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Abstract

Anomaly Detection (AD) sensors compute behavior pro-
files to recognize malicious or anomalous activities. The
behavior of a host is checked continuously by the AD sensor
and an alert is raised when the behavior deviates from its
behavior profile. Unfortunately, the majority of AD sensors
suffer from high volumes of false alerts either maliciously
crafted by the host or originating from insufficient training
of the sensor. We present a cluster-based AD sensor that
relies on clusters of behavior profiles to identify anomalous
behavior. The behavior of a host raises an alert only when
a group of host profiles with similar behavior (cluster of be-
havior profiles) detect the anomaly, rather than just relying
on the host’s own behavior profile to raise the alert (single-
profile AD sensor). A cluster-based AD sensor significantly
decreases the volume of false alerts by providing a more
robust model of normal behavior based on clusters of be-
havior profiles. Additionally, we introduce an architecture
designed for the deployment of cluster-based AD sensors.
The behavior profile of each network host is computed by
its closest switch that is also responsible for performing the
anomaly detection for each of the hosts in its subnet. By
placing the AD sensors at the switch, we eliminate the pos-
sibility of hosts crafting malicious alerts. Our experimental
results based on wireless behavior profiles from users in the
CRAWDAD dataset show that the volume of false alerts gen-
erated by cluster-based AD sensors is reduced by at least
50% compared to single-profile AD sensors.

1 Introduction

Anomaly Detection (AD) sensors are technologies de-
signed to detect anomalies in the behavior of a host. AD
sensors compute the behavior profile of a host by using a set
of statistical features that characterize its typical use of ser-

vices. Any behavior that deviates from the behavior profile
is deemed anomalous and an alert is generated [3]. While
AD sensors provide an effective way of detecting anoma-
lous behavior, most are plagued with high volumes of false
alerts. These false alerts may originate either from the AD
sensor itself because of poor or insufficient training, or else
from a host that is maliciously trying to generate alerts.

Redundancy has been proposed as a means to reduce the
volume of false alerts [1], [13], [16]. Each network host
is assigned multiple sensors that observe and model its be-
havior through different correlated parameters. Alerts are
generated whenever an agreement is reached among mul-
tiple sensors. By redundantly modeling the same behavior
with different types of sensors, the generation of false alerts
either maliciously crafted or due to insufficient training is
greatly reduced. Nevertheless, redundancy tends to over-
load the host since the computation of profiles takes away
computing cycles from real host applications.

Collaboration through alert sharing has been explored as
a way to correlate alerts to detect coordinated attacks, indi-
rectly reducing the number of false alerts [10], [11], [14].
AD sensors across one or multiple domains share alerts
amongst themselves and then perform a correlation analysis
to understand their nature. Contemporary alerts may be re-
lated to the same event, possibly an attack. Alerts not found
by any other collaborating host should probably be consid-
ered false alerts. This approach can significantly reduce the
volume of false alerts when coordinated attacks take place;
however, it leaves each sensor on its own during isolated at-
tacks on single hosts since other sensors in the network do
not observe the attack. We extend the idea of alert sharing
to behavior-profile sharing as a way to reduce the number
of false alerts during isolated attacks.

In this paper, we present a cluster-based AD sensor that
relies on the use of clusters of behavior profiles to perform
the anomaly detection. As introduced in [4] and [5], a clus-
ter of behavior profiles constitutes a collection of profiles
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from hosts behaving similarly. In a cluster-based AD sen-
sor, the behavior of each host is compared against its own
profile as well as against the profiles of the hosts within
its own cluster of behavior profiles. An alert is generated
only when all the profiles in the cluster of behavior profiles
agree on the anomalous nature of a certain host. In contrast,
a single-profile AD sensor compares the behavior of the
host only against its own behavior profile. Consequently, a
cluster-based AD sensor provides a more informed decision
for the generation of alerts than a single-profile AD sensor
since a group of profiles representing a similar behavior of-
fers a more robust description of behavior normalcy.

Apart from the design of the sensor, we envision its ac-
tual deployment in a network as a key component of our
proposal. In particular, we focus on the deployment in
small- to medium-sized networks e.g., enterprise or univer-
sity. The deployment of AD sensors in a network can follow
a fully distributed or a hierarchical architecture. Fully dis-
tributed architectures such as CSM [16] locate at least one
AD sensor on each host. Each sensor is then responsible for
the behavior-profile modeling, the alert generation, and the
alert analysis. On the other hand, hierarchical approaches
separate the profile computation and alert generation (per-
formed at the host) from the alert analysis that takes place in
higher-ranked monitors or correlating hosts [1], [12]. Un-
fortunately, the placement of the alert generation on the host
opens the possibility that a compromised host may mali-
ciously craft an alert. We propose an architecture where
each network switch is responsible for computing and up-
dating the behavior profiles of all the network hosts in its
subnet. These behavior profiles are then exchanged among
switches and clustered to identify the clusters of behavior
profiles in the network. Armed with these clusters, each
switch can perform a cluster-based anomaly detection for
each of the hosts in its subnet. More importantly, by per-
forming the anomaly detection at the switches, hosts are
prevented from maliciously crafting false alerts.

Throughout the paper, we make four key assumptions.
First, all communications are secure. As a result, behav-
ior profiles cannot be modified during exchanges. Second,
hosts openly share their profiles with switches but not with
other hosts in the network. Third, the AD sensors compute
behavior profiles of hosts based on their network activity.
Finally, we assume that switches are more robust to attacks
than individual hosts. Our main contributions are:

• A cluster-based AD sensor that uses clusters of behav-
ior profiles to achieve a more informed decision for the
generation of alerts. In contrast to single-profile AD
sensors, a group of profiles representing a similar be-
havior constitute a more robust description of behavior
normalcy for a host.

• An architecture where the behavior-profile modeling

of each host and its anomaly detection is performed at
its closest switch. As a consequence, the possibility of
false alert generation from compromised hosts is elim-
inated.

• An evaluation with 100 real user behavior profiles
computed from traces of wireless traffic captured at
Dartmouth University (CRAWDAD repository).

The paper is organized as follows: Section 2 describes the
cluster-based AD sensor, Section 3 presents an architecture
designed for the deployment of cluster-based AD sensors in
a network, Section 4 describes the experimental results and
presents a comparative analysis between single-profile and
cluster-based AD sensors, Section 5 provides estimates of
the network bandwidth requirements associated with the de-
ployment of cluster-based AD sensors, and Section 6 sum-
marizes related work. Lastly, conclusions and future work
are covered in Section 7.

2 Cluster-Based Anomaly Detection Sensor

Current network-based AD sensors compute the behav-
ior profile of a host based on its normal network activity.
In order to detect anomalous activities, the AD sensor com-
pares the input or output traffic to or from a host against
its behavior profile. Any behavior that deviates from the
profile is considered anomalous and generates an alert. We
shall refer to this type of AD sensor as single-profile since
it only compares the traffic against its own behavior profile.
While this approach is effective in detecting anomalous be-
havior, it suffers from high volumes of false alerts mainly
generated from insufficient or poor training data.

In order to alleviate this shortcoming, we introduce a
cluster-based AD sensor that relies not only on the host’s
own profile but also on the behavior profiles of other hosts
that share a similar behavior in the network. The advan-
tage of this approach is that it provides a broader defini-
tion of normal behavior that compensates for insufficient
or poor training data in single-profile AD sensors. As a re-
sult, cluster-based AD sensors can potentially lower the vol-
ume of false alerts. Similar to a single-profile AD sensor, a
cluster-based AD sensor computes the behavior profile of a
host based on its network activity. But rather than relying
only on its own behavior profile for the anomaly detection,
it makes use of clusters of behavior profiles. A cluster of
behavior profiles represents a set of host profiles that share
similar network behavior [5]. For instance, one could dif-
ferentiate between a cluster of behavior profiles consisting
of highly active hosts with a large number of frequent con-
nections to different IPs and another cluster made up of less
active hosts that connect to fewer IPs with lower frequency.
A cluster-based AD sensor performs the anomaly detection
for a host by comparing the traffic exchanged by the host
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(b) Cluster-based AD sensor for traffic to or from host X.

Figure 1. Single-profile versus Cluster-based AD sensor.

against its own behavior profile and against the behavior
profiles in the cluster where the host is a member e.g., the
cluster-based AD sensor of a highly active host would com-
pare the traffic exchanged by the host only against the pro-
files of other highly active hosts. An alert is generated only
when all the profiles in the cluster of behavior profiles agree
on the anomalous nature of the traffic as opposed to single-
profile anomaly detection that generates an alert when the
traffic is considered anomalous only by its own behavior
profile.

In practical terms, whenever a host i sends or receives
traffic, its sensor Si verifies whether it is within one stan-
dard deviation σ of its behavior profile pi and all the other
profiles pm of the cluster c where pi is a member (see Equa-
tion 1). The sensor compares the traffic t against each pro-
file pm in the cluster and emits a partial decision Dpm(t)
regarding the anomalous or normal nature of the traffic. If
all the partial decisions agree on the anomalous nature of
the traffic, the sensor generates an alert Si = 1. Otherwise,
the sensor deems the traffic normal Si = 0. Hence, Si is
defined as follows,

Si =
{

1 if ∀pm ∈ c Dpm(t) = 1
0 otherwise

(1)

Dpm(t) =
{

0 if pm − σ < t < pm + σ
1 otherwise

Figures 1(a) and 1(b) highlight the differences between a
single-profile and a cluster-based AD sensor for a network
host X that shares similar behavior with network hosts Y and
Z. In a single-profile AD sensor, the traffic to or from host
X is only checked for anomalies against its own profile pX .

In this instance, anomalous traffic is detected and an alert
is generated by the sensor (see Figure 1(a)). The cluster-
based AD sensor, on the other hand, compares the traffic to
or from host X against the behavior profiles pX , pY , and pZ .
While the sensor generates an alert comparing the traffic to
behavior profile pX , the traffic is not deemed anomalous
when compared to behavior profiles pY and pZ (see Fig-
ure 1(b)). As a result, the alert from host X is dismissed
as a false alert and the traffic is deemed normal. Such an
alert could have been due to insufficient or poor training of
pX and the cluster-based AD sensor eliminates it success-
fully. In other words, a cluster-based AD sensor can also be
understood as an automatic online tuning for single-profile
AD sensors whereby the profiles within a cluster of behav-
ior profiles determine the guidelines for a more informed
anomaly detection.

3 Architecture

After describing the principles of cluster-based AD sen-
sors, the next crucial step is the design of an architecture
that maximizes their efficiency on an actual network. In our
architecture, each network switch has one cluster-based AD
sensor for each of the hosts within its subnet. Initially, the
switch computes the behavior profiles of each of its hosts
using their individual cluster-based AD sensors. Alterna-
tively, the computation of the profiles could be performed
on the hosts themselves and then submitted to its closest
switch to avoid overloading the switch with excessive com-
putation. Upon computation of the behavior profiles from
all the hosts in its subnet, each network switch submits the
profiles to a central router. This central router then executes
a clustering algorithm to identify clusters of behavior pro-
files. Each resulting cluster is composed of profiles from
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Figure 2. Schematics of the architecture. The
arrows depict the broadcast of the clusters of
behavior profiles from the central router to all
switches in the network.

network hosts that share similar behavior.
These clusters of behavior profiles are then broadcasted

to each switch such that a definition of normal types of be-
havior in the network is known all across. Figure 2 shows
the schematics of the architecture. In particular, the central
router broadcasts the computed clusters of behavior profiles
to all the switches in the network. As shown, the archi-
tecture that we present applies to both wired and wireless
networks. In the wired case, hosts are directly connected to
the switch. On the other hand, wireless hosts communicate
with the switch through an access point. Throughout, we as-
sume that the switch has the capability to perform the com-
putation of profiles as well as the anomaly detection, or else
that there exists a group of dedicated hosts connected to the
switch performing these activities. It is important to note
that by performing the anomaly detection at the switches,
hosts are prevented from maliciously crafting false alerts.

Once the clusters of behavior profiles have been broad-
casted by the central router, each network switch proceeds
to update the cluster information. Each cluster-based AD
sensor Si on the switch is updated with its respective clus-
ter of behavior profiles i.e., the behavior profiles of the hosts
that share a similar behavior with host i. At this stage, the
cluster-based AD sensors are ready to perform the anomaly
detection on the traffic exchanged among network hosts.
The traffic to or from each host is compared against its own
profile as well as against the profiles of the hosts within its
own cluster of behavior profiles. An alert is generated only
when all the profiles in a cluster of behavior profiles agree
on the anomalous nature of the traffic.

Figure 3(a) depicts a traffic exchange between two hosts
(from host A to host E in this case). Each switch has a

cluster-based AD sensor for each host i in its subnet. These
cluster-based AD sensors Si store the respective cluster of
behavior profiles that contains the profiles of the hosts with
similar behavior to i. In this instance, four different clusters
of behavior have been identified by the central router (see
Figure 3(b)) and broadcasted to each switch. The anomaly
detection that takes place when host A sends traffic to host
E proceeds as follows: traffic from host A goes through
switch1 which forwards the traffic to the cluster-based AD
sensor of host A (SA). This sensor checks the normalcy of
the traffic by comparing it against its own behavior profile
pA and against all remaining profiles of the cluster where
host A is a member i.e., cluster2 that contains the profiles
pB and pC . From the comparison with the profiles, the sen-
sor emits three partial decisions DpA , DpB , DpC regarding
the nature of the output traffic from host A (see Equation 2).
If all the partial decisions agree on the anomalous nature of
the traffic, the sensor generates an alert SA = 1. Otherwise,
the sensor deems the traffic normal SA = 0.

SA =
{

1 if ∀pi ∈ cluster2 Dpi(t) = 1
0 otherwise

(2)

Similarly, when traffic arrives to switch2, the cluster-
based AD sensor of host E (SE), checks it not only against
its own behavior profile pE but also against the profiles in
the cluster where E is a member i.e., cluster3 that contains
the behavior profiles pM and pN . Equation 3 summarizes
the decision making process that takes place on SE ,

SE =
{

1 if ∀pi ∈ cluster3 Dpi(t) = 1
0 otherwise

(3)

3.1 Behavior Profiles and Clusters Up-
date

Over time, network hosts may change their behavior thus
requiring the computation of new profiles as well as the up-
date of the cluster distribution. Whenever new behavior pro-
files are computed by the cluster-based AD sensors, these
are sent to the central router which updates the cluster distri-
bution. Once updated, the new cluster distribution is broad-
casted to all the switches in the network. The update of each
behavior profile is not performed continuously, instead each
profile is trained by epochs whenever major changes in the
behavior of the host occur. In Section 5 we evaluate the
frequency of profile update and its network bandwidth re-
quirements.

It is important to clarify that by locating the profile com-
putation and the anomaly detection on the switch, we elimi-
nate the possibility of a host lying about the existence of an
alert. However, if the computation of the behavior profiles
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(b) Clusters of behavior profiles determined by the clustering algo-
rithm. In this instance, four different clusters of behavior profiles have
been identified by the central router among all hosts in the network.

Figure 3. Cluster-based Anomaly Detection for a traffic exchange between hosts A and E.

is performed at the hosts rather than at the switch, it is pos-
sible that the host itself fabricates a malicious profile that
deems anomalous traffic as normal. To guard against this
possibility, the central router must be enhanced by incorpo-
rating an algorithm such as the one presented in [5]. Prior to
computing the new cluster distribution, the algorithm would
allow the central router to differentiate between new profiles
that differ slightly from previous profiles (concept drift) and
hosts trying to maliciously craft their profiles (attacks).

4 Experimental Results and Comparative
Analysis

In this section, we present an actual evaluation of cluster-
based AD sensors based on real behavior profiles from wire-
less users. We also contrast these results with similar ex-
periments performed with single-profile AD sensors. For
this purpose, we proceeded to compute behavior profiles of
wireless users in a real network. We used tcpdump data
containing packet headers of wireless traffic captured from
users at Dartmouth College. Specifically, we employed one
month of traffic from the Fall03 tcpdump dataset (163GB)
in the CRAWDAD repository [2]. This month of traffic was
assumed to be clean of attacks and was thus considered
ground truth. We focused our analysis on four distinct ports
(services): port 21 (ftp), port 22 (ssh), port 25 (smtp), and
port 80 (http). For each port, we randomly identified 100
different MAC addresses that exhibited output traffic to the
service. Each MAC address was assumed to represent a dif-
ferent user in the network. Moreover, we associated each
user with a unique host in the network i.e., there were no
hosts with multiple users. Hereafter, we use the terms host

and user interchangeably.
We computed the behavior profile of each of these users

on a per-port basis adopting the first week of the month
as the training set. To be able to detect different types of
network-based attacks, both control and data packets were
considered during training. We defined the behavior profile
pi (see Equation 4) of user i as a set of hourly histograms
hfn for each feature fn, where fn represents a measure of
network-related statistics. Specifically, the following fea-
tures were modeled: average number of unique users con-
tacted per hour, average number of packets exchanged per
hour, and average length of the packets exchanged per hour.
Each histogram hfn , computed per port (service) and di-
rection (input or output), represents the hourly average and
standard deviation for a feature fn. The hourly average aj

and hourly standard deviation σj were measured each hour
j of the day and averaged throughout the duration of the
training period. Hence,

pi = {hf1 , ..., hfn} (4)

hfn = {(a0, σ0), (a1, σ1), ..., (a23, σ23)}
The performance of the single-profile and cluster-based

AD sensors was quantified using two parameters: the false
positive rate (FP) and the detection threshold (Φ). The FP
measures the fraction of normal traffic that has been erro-
neously considered anomalous over all the testing traffic. In
the case of a single-profile AD sensor, the hourly traffic t
of a user was considered anomalous when it deviated more
than one standard deviation σj from its own behavior profile
hourly average aj . In contrast, the cluster-based AD sensor
checked that the hourly traffic t was within one standard
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deviation σj of its own profile hourly average aj as well as
within one standard deviation of the hourly averages of all
the members of its own cluster (see Equation 1).

Due to the fact that the Dartmouth wireless traffic did
not contain any worm traces, a direct measurement of the
detection rate (anomalous traffic detected as such) was not
feasible. Instead, we defined a new parameter, Φi, that rep-
resents the detection threshold used by the AD sensor of
user i to determine whether certain traffic was anomalous.
We hypothesize that the detection threshold Φi of a sensor
is correlated to its detection rate and thus provides an in-
direct measurement of its trend. For the single-profile AD
sensor, we computed the detection threshold Φi(j) per hour
j for user i by adding the standard deviation to the aver-
age value observed during training for a specific hour i.e.,
Φi(j) = aj + σj . On the other hand, the value of the de-
tection threshold Φi(j) for the cluster-based AD sensor was
computed by determining the maximum value among the
detection thresholds Φm(j) of all the profiles in the cluster
c where i is a member. Hence,

Φi(j) = ∀m ∈ c MAX(Φm(j)) (5)

This is consistent with the assumption that traffic is con-
sidered anomalous only when all profiles in a cluster agree.
As a result, the cluster detection threshold Φi(j) corre-
sponds to the maximum value among all cluster members.
Finally, the average value Φi for each single-profile and
cluster-based AD sensor was computed by averaging the 24
hourly detection thresholds Φi(j).

For each of the four ports, the 100 user behavior profiles
were clustered with the k-means algorithm [5]. Armed with
these clusters of behavior profiles, we assigned a cluster-
based AD sensor to each of the 100 selected users. Us-
ing the second week of the CRAWDAD tcpdump data as the
testing set, we proceeded to compute the FP and Φi of each
cluster-based AD sensor. The resulting values were then av-
eraged to produce the average FP (FP ) and the average Φi

(Φ) across all users. For comparison purposes, we repeated
the same tests assigning a single-profile AD sensor to each
of the 100 users.

Figure 4 summarizes the FP for the cluster-based and
single-profile AD sensors calculated for ports 21, 22, 25,
and 80. The results show the FP when the behavior pro-
files of the sensors are modeled with the following fea-
tures: hourly average number of unique users contacted (i),
hourly average number of packets exchanged (ii), hourly
average length of the packets exchanged (iii), or a combi-
nation of the three features (iv). As can be seen from Fig-
ure 4, the FP of cluster-based AD sensors is lower than
that of single-profile AD sensors across different features
and ports. In all cases, the cluster-based FP rate is at least
halved when compared to its single-profile counterpart. On
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Figure 4. FP rates for single-profile and
cluster-based AD sensors computed for
ports 80, 21, 22, and 25. Average rates per
port are reported for profiles modeled with
the following features: number of unique
users contacted (i), number of packets ex-
changed (ii), length of the packets exchanged
(iii) and a combination of these three features
(iv). As can be seen, the FP rate of cluster-
based AD sensors is at least halved when
compared to single-profile AD sensors.

the other hand, Figure 5 depicts the ratio of cluster-based Φ
(Φcluster) to single-profile Φ (Φsingle) for ports 21, 22, 25,
and 80. Ratios per port are reported for profiles modeled
with the following features: number of unique users con-
tacted (i), number of packets exchanged (ii), and length of
the packets exchanged (iii). The ratio for the combination of
these three features (iv) corresponds to the set of individual
ratios for each feature and is thus omitted from the Figure.
In this instance, we chose to display ratios rather than the
individual values of Φ in order to normalize the results to
the same scale. The ratios shown in Figure 5 indicate that
the cluster-based Φ is increased by at most 1/6 of its single-
profile counterpart across all features and ports. The main
conclusion we draw from these results is that on average a
cluster-based AD sensor can significantly decrease the FP
rate while slightly increasing Φi with respect to a single-
profile AD sensor. While it may be argued that a single-
profile AD sensor could potentially be tuned to accomplish
similar performances as the cluster-based AD sensor, we
believe the latter approach still enhances single-profile AD
sensors by providing a way to automatically tune FP and Φi

guided by the boundaries imposed by the behavior profiles
in the cluster.
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Figure 5. Ratio of cluster-based Φ (Φcluster) to
single-profile Φ (Φsingle) computed for ports
80, 21, 22, and 25. Ratios per port are re-
ported for profiles modeled with the follow-
ing features: number of unique users con-
tacted (i), number of packets exchanged (ii),
and length of the packets exchanged (iii). The
ratio for the combination of these three fea-
tures (iv) corresponds to the set of individ-
ual ratios for each feature and is thus omit-
ted from the Figure. Ratios are above unity
which we interpret as a slight increment in
the detection threshold of each sensor (Φi).

The decrease in the cluster-based FP rates is possibly
related to the fact that most false alerts correspond to tiny
fluctuations in the average value of the features, which are
greatly reduced when compared to the profile of other users
with similar behavior. These tiny fluctuations may be re-
lated to the high variability of wireless networks in terms of
packet fragmentation or packet redundancy, which prevents
the acquisition of a robust behavior profile. Although one
may intuitively think that training the behavior profile for
longer periods would decrease the FP rates in single-profile
AD sensors, behavior profiles of wireless users change fre-
quently in relatively short periods of time. Thus, the identi-
fication of clusters of users that share similar behavior pro-
vides a broader view of normal behavior in short training
periods and enhances the robustness of the anomaly detec-
tion by decreasing the volume of false alerts.

5 Network Bandwidth Requirements

Behavior profiles are computed as a set of histograms,
where each histogram represents a specific feature and is
composed of 24 hourly averages. The simplest profile con-
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Figure 6. Evolution of False Positive Rates
(%) for different training lengths of wireless
users in the CRAWDAD dataset.

sisting of a single histogram has an approximate size of 97
bytes. More complex profiles similar to the ones used in
our experiments with three histograms (three features) for
four different ports can reach a size of 1164bytes. There-
fore, the communication of a profile to the central router in
our experimental setup implies a bandwidth use of at most
∼ 1KByte. Every time the central router receives an up-
dated profile, it proceeds to recompute the clusters of be-
havior profiles and to broadcast the new configuration to all
the switches in the network. Assuming a network of 10,000
machines, the broadcast to all the switches would amount
to a transmission between 970KBytes and 11.6MBytes.

A transmission between 970KBytes and 11.6MBytes
constitutes an acceptable bandwidth use for a one-time
transaction. However, because this transmission is to be
performed every time a behavior profile is updated, it is also
important to estimate the frequency of the profile updates
which will then provide an actual measure of the total band-
width requirements. In order to estimate this frequency, we
randomly selected a group of users from the same tcpdump
file as in our experiments. Each individual user was trained
and tested for three different lengths of time: 1) training for
the first week of data and computing the FP for the second
week of data, 2) training for the first two weeks of data and
computing the FP for the third week of data, and 3) training
for the first three weeks of data and computing the FP for
the fourth week of data. For simplicity, tests were only con-
ducted using the number of packets exchanged on port 80,
which displayed the highest amount of traffic and variabil-
ity.

Figure 6 shows the evolution of the FP rate for three
distinct users (type-1, type-2, and type-3) representative of
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common patterns among other users in the dataset. Users
similar to type-1 displayed low FP rates following the first
week of training, which can be interpreted as little variabil-
ity in behavior between the first and the second week. After
two weeks of training, users similar to type-1 experienced
a peak in the FP rate. Examining the behavior profiles, we
noticed that this FP peak was related to a sudden increase
in the hourly average values of the number of packets ex-
changed. After three weeks of training, the FP rate de-
creased to levels comparable to the first week. Users similar
to type-2 displayed low FP rates after the first and second
weeks of training. A peak in the FP rate was reached after
three weeks of training that was also associated to an in-
crease in the number of packets exchanged. Finally, users
similar to type-3 displayed a slightly decreasing FP rate over
the three different training lengths.

This analysis shows that wireless users are very dynamic
and as a result their behavior profiles change frequently on
scales as short as one week. If all the users in the net-
work synchronize the beginning of their training periods,
the broadcast of the new configuration of clusters of behav-
ior profiles would need to be done on a weekly timescale
e.g., on a weekend night. Therefore, the possibility of net-
work saturation is greatly reduced. Clearly, our analysis
does not account for every single user behavior in the net-
work, but it shows distinct behavioral patterns shared by a
significant fraction of users.

6 Related Work

6.1 False Alert Reduction through Re-
dundancy

Redundancy has been widely studied in the literature as
a means to enhance the security of a system [6], [9]. The
Cooperative Security Managers (CSM) approach describes
a fully distributed intrusion detection system without any
central coordinator [16]. In this approach, each intrusion
detection (ID) sensor located on a host focuses on detect-
ing anomalies in the behavior of its local users. Further-
more, each ID sensor may model the behavior of users from
other hosts and confront any alert with the original host.
The AAFID architecture uses redundancy as a means to en-
hance the performance of anomaly detection sensors [1],
[13]. AAFID employs multiple agents that work in paral-
lel within a host to detect anomalous behavior. Final deci-
sions on the nature of the behavior are reached only when
different host agents agree.

The main problem associated with redundancy is its ten-
dency to overload the host since the ID sensor computa-
tions take away computing cycles from real host applica-
tions. In our approach, a form of redundancy is achieved
through the use of clusters of behavior profiles. Specifi-

cally, the AD sensor of each host is enhanced with behav-
ior profiles of hosts with similar behavior. Through these
clusters of behavior, the sensor manages to gather a form
of redundant information without having to compute multi-
ple profiles but rather by exchanging behavior profiles with
other hosts. This enhancement reduces the volume of false
alerts while keeping the computational load balanced.

6.2 False Alert Reduction through Collab-
oration

EMERALD is amongst the first architectures to incor-
porate the use of collaborative sensors to correlate alerts
within one network or across different domains for anomaly
detection [12]. The use of correlation algorithms aids in
the detection of coordinated attacks while decreasing the
volume of false alerts. GrIDS collects network activity
from various locations within the network and builds graphs
that help discover large-scale coordinated attacks [14].
WORMINATOR is a system that exchanges alerts based
on anomalous content detected by AD sensors installed
in hosts across different institutions [10], [11]. DShield
is a community-based collaborative log-correlation system
[15].

These collaborative approaches can work effectively as
long as there exists a coordinated attack on different hosts
in the network. However, alert sharing is less effective in re-
ducing the volume of false alerts during isolated attacks on
a single host since other sensors in the network do not ob-
serve the attack. In our approach, we introduce collabora-
tion through profile sharing in the form of cluster of behav-
ior profiles. By sharing behavior profiles rather than alerts,
the AD sensor can reduce the volume of false alerts in iso-
lated attacks. This follows from the fact that the attacked
host stores other similar host behavior profiles and can pre-
dict their decision had they observed the attack.

6.3 Deployment of AD Sensors

AD sensors can been deployed in different types of ar-
chitectures [9]. The CSM architecture is a fully distributed
architecture that locates an ID sensor on each of the hosts
in the network [16]. The hosts are then responsible for
their own anomaly detection as well as for correlating alerts
coming from other ID sensors located in other hosts. The
NADIR architecture uses a hierarchical approach where
service nodes located at Los Alamos National Laboratory’s
Integrated Computed Network (ICN) are responsible for the
anomaly detection while the alert analysis is performed at
a central expert system [7]. The AAFID architecture also
employs a hierarchical approach where each host has mul-
tiple sensor agents that generate different types of alerts [1].
These alerts are then processed at higher level monitors.
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A weakness in locating the anomaly detection on the in-
dividual hosts is that it potentially allows them to fabricate
false alerts. In our architecture, the switches are responsible
for computing the behavior profile of the hosts in its subnet
as well as for the anomaly detection. Thus, the possibility
of a host maliciously crafting an alert or lying about its own
profile is eliminated.

7 Conclusions and Future Work

We have presented a cluster-based AD sensor that re-
duces the volume of false alerts generated by single-profile
AD sensors. The advantage of this approach is that it uses
clusters of behavior profiles to provide a broader definition
of normal behavior that compensates for poor or insuffi-
cient training data commonly observed in single-profile AD
sensors. We have also introduced an architecture design
that maximizes the efficiency of cluster-based AD sensors.
In our architecture, the anomaly detection is performed on
the switches rather than on the hosts, thus eliminating the
possibility of false alerts maliciously crafted by the hosts.
We have experimentally shown that for real wireless users
in the CRAWDAD dataset the volume of false alerts using
cluster-based AD sensors is at least halved when compared
to single-profile AD sensors.

Future work will focus on evaluating cluster-based AD
sensors using profiles that model additional features re-
lated to specific network attacks e.g., number of SYN/ACK
packets to detect SYN flood attacks. We also plan to ana-
lyze more simplistic temporal models other than histograms
such as daily and hourly averages. Lastly, we will evaluate
the impact of shorter and longer profile training periods on
the performance of cluster-based AD sensors.

The work presented thus far has relied on behavior pro-
files that model the characteristics of the network traffic ex-
changed by a host. In the future, we plan to extend our work
to behavior profiles computed based on user or application
characteristics at the hosts e.g., commands executed by a
user or the interaction between an application and the oper-
ating system. The main goal will be to understand whether
profiles based on user or application behavior can be used
effectively by cluster-based AD sensors to reduce the vol-
ume of false alerts.
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