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Abstract
Most computer defense systems crash the process that
they protect as part of their response to an attack. Al-
though recent research explores the feasibility of self-
healing to automatically recover from an attack, self-
healing faces some obstacles before it can protect legacy
applications and COTS (Commercial Off–The–Shelf)
software. Besides the practical issue of not modifying
source code, self-healing must know both when to en-
gage and how to guide a repair.

Previous work on a self-healing system, STEM, left
these challenges as future work. This paper improves
STEM’s capabilities along three lines to provide practi-
cal speculative execution for automated defense (SEAD).
First, STEM is now applicable to COTS software: it
does not require source code, and it imposes a roughly
73% performance penalty on Apache’s normal operation.
Second, we introduce repair policy to assist the healing
process and improve the semantic correctness of the re-
pair. Finally, STEM can create behavior profiles based
on aspects of data and control flow.

1 Introduction

Most software applications lack the ability to repair
themselves during an attack, especially when attacks are
delivered via previously unseen inputs or exploit previ-
ously unknown vulnerabilities. Self-healing software,
an emerging area of research [31, 29, 28], involves the
creation of systems capable of automatic remediation of
faults and attacks. In addition to detecting and defeat-
ing an attack, self-healing systems seek to correct the
integrity of the computation itself. Self-healing counter-
measures serve as a first line of defense while a slower
but potentially more complete human-driven response
takes place.

Most self-healing mechanisms follow what we term
the ROAR (Recognize, Orient, Adapt, Respond) work-

flow. These systems (a) Recognize a threat or attack has
occurred, (b) Orient the system to this threat by analyz-
ing it, (c) Adapt to the threat by constructing appropriate
fixes or changes in state, and finally (d) Respond to the
threat by verifying and deploying those adaptations.

While embryonic attempts in this space demonstrate
the feasibility of the basic concept, these techniques face
a few obstacles before they can be deployed to protect
and repair legacy systems, production applications, and
COTS (Commercial Off–The–Shelf) software. The key
challenge is to apply a fix inline (i.e., as the application
experiences an attack) without restarting, recompiling, or
replacing the process.

Executing through a fault in this fashion involves over-
coming several obstacles. First, the system should not
make changes to the application’s source code. Instead,
we supervise execution with dynamic binary rewriting.
Second, the semantics of program execution must be
maintained as closely as possible to the original intent
of the application’s author. We introduce repair policy
to guide the semantics of the healing process. Third, the
supervised system may communicate with external enti-
ties that are beyond the control or logical boundary of the
self-healing system. We explore the design space of vir-
tual proxies and detail one particular vector of implemen-
tation to address this problem. Finally, the system must
employ detection mechanisms that can indicate when to
supervise and heal the application’s execution. Although
STEM can operate with a number of detectors, we show
how it gathers aspects of both data and control flow to
produce an application’s behavior profile.

1.1 Motivation
Our solutions are primarily motivated by the need to ad-
dress the limitations of our previous self-healing soft-
ware system prototype [31]. STEM (Selective Trans-
actional EMulation) provides self-healing by specula-
tively executing “slices” of a process. We based this
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first approach on a feedback loop that inserted calls to
an x86 emulator at vulnerable points in an application’s
source code (requiring recompilation and redeployment).
STEM supervises the application using microspeculation
and error virtualization.

1.1.1 Microspeculation and Error Virtualization

The basic premise of our previous work is that portions
of an application can be treated as a transaction. Func-
tions serve as a convenient abstraction and fit the trans-
action role well in most situations [31]. Each transaction
(vulnerable code slice) can be speculatively executed in a
sandbox environment. In much the same way that a pro-
cessor speculatively executes past a branch instruction
and discards the mispredicted code path, STEM executes
the transaction’s instruction stream, optimistically “spec-
ulating” that the results of these computations are benign.
If this microspeculation succeeds, then the computation
simply carries on. If the transaction experiences a fault
or exploited vulnerability, then the results are ignored or
replaced according to the particular response strategy be-
ing employed. We call one such strategy, as discussed in
previous work [31], error virtualization.

0 int bar(char* buf)
1 {
2 char rbuf[10];
3 int i=0;
4 if(NULL==buf)
5 return -1;
6 while(i<strlen(buf))
7 {
8 rbuf[i++]=*buf++;
9 }
10 return 0;
11 }

Figure 1: Error Virtualization. We can map unanticipated
errors, like an exploit of the buffer overflow vulnerability in
line 8, to anticipated error conditions explicitly handled by the
existing program code (like the error condition return in line 5).

The key assumption underlying error virtualization is
that a mapping can be created between the set of er-
rors that could occur during a program’s execution and
the limited set of errors that the program code explic-
itly handles. By virtualizing errors, an application can
continue execution through a fault or exploited vulnera-
bility by nullifying its effects and using a manufactured
return value for the function where the fault occurred. In
the previous version of STEM, these return values were
determined by source code analysis on the return type of
the offending function. Vanilla error virtualization seems
to work best with server applications — applications that

typically have a request processing loop that can presum-
ably tolerate minor errors in a particular trace of the loop.
This paper, however, aims to provide a practical solution
for client applications (e.g., email, messaging, authoring,
browsing) as well as servers.

1.1.2 Limitations of Previous Approach

Recently proposed approaches to self-healing such as er-
ror virtualization [31] and failure-oblivious computing
[29] prevent exploits from succeeding by masking fail-
ures. However, error virtualization fails about 12% of
the time, and both approaches have the potential for se-
mantically incorrect execution. These shortcomings are
devastating for applications that perform precise1 calcu-
lations or provide authentication & authorization.

Furthermore, error virtualization required access to the
source code of the application to determine appropriate
error virtualization values and proper placement of the
calls to the supervision environment. A better solution
would operate on unmodified binaries and profile the ap-
plication’s behavior to learn appropriate error virtualiza-
tion values during runtime.

Finally, as with all systems that rely on rewinding ex-
ecution [4, 28] after a fault has been detected, I/O with
external entities remains uncontrolled. For example, if
a server program supervised by STEM writes a message
to a network client during microspeculation, there is no
way to “take back” the message: the state of the remote
client has been irrevocably altered.

1.2 Contributions
The changes we propose and evaluate in this paper pro-
vide the basis for the redesign of STEM’s core mecha-
nisms as well as the addition of novel methods to guide
the semantic correctness of the self-healing response.
STEM essentially adds a policy-driven layer of indirec-
tion to an application’s execution. The following con-
tributions collectively provide a significant improvement
over previous work:

1. Eliminate Source-Level Modifications – We em-
ploy error virtualization and microspeculation (and
the new techniques proposed in this section) during
binary rewriting. STEM serves as a self-contained
environment for supervising applications without
recompiling or changing source code.

2. Virtual Proxies – Self-healing techniques like mi-
crospeculation have difficulty “rewinding” the re-
sults of communication with remote entities that are
not under the control of the self-healing system.
This challenge can affect the semantic correctness
of the healing process. We examine the notion of
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virtual proxies to support cooperative microspecu-
lation without changing the communications proto-
cols or the code of the remote entity.

3. Repair Policy – Error virtualization alone is not ap-
propriate for all functions and applications, espe-
cially if the function is not idempotent or if the ap-
plication makes scientific or financial calculations
or includes authentication & authorization checks.
Repair policy provides a more complete approach to
managing the semantic correctness of a repair. Sec-
tion 4 describes the most relevant aspects and key
features of repair policy as well as STEM’s support
for interpreting it. We refer the interested reader to
our technical report [20] for a more complete dis-
cussion of the theoretical framework.

4. Behavior Profiling – Because we implement
STEM in a binary supervision environment, we can
non-invasively collect a profile of application be-
havior by observing aspects of both data and con-
trol flow. This profile assists in detection (detecting
deviations from the profile), repair (selecting appro-
priate error virtualization values), and repair valida-
tion (making sure that future performance matches
past behavior).

Using STEM to supervise dynamically linked appli-
cations directly from startup incurs a significant perfor-
mance penalty (as shown in Table 2), especially for short-
lived applications. Most of the work done during appli-
cation startup simply loads and resolves libraries. This
type of code is usually executed only once, and it prob-
ably does not require protection. Even though it may be
acceptable to amortize the cost of startup over the life-
time of the application, we can work around the startup
performance penalty by employing some combination of
three reasonable measures: (1) statically linking applica-
tions, (2) only attaching STEM after the application has
already started, (3) delay attaching until the system ob-
serves an IDS alert. We evaluate the second option by
attaching STEM to Apache after Apache finishes load-
ing. Our results (shown in Table 1) indicate that Apache
experiences roughly a 73% performance degradation un-
der STEM.

2 Related Work
Self-healing mechanisms complement approaches that
stop attacks from succeeding by preventing the injection
of code, transfer of control to injected code, or misuse
of existing code. Approaches to automatically defend-
ing software systems have typically focused on ways to
proactively protect an application from attack. Exam-
ples of these proactive approaches include writing the

system in a “safe” language, linking the system with
“safe” libraries [2], transforming the program with ar-
tificial diversity, or compiling the program with stack in-
tegrity checking [9]. Some defense systems also exter-
nalize their response by generating either vulnerability
[8, 24, 10] or exploit [19, 22, 32, 36] signatures to pre-
vent malicious input from reaching the protected system.

2.1 Protecting Control Flow
Starting with the technique of program shepherding [17],
the idea of enforcing the integrity of control flow has
been increasingly researched. Program shepherding val-
idates branch instructions to prevent transfer of control
to injected code and to make sure that calls into native
libraries originate from valid sources. Control flow is
often corrupted because input is eventually incorporated
into part of an instruction’s opcode, set as a jump target,
or forms part of an argument to a sensitive system call.
Recent work focuses on ways to prevent these attacks us-
ing tainted dataflow analysis [34, 25, 8].

Abadi et al. [1] propose formalizing the concept of
Control Flow Integrity (CFI), observing that high-level
programming often assumes properties of control flow
that are not enforced at the machine level. CFI provides
a way to statically verify that execution proceeds within a
given control-flow graph (the CFG effectively serves as a
policy). The use of CFI enables the efficient implemen-
tation of a software shadow call stack with strong pro-
tection guarantees. CFI complements our work in that it
can enforce the invocation of STEM (rather than allow-
ing malcode to skip past its invocation).

2.2 Self-Healing
Most defense mechanisms usually respond to an attack
by terminating the attacked process. Even though it is
considered “safe”, this approach is unappealing because
it leaves systems susceptible to the original fault upon
restart and risks losing accumulated state.

Some first efforts at providing effective remediation
strategies include failure oblivious computing [29], er-
ror virtualization [31], rollback of memory updates [32],
crash-only software [5], and data structure repair [11].
The first two approaches may cause a semantically in-
correct continuation of execution (although the Rx sys-
tem [28] attempts to address this difficulty by exploring
semantically safe alterations of the program’s environ-
ment). Oplinger and Lam [26] employ hardware Thread-
Level Speculation to improve software reliability. They
execute an application’s monitoring code in parallel with
the primary computation and roll back the computation
“transaction” depending on the results of the monitoring
code. Rx employs proxies that are somewhat akin to our
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virtual proxies, although Rx’s are more powerful in that
they explicitly deal with protocol syntax and semantics
during replay.

ASSURE [30] is a novel attempt to minimize the like-
lihood of a semantically incorrect response to a fault or
attack. ASSURE proposes the notion of error virtual-
ization rescue points. A rescue point is a program loca-
tion that is known to successfully propagate errors and
recover execution. The insight is that a program will re-
spond to malformed input differently than legal input; lo-
cations in the code that successfully handle these sorts of
anticipated input “faults” are good candidates for recov-
ering to a safe execution flow. ASSURE can be under-
stood as a type of exception handling that dynamically
identifies the best scope to handle an error.

2.3 Behavior-based Anomaly Detection
STEM also provides a mechanism to capture aspects of
an application’s behavior. This profile can be employed
for three purposes: (a) to detect application misbehav-
ior, (b) to aid self-healing, and (c) to validate the self-
healing response and ensure that the application does not
deviate further from its known behavior. STEM captures
aspects of both control flow (via the execution context)
and portions of the data flow (via function return val-
ues). This mechanism draws from a rich literature on
host-based anomaly detection.

The seminal work of Hofmeyr, Somayaji, and For-
rest [15, 33] examines an application’s behavior at the
system-call level. Most approaches to host-based in-
trusion detection perform anomaly detection [6, 13, 14]
on sequences of system calls. The work of Feng et
al. [12] includes an excellent overview of the literature
circa 2003. The work of Bhatkar et al. [3] also contains
a good overview of the more recent literature and offers a
technique for dataflow anomaly detection to complement
traditional approaches that concentrate mostly on control
flow. Behavior profiling’s logical goal is to create poli-
cies for detection [27, 18] and self-healing.

3 STEM

One of this paper’s primary contributions is the reimple-
mentation of STEM to make it applicable in situations
where source code is not available. This section reviews
the technical details of STEM’s design and implemen-
tation. We built STEM as a tool for the IA-32 binary
rewriting PIN [23] framework.

3.1 Core Design
PIN provides an API that exposes a number of ways to
instrument a program during runtime, both statically (as

a binary image is loaded) and dynamically (as each in-
struction, basic block, or procedure is executed). PIN
tools contain two basic types of functions: (1) instru-
mentation functions and (2) analysis functions. When
a PIN tool starts up, it registers instrumentation func-
tions that serve as callbacks for when PIN recognizes
an event or portion of program execution that the tool is
interested in (e.g., instruction execution, basic block en-
trance or exit, etc.). The instrumentation functions then
employ the PIN API to insert calls to their analysis func-
tions. Analysis functions are invoked every time the cor-
responding code slice is executed; instrumentation func-
tions are executed only the first time that PIN encounters
the code slice.

STEM treats each function as a transaction. Each
“transaction” that should be supervised (according to
policy) is speculatively executed. In order to do so,
STEM uses PIN to instrument program execution at four
points: function entry (i.e., immediately before a CALL
instruction), function exit (i.e., between a LEAVE and
RET instruction), immediately before the instruction af-
ter a RET executes, and for each instruction of a super-
vised function that writes to memory. The main idea is
that STEM inserts instrumentation at both the start and
end of each transaction to save state and check for er-
rors, respectively. If microspeculation of the transaction
encounters any errors (such as an attack or other fault),
then the instrumentation at the end of the transaction in-
vokes cleanup, repair, and repair validation mechanisms.

STEM primarily uses the “Routine” hooks provided
by PIN. When PIN encounters a function that it has not
yet instrumented, it invokes the callback instrumenta-
tion function that STEM registered. The instrumentation
function injects calls to four analysis routines:

1. STEM Preamble() – executed at the beginning
of each function.

2. STEM Epilogue() – executed before a RET in-
struction

3. SuperviseInstruction() – executed before
each instruction of a supervised function

4. RecordPreMemWrite() – executed before each
instruction of a supervised function that writes to
memory

STEM’s instrumentation function also intercepts some
system calls to support the “CoSAK” supervision policy
(discussed below) and the virtual proxies (discussed in
Section 5).

3.2 Supervision Policy
One important implementation tradeoff is whether the
decision to supervise a function is made at injection time
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(i.e. during the instrumentation function) or at analysis
time (i.e., during an analysis routine). Consulting policy
and making a decision in the latter (as the current imple-
mentation does) allows STEM to change the coverage
supervision policy (that is, the set of functions it mon-
itors) during runtime rather than needing to restart the
application. Making the decision during injection time is
possible, but not for all routines, and since the policy de-
cision is made only once, the set of functions that STEM
can instrument is not dynamically adjustable unless the
application is restarted, or PIN removes all instrumenta-
tion and invokes instrumentation for each function again.

Therefore, each injected analysis routine determines
dynamically if it should actually be supervising the cur-
rent function. STEM instructs PIN to instrument all
functions – a STEM analysis routine needs to gain con-
trol, even if just long enough to determine it should not
supervise a particular function. The analysis routines in-
voke STEM’s ShouldSuperviseRoutine() func-
tion to check the current supervision coverage policy in
effect. Supervision coverage policies dictate which sub-
set of an application’s functions STEM should protect.
These policies include:

• NONE – no function should be microspeculated

• ALL – all functions should be microspeculated

• RANDOM – a random subset should be microspec-
ulated (the percentage is controlled by a configura-
tion parameter)

• COSAK – all functions within a call stack depth
of six from an input system call (e.g., sys read())
should be microspeculated2

• LIST – functions specified in a profile (either gener-
ated automatically by STEM or manually specified)
should be microspeculated

In order to support the COSAK [16] coverage pol-
icy, STEM maintains a cosak depth variable via
four operations: check, reset, increment, and decre-
ment. Every time an input system call is encoun-
tered, the variable is reset to zero. The variable is
checked during ShouldSuperviseRoutine() if
the coverage policy is set to COSAK. The variable
is incremented every time a new routine is entered
during STEM Preamble() and decremented during
STEM Epilogue().

3.3 STEM Workflow
Although STEM can supervise an application from
startup, STEM benefits from using PIN because PIN can
attach to a running application. For example, if a network

sensor detects anomalous data aimed at a web server,
STEM can attach to the web server process to protect
it while that data is being processed. In this way, ap-
plications can avoid the startup costs involved in instru-
menting shared library loading, and can also avoid the
overhead of the policy check for most normal input.

STEM starts by reading its configuration file, attach-
ing some command and control functionality (described
in Section 3.4), and then registering a callback to instru-
ment each new function that it encounters. STEM’s ba-
sic algorithm is distributed over the four main analysis
routines. If STEM operates in profiling mode (see Sec-
tion 6), then these analysis routines remain unused.

3.3.1 Memory Log

Since STEM needs to treat each function as a transac-
tion, undoing the effects of a speculated transaction re-
quires that STEM keep a log of changes made to mem-
ory during the transaction. The memory log is main-
tained by three functions: one that records the “old”
memory value, one that inserts a marker into the mem-
ory log, and one that rolls back the memory log and op-
tionally restores the “old” values. STEM inserts a call
to RecordPreMemWrite() before an instruction that
writes to memory. PIN determines the size of the write,
so this analysis function can save the appropriate amount
of data. Memory writes are only recorded for functions
that should be supervised according to coverage pol-
icy. During STEM Preamble(), PIN inserts a call to
InsertMemLogMarker() to delimit a new function
instance. This marker indicates that the last memory log
maintenance function, UnrollMemoryLog(), should
stop rollback after it encounters the marker. The rollback
function deletes the entries in the memory log to make ef-
ficient use of the process’s memory space. This function
can also restore the “old” values stored in the memory
log in preparation for repair.

3.3.2 STEM Preamble()

This analysis routine performs basic record keeping. It
increments the COSAK depth variable and maintains
other statistics (number of routines supervised, etc.). Its
most important tasks are to (1) check if supervision cov-
erage policy should be reloaded and (2) insert a function
name marker into the memory log if the current function
should be supervised.

3.3.3 STEM Epilogue()

STEM invokes this analysis routine immediately before a
return instruction. Besides doing its part to maintain the
COSAK depth variable, this analysis routine ensures that
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the application has a chance to self-heal before a trans-
action is completed. If the current function is being su-
pervised, this routine interprets the application’s repair
policy (a form of integrity policy based on extensions to
the Clark-Wilson integrity model, see Section 4 for de-
tails), invokes the repair procedure, and invokes the re-
pair validation procedure. If both of these latter steps are
successful or no repair is needed, then the transaction is
considered to be successfully committed. If not, and an
error has occurred, then STEM falls back to crashing the
process (the current state of the art) by calling abort().

This analysis routine delegates the setup of error vir-
tualization to the repair procedure. The repair proce-
dure takes the function name, current architectural con-
text (i.e., CPU register values), and a flag as input.
The flag serves as an indication to the repair procedure
to choose between normal cleanup or a “self-healing”
cleanup. While normal cleanup always proceeds from
STEM Epilogue(), a self-healing cleanup can be
invoked synchronously from STEM Epilogue() or
asynchronously from a signal handler. The latter case
usually occurs when STEM employs a detector that
causes a signal such as SIGSEGV to occur when it senses
an attack.

Normal cleanup simply entails deleting the entries for
the current function from the memory log. If self-healing
is needed, then the values from the memory log are re-
stored. In addition, a flag is set indicating that the pro-
cess should undergo error virtualization, and the current
function name is recorded.

3.3.4 SuperviseInstruction()

The job of this analysis routine is to intercept the instruc-
tion that immediately follows a RET instruction. By do-
ing so, STEM allows the RET instruction to operate as it
needs to on the architectural state (and by extension, the
process stack). After RET has been invoked, if the flag
for error virtualization is set, then STEM looks up the
appropriate error virtualization value according to policy
(either a vanilla EV value, or an EV value derived from
the application’s profile or repair policy). STEM then
performs error virtualization by adjusting the value of
the %eax register and resets the error virtualization flag.
STEM ensures that the function returns appropriately by
comparing the return address with the saved value of the
instruction pointer immediately after the corresponding
CALL instruction.

3.4 Additional Controls
STEM includes a variety of control functionality that as-
sists the core analysis routines. The most important of
these additional components intercepts signals to deal

with dynamically loading configuration and selecting a
suitable error virtualization value.

STEM defines three signal handlers and registers them
with PIN. The first intercepts SIGUSR1 and sets a
flag indicating that policy and configuration should be
reloaded, although the actual reload takes place during
the execution of the next STEM Preamble(). The sec-
ond signal handler intercepts SIGUSR2 and prints some
runtime debugging information. The third intercepts
SIGSEGV (for cases where detectors alert on memory
errors, such as address space randomization). The han-
dler then causes the repair procedure to be invoked, af-
ter it has optionally asked the user to select a response
as detailed by the repair policy. Part of the response
can include forwarding a snapshot of memory state to
support automatically generating an exploit signature as
done with the previous version of STEM for the FLIPS
system [22].

STEM supports a variety of detection mechanisms,
and it uses them to measure the integrity of the com-
putation at various points in program execution and set
a flag that indicates STEM Epilogue() should initiate
a self-healing response. Our current set of detectors in-
cludes one that detects an anomalous set of function calls
(i.e., a set of functions that deviate from a profile learned
when STEM is in profiling mode) as well as a shadow
stack that detects integrity violations of the return ad-
dress or other stack frame information. STEM also in-
tercepts a SIGSEGV produced by an underlying OS that
employs address space randomization. We are currently
implementing tainted dataflow analysis. This detector re-
quires more extensive instrumentation, thereby limiting
the supervision coverage policy to “ALL.”

4 Repair Policy
Achieving a semantically correct response remains a key
problem for self-healing systems. Executing through a
fault or attack involves a certain amount of risk. Even
if software could somehow ignore the attack itself, the
best sequence of actions leading back to a safe state is an
open question. The exploit may have caused a number of
changes in state that corrupt execution integrity before an
alert is issued. Attempts to self-heal must not only stop
an exploit from succeeding or a fault from manifesting,
but also repair execution integrity as much as possible.
However, self-healing strategies that execute through a
fault by effectively pretending it can be handled by the
program code or other instrumentation may give rise to
semantically incorrect responses. In effect, naive self-
healing may provide a cure worse than the disease.

Figure 2 illustrates a specific example: an error may
exist in a routine that determines the access control rights
for a client. If this fault is exploited, a self-healing tech-
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int login(UCRED creds)
{

int authenticated = check_credentials(creds);
if(authenticated) return login_continue();
else return login_reject();

}
int check_credentials(UCRED credentials)
{

strcpy(uname, credentials.username);
return checkpassword(lookup(uname), credentials);

}

Figure 2: Semantically Incorrect Response. If an error
arising from a vulnerability in check credentials occurs,
a self-healing mechanism may attempt to return a simulated er-
ror code from check credentials. Any value other than
0 that gets stored in authenticated causes a successful lo-
gin. What may have been a simple DoS vulnerability has been
transformed into a valid login session by virtue of the “secu-
rity” measures. STEM interprets repair policy to intelligently
constrain return values and other application data.

nique like error virtualization may return a value that
allows the authentication check to succeed. This situa-
tion occurs precisely because the recovery mechanism is
oblivious to the semantics of the code it protects.

One solution to this problem relies on annotating the
source code to (a) indicate which routines should not
be “healed” or (b) to provide appropriate return values
for such sensitive functions, but we find these techniques
unappealing because of the need to modify source code.
Since source-level annotations serve as a vestigial policy,
we articulate a way to augment self-healing approaches
with the notion of repair policy. A repair policy (or a
recovery policy – we use the terms interchangeably) is
specified separately from the source code and describes
how execution integrity should be maintained after an at-
tack is detected. Repair policy can provide a way for
a user to customize an application’s response to an in-
trusion attempt and can help achieve a completely auto-
mated recovery.

4.1 Integrity Repair Model
We provide a theoretical framework for repair policy by
extending the Clark-Wilson Integrity Model (CW) [7] to
include the concepts of (a) repair and (b) repair valida-
tion. CW is ideally suited to the problem of detecting
when constraints on a system’s behavior and information
structures have been violated. The CW model defines
rules that govern three major constructs: constrained
data items (CDI), transformation procedures (TP), and
integrity verification procedures (IVP). An information
system is composed of a set of TPs that transition CDIs
from one valid state to another. The system also includes
IVPs that measure the integrity of the CDIs at various

points of execution.
Although a TP should move the system from one valid

state to the next, it may fail for a number of reasons
(incorrect specification, a vulnerability, hardware faults,
etc.). The purpose of an IVP is to detect and record this
failure. CW does not address the task of returning the
system to a valid state or formalize procedures that re-
store integrity. In contrast, repair policy focuses on ways
to recover after an unauthorized modification. Our ex-
tensions supplements the CW model with primitives and
rules for recovering from a policy violation and validat-
ing that the recovery was successful.

4.2 Interpreting Repair Policy
STEM interprets repair policy to provide a mechanism
that can be selectively enforced and retrofitted to the pro-
tected application without modifying its source code (al-
though mapping constraints to source-level objects as-
sists in maintaining application semantics). As with most
self-healing systems, we expect the repairs offered by
this “behavior firewall” to be temporary constraints on
program behavior — emergency fixes that await a more
comprehensive patch from the vendor. One advantage
of repair policy is that an administrator can “turn off” a
broken repair policy without affecting the execution of
the program — unlike a patch.

Repair policy is specified in a file external to the
source code of the protected application and is used only
by STEM (i.e., the compiler, the linker, and the OS are
not involved). This file describes the legal settings for
variables in an aborted transaction. The basis of the pol-
icy is a list of relations between a transaction and the
CDIs that need to be adjusted after error-virtualization,
including the return address and return value. A com-
plete repair policy is a wide-ranging topic; in this paper
we consider a simple form that:

1. specifies appropriate error virtualization settings to
avoid an incorrect return value that causes problems
like the one illustrated in Figure 2

2. provides memory rollback for an aborted transac-
tion

3. sets memory locations to particular values

Figure 3 shows a sample policy for our running exam-
ple. The first statement defines a symbolic value. The lat-
ter three statements define an IVP, RP, and TP. The IVP
defines a simple detector that utilizes STEM’s shadow
stack. The RP sets the return value to a semantically cor-
rect value and indicates that memory changes should be
undone, and the TP definition links these measurement
and repair activities together. An RP can contain a list of
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symval AUTHENTICATION_FAILURE = 0;
ivp MeasureStack :=:

(’raddress==’shadowstack[0]);
rp FixAuth :=:

(’rvalue==AUTHENTICATION_FAILURE),
(rollback);

tp check_credentials
&MeasureStack :=: &FixAuth;

Figure 3: Sample Repair Policy. If the TP named
check credentials fails, then the memory changes made
during this routine are reset and STEM stores the value 0 in the
return value (and thus into authenticated), causing the lo-
gin attempt to fail.

asserted conditions on CDIs that should be true after self-
healing completes. The example illustrates the use of the
special variable ’rvalue (the apostrophe distinguishes
it from any CDI named rvalue). This variable helps
customize vanilla error virtualization to avoid problems
similar to the one in Figure 2.

4.3 Limitations and Future Work
Our future work on STEM centers on improving the
power and ease of use of repair policy. We intend to
provide a mapping between memory layout and source-
level variables. Cutting across layers of abstraction like
this requires augmenting the mapping mechanism with a
type system and the ability to handle variables that do not
reside at fixed addresses. Second, while virtual proxies
are a key aid to provide a semantically correct response,
there is no explicit integration of virtual proxy behav-
ior with repair policy specification. Third, we intend to
explore the addition of formal logic to STEM so that it
can reason about the constraints on the data involved in
a transaction to learn the best response over time.

Finally, the information that a particular set of vari-
ables have been corrupted raises the possibility of noti-
fying other hosts and application instances to proactively
invoke repair procedures in order to protect against a
widespread attack [21, 8, 35]. This sort of detection is
helpful in creating a system that automatically tunes the
security posture of an organization.

5 Virtual Proxies

Attempts to sandbox an application’s execution must
sooner or later allow the application to deal with global
input and output sources and sinks that are beyond the
control of the sandbox. Microspeculation becomes un-
safe when the speculated process slice communicates
with entities beyond the control of STEM. If a trans-
action is not idempotent (i.e., it alters global state such
as shared memory, network messages, etc.), then mi-

crospeculation must stop before that global state is
changed. The self-healing system can no longer safely
speculate a code slice: the results of execution up to
that point must be committed, thus limiting microspec-
ulation’s effective scope.

Repair attempts may fall short in situations where an
exploit on a machine (e.g., an electronic funds transfer
front-end) that is being “healed” has visible effects on
another machine (e.g., a database that clears the actual
transfer). For example, if a browser exploit initiates a
PayPal transaction, even though STEM can recover con-
trol on the local machine, the user will not have an auto-
mated recourse with the PayPal system.

Such situations require additional coordination be-
tween the two systems – microspeculation must span
both machines. If both machines reside in the same
administrative domain, achieving this cooperative mi-
crospeculation is somewhat easier, but we prefer a so-
lution that works for situations like the PayPal exam-
ple. While a self-healing system can record I/O, it can-
not ask a communications partner to replay input or re-
accept output. Doing so requires that the protocol (and
potentially the network infrastructure) support specula-
tive messaging and entails changing the partner’s imple-
mentation so that it can rewind its own execution. Since
STEM may not be widely deployed, we cannot rely on
this type of explicit cooperation.

5.1 Solutions
We can achieve cooperative microspeculation in at least
four ways, each of which expresses a tradeoff between
semantic correctness and invasiveness.

1. Protocol Modification – Modify network or
filesystem protocols and the network infrastructure
to incorporate an explicit notion of speculation.

2. Modify Communications Partner – Modify the
code of the remote entity so that it can cooperate
when the protected application is microspeculating,
and thus anticipate when it may be sending or re-
ceiving a “speculated” answer or request.

3. Gradual Commits – Transactions can be continu-
ously limited in scope. All memory changes occur-
ring before an I/O call are marked as not undoable.
Should the microspeculated slice fail, STEM only
undoes changes to memory made after the I/O call.

4. Virtual Proxies – Use buffers to record and replay
I/O locally. Virtual proxies effectively serve as a
man-in-the-middle during microspeculation to de-
lay the effects of I/O on the external world.
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While some network and application-level protocols
may already include a notion of “replay” or speculative
execution, implementing widespread changes to protocol
specifications and the network infrastructure is fairly in-
vasive. Nevertheless, it presents an interesting technical
research challenge. Another interesting possibility is to
modify the execution environment or code of the remote
communications partner to accept notifications from a
STEM-protected application. After receiving the noti-
fication, the remote entity speculates its own I/O. While
this approach promises a sound solution, it violates our
transparency requirements.

We choose to use a combination of virtual proxies and
gradual commits because these solutions have the least
impact on current application semantics and require a
straightforward implementation. Since we are already
“modifying” the local entity, we can avoid modifying the
remote entity or any protocols. Using gradual commits
and virtual proxies constrains the power of our solution,
but we believe it is an acceptable tradeoff, especially as
self-healing systems gain traction – they should perturb
legacy setups as little as possible.

5.2 Design
I/O system calls that occur during the speculated portion
of a process constitute a challenge for safely discard-
ing speculated operations should an exploit occur. While
speculation can immediately resume after an I/O call, the
I/O call itself cannot be replayed or undone. If a fault
or exploit occurs after the I/O call (but still in the mi-
crospeculated routine), then STEM cannot rewind to the
beginning of the code slice. Rather, it can only unwind
back to the I/O call. Memory and other state changes be-
fore the I/O call must remain in effect (we ignore for the
moment explicit changes made as part of repair policy).
This gradual process of commits is one way in which we
can attempt to control uncertainty in the correctness of
the response.

A virtual proxy serves as a delegate for a communi-
cations partner (e.g., server, client, or peer) for the pro-
gram that STEM is supervising. A virtual proxy is com-
posed of a set of functions that modify a buffer that is
bound during the scope of a supervised routine. The pri-
mary function of the virtual proxy is to allow STEM, as it
speculates a slice of an application, to “take back” some
output or “push back” some input. As a proof of con-
cept, our current implementation only intercepts read
and write calls. Virtual proxies are designed to handle
this two-part problem.

Virtual Proxy Input In this case, an external com-
ponent (such as a filesystem) is providing input. The
code slice that contains this input call can either (a)
successfully complete without an error or exploit, or

(b) experience such a fault and have STEM attempt re-
pair. In case (a), nothing need happen because STEM’s
state is consistent with the global state. In case (b),
STEM must attempt a semantically correct repair – re-
gardless of whether or not the input was legal or mal-
formed/malicious. At this point, the external entity be-
lieves its state has changed (and therefore will not replay
the input). In the optimal case, STEM should continue
executing with what input that was supposed to be con-
sumed by the transaction removed from the input buffer.
Naturally, STEM cannot determine this on its own (and
the speculated code slice is no help either – it evidently
experienced a fault when processing this input). Instead,
STEM can continue processing and draw from the virtual
proxy’s buffers during the next input request.

Virtual Proxy Output In order to deal with specu-
lated output, STEM must buffer output until it requires
input from the external component. At this point, STEM
must allow the remote partner to make progress. This
process of gradual commits is useful, but has the po-
tential to delay too long and cause an application-level
timeout. STEM does not currently deal with this issue.
As with virtual proxy input, the speculated slice can (a)
successfully complete without an error or exploit, or (b)
experience such a fault and have STEM attempt a repair.
In case (a), gradual commits suffice, as the output calls
simply finish. In case (b), the external component has
been given a message it should not have. If the virtual
proxy were not operating, a STEM-supervised applica-
tion would need to ask for that output to be ignored. The
virtual proxy allows STEM to buffer output until the mi-
crospeculated slice successfully completes. If the slice
fails, then STEM instructs the virtual proxy to discard
the output (or replace it).

5.3 Limitations and Future Work
Although virtual proxies help address the external I/O
problem for microspeculation, they are not a perfect so-
lution. In the case where STEM is supervising the pro-
cessing of input, the virtual proxy can only buffer a lim-
ited amount of input – and it is not clear how to selec-
tively discard portions of that input should a transaction
fail. In the cases where STEM supervises the sending of
output, the virtual proxy buffers the output until STEM
requests input from the remote communications partner.
At this point, STEM has reached the edge of our ability
to safely microspeculate, and without further support in
the virtual proxy that explicitly communicates with the
remote partner, STEM must stop speculating and finally
give the data to the remote partner.

One interesting problem is to use multiple virtual
proxies to classify and identify multiple conversation
streams. This information is not present at the level of

9



read and write system calls, and STEM would need to
break through layers of abstraction to support this ability.
Finally, since the virtual proxy is under STEM’s control,
STEM can attempt to construct a memory and behavior
model of the remote communications partner to deter-
mine if it is behaving in a malicious fashion.

6 Behavior Models

Although STEM uses a number of detection strategies
(including a shadow stack), STEM also provides for
host-based anomaly detection. This type of detection
helps identify previously unknown vulnerabilities and
exploits, but depends on the system having a model or
profile of normal behavior. STEM collects aspects of
data and control flow to learn an application’s behavior
profile. STEM can leverage the information in the pro-
file to detect misbehavior (i.e., deviation from the pro-
file) and automatically validate repairs to ensure that self-
healing achieves normal application behavior.

Figure 4: Example of Computing Execution Window
Context. Starting from function 8, we traverse the graph
beginning from the previously executed siblings up to the
parent. We recursively repeat this algorithm for the par-
ent until we either reach the window width or the root. In
this example, the window contains functions 7, 6, 5, 2, 1.
Systems that examine the call stack would only consider
6, 5, and 1 at this point.

In profiling mode, STEM dynamically analyzes all
function calls made by the process, including regular
functions and library calls as well as system calls. Pre-

vious work typically examines only system calls or is
driven by static analysis. STEM collects a feature set that
includes a mixture of parent functions and previous sib-
ling functions. STEM generates a record of the observed
return values for various invocations of each function.

A behavior profile is a graph of execution history
records. Each record contains four data items: an identi-
fier, a return value, a set of argument values, and a con-
text. Each function name serves as an identifier (although
address/callsites can also be used). A mixture of parents
and previous siblings compose the context. The argu-
ment and return values correspond to the argument val-
ues at the time that function instance begins and ends,
respectively. STEM uses a pair of analysis functions (in-
serted at the start and end of each routine) to collect the
argument values, the function name, the return value, and
the function context.

Each record in the profile helps to identify an instance
of a function. The feature set “unflattens” the function
namespace of an application. For example, printf()
appears many times with many different contexts and re-
turn values, making it hard to characterize. Considering
every occurrence of printf() to be the same instance
reduces our ability to make predictions about its behav-
ior. On the other hand, considering all occurrences of
printf() to be separate instances combinatorially in-
creases the space of possible behaviors and similarly re-
duces our ability to make predictions about its behavior
in a reasonable amount of time. Therefore, we need to
construct an “execution context” for each function based
on both control (predecessor function calls) and data (re-
turn & argument values) flow. This context helps col-
lapse occurrences of a function into an instance of a
function. Figure 4 shows an example context window.

During training, one behavior aspect that STEM learns
is which return values to predict based on execution con-
texts of varying window sizes. The general procedure
attempts to compute the prediction score by iteratively
increasing the window size and seeing if additional in-
formation is revealed by considering the extra context.

We define the return value “predictability score” as a
value from zero to one. For each context window, we
calculate the “individual score”: the relative frequency
of this particular window when compared with the rest
of the windows leading to a function. The predictability
score for a function F is the sum of the individual scores
that lead to a single return value. Figure 5 displays an
example of this procedure. We do not consider windows
that contain smaller windows leading to a single return
value since the information that they impart is already
subsumed by the smaller execution context. For exam-
ple, in Figure 5, we do not consider all windows with a
suffix of AF (i.e., ∗AF ).

Limitations STEM relies on PIN to reliably detect
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Figure 5: Example of Computing Return Value Predictability (predictability score). The figure illustrates the procedure
for function F and for two return values 0 & 1 for three window sizes. The arrow labels indicate what percentage of instances
for the given window will lead to the return value of F when compared with the rest of the windows. For window size 1 (S1) we
have three predicate functions (A, B, and C) with only one, A, leading to a unique return value with score 0.2. This score is the
relative frequency of window AF ,[2] when compared with all other windows leading to F , for all return values. We add a score to
the total score when a window leads to single return value of F since this situation is the only case that “predicts” a return value.
We consider only the smallest windows that lead to a single value (e.g., A is no longer considered for S2 and KB, LB, MB for S3)
because larger windows do not add anything to our knowledge for the return value.

returns from a function. Detecting function exit is dif-
ficult in the presence of optimizations like tail recur-
sion. Also, since the generated profile is highly binary-
dependent, STEM should recognize when an older pro-
file is no longer applicable (and a new one needs to be
built), e.g., as a result of a new version of the application
being rolled out, or due to the application of a patch.

7 Evaluation

The goal of our evaluation is to characterize STEM’s im-
pact on the normal performance of an application. STEM
incurs a relatively low performance impact for real-world
software applications, including both interactive desk-
top software as well as server programs. Although the
time it takes to self-heal is also of interest, our experi-
ments on synthetic vulnerabilities show that this amount
of time depends on the complexity of the repair policy
(i.e., how many memory locations need to be adjusted)
and the memory log rollback. Even though memory log
rollback is an O(n) operation (we discuss a possible opti-
mization below), STEM’s self-healing and repair proce-
dure usually takes under a second (using the x86 rdtsc
instruction we observe an average of 15 milliseconds) to
interpret the repair policy for these vulnerabilities.

Of more general concern is whether or not STEM
slows an application down to the point where it becomes
apparent to the end-user. Even though STEM has a
rather significant impact on an application’s startup time
(as shown in Table 2), STEM does not have a human-
discernible impact when applied to regular application

Table 1: Impact on Apache Excluding Startup. We tested
STEM’s impact on two versions of Apache by starting Apache
in single-threaded mode (to force all requests to be serviced
sequentially by the same thread). We then attach STEM after
verifying that Apache has started by viewing the default home-
page. We use wget to recursively retrieve the pages of the
online manual included with Apache. The total downloaded
material is roughly 72 MB in about 4100 files. STEM causes
a 74.85% slowdown, far less than the tens of thousands fac-
tor when including startup. Native execution of Apache 2.0.53
takes 0.0626 seconds per request; execution of the same under
STEM takes 0.1095 seconds per request. For a newer version
of Apache (2.2.4), we observe a slight improvement to 72.54%.

Apache Native (s) STEM (s) Impact %
v2.0.53 3746 6550 74.85%
v2.2.4 16215 27978 72.54%

operations. For example, Firefox remains usable for ca-
sual web surfing when operating with STEM. In addition,
playing a music file with aplay also shows no sign of
sound degradation – the only noticeable impact comes
during startup. Disregarding this extra time, the differ-
ence between aplay’s native performance and its per-
formance under STEM is about 2 seconds. If STEM is
attached to aplay after the file starts playing, there is an
eight second delay followed by playback that proceeds
with only a 3.9% slowdown. Most of the performance
penalty shown in Table 2 and Table 3 is exaggerated by
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Table 2: Performance Impact Data. Attaching STEM at
startup to dynamically linked applications incurs a significant
performance penalty that lengthens the total application startup
time. This table lists a variety of programs where the time to
execute is dominated by the increased startup time. Although
most applications suffer a hefty performance hit, the major-
ity of the penalty occurs during application startup and exit.
Note that aplay shows fairly good performance; a roughly
six-minute song plays in STEM for 88 seconds longer than it
should – with 86 of those seconds coming during startup, when
the file is not actually being played.

Application Native (s) STEM (s) Slowdown
aplay 371.0125 459.759 0.239
arch 0.001463 14.137 9662.021
xterm 0.304 215.643 708.352
echo 0.002423 17.633 7276.342
false 0.001563 16.371 10473.088
Firefox 2.53725 70.140 26.644
gzip-h 4.51 479.202 105.253
gzip-k 0.429 58.954 136.422
gzip-d 2.281 111.429 47.851
md5-k 0.0117 32.451 2772.589
md5-d 0.0345 54.125 1567.841
md5-h 0.0478 70.883 1481.908
ps 0.0237 44.829 1890.519
true 0.001552 16.025 10324.387
uname 0.001916 19.697 10279.271
uptime 0.002830 27.262 9632.215
date 0.001749 26.47 15133.362
id 0.002313 24.008 10378.592

the simple nature of the applications. Longer-running ap-
plications experience a much smaller impact relative to
total execution, as seen by the gzip, md5sum, and Fire-
fox results.

Most of the work done during startup loads and
resolves libraries for dynamically linked applications.
STEM can avoid instrumenting this work (and thus no-
ticeably reduce startup time) in at least two ways. The
first is to simply not make the application dynamically
linked. We observed for some small test applications (in-
cluding a program that incorporates the example shown
in Figure 2 from Section 4) that compiling them as static
binaries reduces execution time from fifteen seconds to
about five seconds. Second, since PIN can attach to
applications after they have started (in much the same
way that a debugger does), we can wait until this work
completes and then attach STEM to protect the mainline
code execution paths. We used this capability to attach
STEM to Firefox and Apache after they finish loading
(we measured the performance impact on Apache us-

Table 3: Performance Without (Some) Startup. We re-
move a well-defined portion of the application’s initialization
from the performance consideration in Table 2. Removing su-
pervision of this portion of the startup code improves perfor-
mance over full supervision. The remaining run time is due
to a varying amount of startup code, the application itself, and
cleanup/exit code. In order to completely eliminate application
startup from consideration, we attach to Apache after its initial-
ization has completed. We present those results in Table 1.

Application STEM-init (s) Revised Slowdown
arch 3.137 2143.22
xterm 194.643 639.273
echo 5.633 2323.803
false 4.371 2795.545
Firefox 56.14 21.128
gzip-h 468.202 102.814
gzip-k 47.954 110.780
gzip-d 100.429 43.025
md5-k 20.451 1746.948
md5-d 42.125 1220.014
md5-h 58.883 1230.862
ps 31.829 1341.996
true 5.025 3236.758
uname 8.697 4538.144
uptime 15.262 5391.932
date 14.47 8272.299
id 13.008 5622.865

ing this method; see Table 1). Also, as mentioned in
Section 3, we can allow the application to begin exe-
cuting normally and only attach STEM when a network
anomaly detector issues an IDS alert. Finally, it may
be acceptable for certain long-running applications (e.g.,
web, mail, database, and DNS servers) to amortize this
long startup time (on the order of minutes) over the total
execution time (on the order of weeks or months).

7.1 Experimental Setup
We used multiple runs of applications that are repre-
sentative of the software that exists on current Unix
desktop environments. We tested aplay, Firefox, gzip,
md5sum, and xterm, along with a number of smaller
utilities: arch, date, echo, false, true, ps, uname, up-
time, and id. The applications were run on a Pentium
M 1.7 GHz machine with 2 GB of memory running Fe-
dora Core 3 Linux. We used a six minute and ten sec-
ond WAV file to test aplay. To test both md5sum
and gzip, we used three files: httpd-2.0.53.tar.gz, a Fe-
dora Core kernel (vmlinuz-2.6.10-1.770 FC3smp), and
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the /usr/share/dict/linux.words dictionary. Our Firefox
instance simply opened a blank page. Our xterm test cre-
ates an xterm and executes the exit command. We also
tested two versions of httpd (2.0.53 and 2.2.4) by at-
taching STEM after Apache starts and using wget to
recursively download the included manual from another
machine on the same network switch. Doing so gives
us a way to measure STEM’s impact on normal perfor-
mance excluding startup (shown in Table 1). In the ta-
bles, the suffixes for gzip and md5sum indicate the kernel
image (k), the httpd tarball (h), and the dictionary (d).

Memory Log Enhancements We can improve per-
formance of supervised routines by modifying the mem-
ory log implementation (currently based on a linked list).
One way to improve performance is to preallocate mem-
ory slots based on the typical memory use of each su-
pervised function. If we can bound the number of stores
in a piece of code (e.g., because STEM or another pro-
filing tool has observed its execution), then STEM can
preallocate an appropriately sized buffer.

8 Conclusion

Self-healing systems face a number of challenges before
they can be applied to legacy applications and COTS
software. Our efforts to improve STEM focus on four
specific problems: (1) applying STEM’s microspecu-
lation and error virtualization capabilities in situations
where source code is unavailable, (2) helping create a
behavior profile for detection and repair, (3) improving
the correctness of the response by providing a mecha-
nism to interpret repair policy, and (4) implementing vir-
tual proxies to help deal with speculated I/O. These solu-
tions collectively provide a more streamlined version of
STEM that represents a significant improvement in both
features and performance: our current implementation
imposes a 74% impact for whole-application supervision
(versus the previous 30% impact for a single supervised
routine and a 3000X slowdown for whole-application su-
pervision).
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Notes
1This limitation is especially relevant for financial and scientific ap-

plications, where a function’s return value is more likely to be incorpo-
rated into the mainline calculation.

2Part of the CoSAK, or Code Security Analysis Kit, study found
that most vulnerabilities in a set of popular open source software occur
within six function calls of an input system call. If one considers a layer
or two of application-internal processing and the existing (but seldom
thought of from an application developer’s standpoint) multiple layers
within C library functions, this number makes sense.
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