sponses without having been directly attacked.

References

[1] C. Shannon and D. Moore, “The Spread of the Witty
Worm,” tech. rep., CAIDA Security Analysis, March 2004.
http://www.caida.org/analysis/security/witty/.

[2] S. Stolfo, “Worm and Attack Early Warning: Piercing Stealthy
Reconnaissance,” IEEE Privacy and Security, May/June 2004.

[3] J. Ullrich, “Dshield home page.” http://www.dshield.org/, 2004.
[4] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative

Intrusion Detection Framework,” in IEEE Security and Privacy,
2002.

[5] F. Cuppens and R. Ortalo, “Lambda: A language to model a
database for detection of attacks,” in Proceedings of the Third
International Workshop on the Recent Advances in Intrusion
Detection (RAID 2000), (Toulouse, France), October 2000.

[6] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion De-
tection in the DOMINO Overlay System,” in ISOC Symposium
on Network and Distributed Systems Security, February 2004.

[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-To-Peer Lookup Service for Inter-
net Application,” in Proceedings of ACM SIGCOMM, August
2001.

[8] P. Ning, Y. Cui, and D. Reeves, “Constructing Attack Scenarios
Through Correlation of Intrusion Alerts,” in Proceedings of the
9th ACM Conference on Computer and Communications Secu-
rity, pp. 245–254, November 2002.

[9] C. Krugel, T. Toth, and C. Kerer, “Decentralized event corre-
lation for intrusion detection,” in International Conference on
Information Security and Cryptology (ICISC), December 2001.

[10] P. Lincoln, P. Porras, and V. Shmatikov, “Privacy–Preserving
Sharing and Correlation of Security Alerts,” in Proceedings of
USENIX Security Conference, August 2004.

[11] M.-Y. Huang and T. M. Wicks, “A large-scale distributed in-
trusion detection framework based on attack strategy analysis,”
in Proceedings Recent Advances in Intrusion Detection (RAID),
1998.

[12] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Inter-
net Quarantine: Requirements for Containing Self–Propagating
Code,” in INFOCOM 2003, 2003.

[13] A. C. Yao, “Theory and application of trapdoor functions,” in
Proc. of the 23th Annu. IEEE Symp. on Foundations of Com-
puter Science, pp. 80–91, 1982.

[14] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game,” in Proc. of the 19th Annu. ACM Symp. on the
Theory of Computing, pp. 218–229, 1987.

[15] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for noncryptographic fault-tolerant distributed compu-
tations,” in Proc. of the 20th Annu. ACM Symp. on the Theory
of Computing, pp. 1–10, 1988.

[16] D. Chaum, C. Crépeau, and I. Damg̊ard, “Multiparty uncon-
ditionally secure protocols,” in Proc. of the 20th Annu. ACM
Symp. on the Theory of Computing, pp. 11–19, 1988.

[17] W. Du and M. J. Atallah, “Secure multi-party computation
problems and their applications: A review and open problems,”
in Proceedings New Security Paradigms Workshop (NSPW),
(Cloudcroft, NM), 2001.

[18] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek,
“Comparing the Performance of Distributed Hashtables Under
Churn,” in Proceedings of the International Workshop on Peer-
to-Peer Systems (IPTPS), February 2004.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, pp. 422–426,
July 1970.

[20] S. Detection, “System Detection Releases Antura Vision.”
http://www.sysd.com/, September 2003.

[21] S. Robertson, E. Siegel, M. Miller, and S. Stolfo, “Surveillance
Detection in High Bandwidth Environments,” in 2003 DARPA
DISCEX III Conference, April 2003.

[22] LURHQ Threat Intelligence Group, “Windows
Messenger Popup Spam on UDP Port 1026.”
http://www.lurhq.com/popup spam.html, 2003.

[23] L. Schaelicke, M. R. Geiger, and C. J. Freeland, “Improving the
Database Logging Performance of the Snort Network Intrusion
Detection Sensor,” Tech. Rep. Technical Report 03-10, 2002.

ISBN 0-7803-9814-9/$10.00 c©2005 IEEE 36

