
Security Assurance for Web Device APIs

Maritza Johnson and Steven M. Bellovin
{maritzaj,smb}@cs.columbia.edu

Columbia University

Abstract

There are currently proposals for web access to devices. The security
threats are obvious. We propose design principles intended to ensure that
the user actually controls access, despite potential errors in judgment,
tricky web pages, or flaws in browsers.

1 Introduction

There are many obvious reasons why web developers would like enhanced access
to the facilities of the client platform. It is equally obvious that such access rep-
resents an enormous potential threat: if the solution is designed or implemented
incorrectly, assorted security and privacy problems could result, ranging from
loss of personal privacy to the complete takeover of the host platform. Accord-
ingly, strong protections must be designed in from the beginning.

We do not claim to have a complete solution. Rather, we wish to propose
certain design principles. We focus on two areas: usability of the human inter-
face, and guarantees that the browser is suitably isolated from all but authorized
devices.

Problems in this space are legion. Permission problems, for example, go back
to at least 1993. In CERT Advisory CA-1993-15, problems with /dev/audio
were described:

Any user with access to the system can eavesdrop on conversations
held in the vicinity of the microphone.

It is important to note that the problem is not merely one of incorrect permis-
sions. Rather, SunOS had (and has) a mechanism to assign certain devices,
such as the microphone and the mouse, to the user logged in to the console.
/dev/audio was omitted from this list. In other words, the failure was of con-
figuration of a dynamic mechanism. From our perspective, though, the problem
is more fundamental: there was no high-assurance way to ensure that proper
permissions were set for all devices, including perhaps new ones. Similarly, there
was no high-assurance way for users to understand who can access such devices.

The web problem is considerably harder. Users of today’s brwosers are
considerably less sophisticated about access controls than those who used Sun

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161434987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


workstations in the early 1990s; furthermore, their machines frequently don’t
have professional system administrators to make any necessary corrections.

2 Usability

We suggest that the following principles are essential for security and privacy:

1. The user must explicitly authorize any and all accesses to devices

2. The user must understand the consequences of any change

3. The state of the system must be visible at all times

While much of this is primarily of interest to browser designers, there are im-
plications for the API as well.

Consider principle 2. Users request web pages, not their embedded IFRAMEs.
If a user is to understand to whom permission to use, say, the microphone is
granted, any request from that page must grant permission to the owner of the
page. This in turn has two consequences: the URL of the stream receiver must
be on the same host as the page is loaded from; furthermore, if the URL is in
in IFRAME, it, too, just come from that host. We realize that this will inhibit
a possible market for third-party sound service providers. We submit that it is
necessary, and suggest that any necessary hand-off be done by relay from the
web site, rather than from the customer’s machine.

Another reason for this is that empirically, it is very hard for users to tell
which web site they are at [1]. This, of course, is why phishing attacks succeed.
Increasing the severity of the threat — such as by letting users bug themselves
— while relying on the same flawed assumptions seems unwise.

Principle 3 applies to both static configuration — what sites have already
been authorized — and whether or not the device is currently being accessed.
The former appears straight-forward but raises the question of whether users
can be relied on to actively manage the list, how does a user revisit a security
decision? The latter poses a more difficult issue: how should the user be told?
Web page content should not be used to communicate security context infor-
mation because an attacker can easily spoof the indicators[4]; indicators in the
browser chrome are likely to be ineffective, and are also vulnerable since users
cannot reliably distinguish between chrome and content [5, 1]. One is tempted
to suggest that access can only be done when, say, the mouse is moved to some
window; this would place constraints (and probably unacceptable constraints)
on what such web pages could look like.

Finally, following principle 1 suggests that having the permission request
to the user appear as a result of an implicit request in a web page is probably
unacceptable — inactive warnings are ineffective and users have been habituated
to just click whatever is needed to make annoying pop-ups go away [2, 3]. This
in turn suggests that a two-page sequence is necessary before monitoring can
take place: a first page to check the permissions; it will either go on to the
next page automatically, or it will display an error message telling the user to

2



correct permissions. The act of making the change should perhaps trigger an
auto-refresh of the first page.

3 Isolation

Our second major area of concern is how to be sure that the implementation is
correct. That is, what should be done in the protocol or API definitions such
that one can have confidence that that end-users systems are secure, across many
years of upgrades, and with capabilities not dreamt of when the specification
document is written.

One possible approach is to put each possible monitored device into a cat-
egory; each category would have a sensitivity label associated with it. For
example, cameras and microphones might be in the catagory physworld, which
is marked extremely sensitive: these devices are, in effect, self-deployed bugs.
Access that might disclose persistent identifiers — battery serial numbers, MAC
addresses, etc. — might be in category privacy; these would be less re-
stricted. Devices that could be used to secure transactions might be grouped
as security-token and left unprotected, but only if manual action, such as
swiping a magstripe card, is used to activate it.

Requests from the net for access would specify both the class name and
the device within the class. Access would be granted or denied based on the
permissions given to that site for the particular class.

This scheme has certain inherent advantages. It reduces the management
complexity for the user; it also guarantees that new devices cannot be access at
all unless they are explicitly assigned to a class.

A second layer of protection is needed to protect the user against the sort
of attack described in the aforementioned CERT advisory. We do this by using
operating system protection mechanisms to isolate devices from users who don’t
want them acessed. We give an example using Unix-style permissions; similar
schemes can be devised for other operating systems.

Create groups for each category: phys-world, privacy, etc. Set the group
for each protected device so that it is in the group for its category; set the
permissions so that only that group has access to it. Thus, /dev/camera would
be in group phys-world, with mode 060, i.e., group read/write but no other
access. If a users wishes to permit some sites to have access to the camera, create
a setgid program owned by that user with no execute permissions for anyone
but the user, i.e., mode 2100, and no other permissions. Only one user can run
the program; when it is running, it will be able to access the device. Enabling
a category, then, entails creating this program, presumably via a setuid helper
program that demands proper assent by the user; disabling a category is as
simple as deleting the program.

The goal of this excercise in Unix file system arcana is to ensure that no
possible web browser flaw can result in a user being bugged. This does happen
today; see Figure 1 for an example. The basic principle of our design is simple:
something that does not exist cannot be abused.

3



Figure 1: A screen capture after a hacker took control of a user’s camera.

4 Conclusion

There are many obvious scenarios where web access to devices is desirable. That
said, the risks are at least as obvious. We suggest several security principles:
ensuring that the security model is indeed as the user wishes; and minimizing
the consequences of flaws in code.

References

[1] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works.
In CHI ’06: Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 581–590, New York, NY, USA, 2006. ACM Press.

[2] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. You’ve been warned:
an empirical study of the effectiveness of web browser phishing warnings. In
CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Hu-
man factors in computing systems, pages 1065–1074, New York, NY, USA,
2008. ACM.

[3] Nathaniel Good, Rachna Dhamija, Jens Grossklags, David Thaw, Steven
Aronowitz, Deirdre Mulligan, and Joseph Konstan. Stopping spyware at

4



the gate: A user study of privacy, notice and spyware. In Lorrie Faith
Cranor, editor, Symposium On Usable Privacy and Security (SOUPS) 2005.
Symposium On Usable Privacy and Security (SOUPS), July 2005.

[4] W3C Web Security Context Working Group. Working draft - web security
context: User interface guidelines. http://www.w3.org/TR/wsc-ui/.

[5] Collin Jackson, Danial R. Simon, Desney S. Tan, and Adam Barth. An eval-
uation of extended validation and picture-in-picture att acks. In Proceedings
of the 2007 Usable Security (USEC ’07) Workshop, 2007.

5


