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CONTINUITY OF A QUEUEING INTEGRAL REPRESENTATION
IN THE M1 TOPOLOGY1

BY GUODONG PANG AND WARD WHITT

Columbia University

We establish continuity of the integral representation y(t) = x(t) +∫ t
0 h(y(s)) ds, t ≥ 0, mapping a function x into a function y when the underly-

ing function space D is endowed with the Skorohod M1 topology. We apply
this integral representation with the continuous mapping theorem to estab-
lish heavy-traffic stochastic-process limits for many-server queueing models
when the limit process has jumps unmatched in the converging processes as
can occur with bursty arrival processes or service interruptions. The proof of
M1-continuity is based on a new characterization of the M1 convergence, in
which the time portions of the parametric representations are absolutely con-
tinuous with respect to Lebesgue measure, and the derivatives are uniformly
bounded and converge in L1.

1. Introduction. The integral representation

y(t) = x(t) +
∫ t

0
h(y(s)) ds, t ≥ 0,(1.1)

mapping a function x into a function y, plays an important role in heavy-traffic
stochastic-process limits for many-server queues. Theorem 4.1 of our review pa-
per [4] shows that this integral representation constitutes a continuous map on the
function space D ≡ D([0, T ],R) with either the uniform or Skorohod J1 topol-
ogy [7], provided that the function h : R → R appearing in the integrand is a Lip-
schitz function, that is,

|h(w1) − h(w2)| ≤ c|w1 − w2| for all w1,w2 ∈ R,(1.2)

with c being the Lipschitz constant. As a consequence, the integral representa-
tion can be applied with the continuous mapping theorem to establish desired
stochastic-process limits.

Our purpose here is to extend that continuity result to the Skorohod M1 topol-
ogy [7], as discussed in Chapter 12 of [8]. As illustrated here in Section 2, that
enables us to obtain associated stochastic-process limits when the limit process
has jumps unmatched in the converging processes (see Chapters 1 and 6 of [8] for
additional discussion). The desired result is the following theorem.
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THEOREM 1.1 (Continuity in M1). The function ψ :D → D mapping x

into y, defined by the integral representation (1.1) with h Lipschitz as in (1.2),
is continuous if D is endowed with the M1 topology.

In order to establish this result, we develop a new characterization of conver-
gence in (D,M1). Since this characterization is likely to have other applications,
it is of interest in its own right. Indeed, the bulk of the paper is devoted to this ex-
tension. To state the result, recall that xn → x in D if dM1(xn, x) → 0 as n → ∞
where dM1 is the metric

dM1(xn, x) ≡ inf
(u,r)∈�(x),(un,rn)∈�(xn)

{‖un − u‖ ∨ ‖rn − r‖},(1.3)

w1 ∨ w2 ≡ max{w1,w2} for w1,w2 ∈ R, ‖u‖ ≡ sup0≤s≤1{|u(s)|} and �(x) is the
set of all parametric representations (u, r) of x.

A parametric representation (u, r) is a continuous nondecreasing function of the
interval [0,1] onto the completed graph �x of x, where the function u gives the
spatial component, while the function r gives the time component. In this context,
“completed” means that the graph contains the sets {(px(t)+(1−p)x(t−), t) : 0 ≤
p ≤ 1}, so that the graph is a connected compact subset of R ×[0, T ], while “non-
decreasing” is with respect to the order following the continuous path on the graph
in R

2 starting at (with infimum) (x(0),0) (see [8], page 81, for more details).
As indicated by Theorem 12.5.1 of [8], there is considerable freedom in the

choice of parametric representations. We will want to use versions such that the
time components rn and r are absolutely continuous with respect to Lebesgue
measure and have uniformly bounded derivatives, where there is L1 convergence
of the derivatives as well as convergence of the time components themselves, as in
(1.3). For that purpose, let the L1 norm of the function r be

‖r‖1 ≡
∫ 1

0
|r(s)|ds.

THEOREM 1.2 (Time functions in the parametric representations). Suppose
that xn → x in (D,M1) as n → ∞. Then there exist (u, r) and (un, rn) as para-
metric representations of x and xn, where both r and rn are absolutely continuous
with respect to Lebesgue measure on [0,1] with derivatives r ′ and r ′

n for all n such
that

‖r ′
n − r ′‖1 → 0 as n → ∞, ‖r ′‖ < ∞ and sup

n≥1
{‖r ′

n‖} < ∞.(1.4)

Our proof of Theorem 1.1 is based on a simple change of variables, much like
the J1 argument in [4]. For the M1 topology, it exploits the structure provided by
Theorem 1.2.

The rest of this paper is organized as follows. In Section 2 we apply Theorem 1.1
to establish a many-server heavy-traffic stochastic-process limit for the G/M/n +
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M model where the scaled arrival process converges to a limit with jumps but
with modified scaling. In Section 3 we prove Theorem 1.1; in Section 4 we prove
Theorem 1.2.

2. Many-server heavy-traffic limits with unmatched jumps. We now ap-
ply Theorem 1.1 to obtain heavy-traffic stochastic-process limits for many-server
queues. Our result here extends previous limits for the G/M/n+M model in The-
orem 7.1 and Section 7.3 of [4] to cover nonstandard scaling and jumps in the limit
process that are unmatched in the converging processes. For an application to treat
service interruptions in many-server queues, paralleling earlier work by Kella and
Whitt [3] for single-server queues; see [5].

Here we consider a sequence of G/M/n + M queueing models with general
arrival processes (the G) and customer abandonment (the +M), indexed by the
number of servers, n. For each n ≥ 1, the n homogeneous servers have independent
exponential service times with rate μ, and customers have independent exponential
patience times with rate θ .

Let the arrival rate in model n be λn and assume that λn/n → λ > 0 as n → ∞.
Let An(t) count the number of arrivals in the interval [0, t]. We assume that the
arrival processes satisfy a functional central limit theorem (FCLT), that is,

Ân ⇒ Â in (D,M1) as n → ∞,(2.1)

where ⇒ denotes convergence in distribution,

Ân(t) ≡ c−1
n

(
An(t) − λnt

)
, t ≥ 0,(2.2)

and {cn :n ≥ 1} is a sequence of positive numbers such that cn → ∞, n/cn → ∞
and

√
n/cn → 0 as n → ∞. The canonical example is cn = n1/α for 1 < α < 2.

For background, see [1, 2] and [8].
As a consequence of this scaling, the arrival process satisfies the customary

functional weak law of large numbers (FWLLN), that is, Ān ⇒ λe in D as n → ∞
where Ān(t) ≡ n−1An(t) and e(t) = t for each t ≥ 0.

When An is a renewal process for each n, the limit process Â ≡ {Â(t) : t ≥ 0}
will be a Lévy process (have stationary and independent increments). The limit
then is naturally related to the FCLT for the sums of interarrival times, using the
continuous mapping theorem and related arguments, associated with the inverse
map together with centering (see Sections 7.3 and 13.7 of [8], especially Theo-
rem 7.3.2 and Corollaries 7.3.2 and 7.3.3).

The usual definition of the quality-and-efficiency-driven (QED) regime, leading
to the celebrated square-root staffing rule, needs to be modified. For a modified
QED regime, we assume that

c−1
n n(1 − ρn) → β, −∞ < β < ∞,(2.3)

where ρn ≡ λ/nμ is the traffic intensity. With the heavier scaling here, the safety
factor has to be greater: 1 − ρn ∼ βcn/n as n → ∞ where an ∼ bn means that



CONTINUITY IN THE M1 TOPOLOGY 217

an/bn → 1 as n → ∞. That implies a larger safety factor, because cn/n goes to 0
more slowly than 1/

√
n.

Let Qn ≡ {Qn(t) : t ≥ 0} be the queue-length process where Qn(t) is the num-
ber of customers in model n at time t . Define the scaled queue-length processes
Q̄n ≡ {Q̄n(t) : t ≥ 0} and Q̂n ≡ {Q̂n(t) : t ≥ 0} by

Q̄n(t) ≡ n−1Qn(t), Q̂n(t) ≡ c−1
n

(
Qn(t) − n

)
, t ≥ 0.(2.4)

We can apply Theorem 1.1 above to establish a FCLT for Qn. The follow-
ing theorem is an analog of Theorem 7.1 of [4] for the M/M/n + M model,
and Section 7.3 of [4], which extends it to the G/M/n + M model, all with
conventional QED many-server heavy-traffic scaling. We use Theorem 1.1 with
h(w) = −μ(w ∧ 0) − θ(w ∨ 0) for all w ∈ R where w1 ∧ w2 ≡ min{w1,w2}.

THEOREM 2.1 (FCLT in the modified QED regime). Consider the model
G/M/n+M in the modified QED regime (2.1)–(2.4). If there is a random variable
Q̂(0) such that Q̂n(0) ⇒ Q̂(0) as n → ∞, then

Q̄n ⇒ ω and Q̂n ⇒ Q̂ in (D,M1) as n → ∞,

where ω(t) = 1, t ≥ 0, and Q̂ ≡ {Q̂(t) : t ≥ 0} is defined by the integral represen-
tation

Q̂(t) = Q̂(0) − μβt + Â(t) −
∫ t

0

(
μ

(
Q̂(s) ∧ 0

) + θ
(
Q̂(s) ∨ 0

))
ds, t ≥ 0.

PROOF. As reviewed in [4], we first characterize the process Qn via the inte-
gral equation

Qn(t) = Qn(0) + An(t) − S

(
μ

∫ t

0

(
Qn(s) ∧ n

)
ds

)

(2.5)

− L

(
θ

∫ t

0

(
Qn(s) − n

)+
ds

)
, t ≥ 0,

where (w)+ ≡ max{w,0} and the processes S and L are independent rate-1 Pois-
son processes (see Lemma 2.1 of [4]). By the definition of Q̂n in (2.4) and the
integral equation in (2.5), we have

Q̂n(t) = Q̂n(0) + Ân(t) − Ŝn(t) − L̂n(t) − μc−1
n n(1 − ρn)t

(2.6)

−
∫ t

0

(
μ

(
Q̂n(s) ∧ 0

) + θQ̂n(s)
+)

ds,

where the processes Ŝn and L̂n are defined by

Ŝn ≡ c−1
n

(
Sn

(
μ

∫ t

0

(
Qn(s) ∧ n

)
ds

)
− μ

∫ t

0

(
Qn(s) ∧ n

)
ds

)
,

L̂n ≡ c−1
n

(
L

(
θ

∫ t

0

(
Qn(s) − n

)+
ds

)
− θ

∫ t

0

(
Qn(s) − n

)+
ds

)
.
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As in Section 7.1 of [4], the processes Ŝn and L̂n are square integrable martin-
gales with respect to the filtration Fn ≡ {Fn(t) : t ≥ 0} where

Fn(t) ≡ σ

(
S

(
μ

∫ s

0

(
Qn(u) ∧ n

)
du

)
,L

(
μ

∫ s

0

(
Qn(u) − n

)+
du

)
: 0 ≤ s ≤ t

)

∨ σ
(
Qn(0),An(s) : s ≥ 0

) ∨ N

with N being the collection of all null sets. We cope with the general non-
Markovian arrival process by putting the entire arrival process in the filtration.
The predictable quadratic variation processes 〈Ŝn〉 and 〈L̂n〉 are defined by

〈Ŝn〉(t) = nμ

c2
n

∫ t

0

(
Q̄n(s) ∧ 1

)
ds,

〈L̂n〉(t) = nμ

c2
n

∫ t

0

(
Q̄n(s) − 1

)+
ds, t ≥ 0.

By Lemmas 3.3, 5.8 and 6.2 of [4], the sequence of processes {Q̂n :n ≥ 1} is
stochastically bounded in D. Applying the FWLLN for stochastic bounded se-
quences of processes in D in Lemma 5.9 of [4], we obtain the FWLLN: Q̄n ⇒ ω

in D where ω(t) = 1, t ≥ 0. Then by the continuous mapping theorem applied to
the function φ :D → D2 defined by

φ(x)(t) ≡
(
μ

∫ t

0

(
x(s) ∧ 1

)
ds, θ

∫ t

0

(
x(s) − 1

)+
ds

)
, t ≥ 0,

and the assumptions on the scaling constants cn, we obtain (〈Ŝn〉, 〈L̂n〉) ⇒ (η, η) in
D2 as n → ∞ where η(t) = 0 for all t ≥ 0. By the martingale FCLT (Theorem 7.1
of [2] and Section 8 of [4]), we obtain (Ŝn, L̂n) ⇒ (η, η). So we have the joint
convergence

(Q̂n(0), Ân, Ŝn, L̂n) ⇒ (Q̂(0), Â, η, η) in R × D3,

where D3 is endowed with the product topology associated with the M1 topology
on D.

As noted before, the integral representation for Q̂n in (2.6) corresponds to (1.1)
with function h(w) = −μ(w∧0)−θ(w∨0) for all w ∈ R. By continuous mapping
theorem with the addition operation and the mapping in Theorem 1.1, together with
the convergence of the processes (Q̂n(0), Ân, Ŝn, L̂n), we obtain the desired limit
Q̂n ⇒ Q̂ in (D,M1). �

3. Proof of Theorem 1.1. We use the following elementary lemma, which we
state without proof.

LEMMA 3.1 (Jump-coincidence). Given that y is the image of the map ψ(x)

defined in (1.1), the locations and sizes of the jumps of x and y must coincide.
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PROOF OF THEOREM 1.1. Given that dM1(xn, x) → 0, we let (un, rn) and
(u, r) be parametric representations of xn and x, constructed as in Theorem 1.2, so
that r and rn are absolutely continuous with respect to Lebesgue measure with the
properties in (1.4). Given these properties, we can follow the proof of Theorem 4.1
of [4] for the J1 topology, making appropriate modifications to cope with the M1

topology.
The task is to construct associated parametric representations (uyn, ryn) and

(uy, ry) for yn and y. By the jump-coincidence lemma, Lemma 3.1, we can let
ry = r and ryn = rn for all n. Then the desired convergence for the time com-
ponents of the parametric representations follows from the assumed convergence
xn → x :‖ryn − ry‖ = ‖rn − r‖ → 0 as n → ∞. Having specified the time compo-
nents of the parametric representations of y and yn, we must have

uy(s) = y(r(s)) if r(s) ∈ Disc(y)c,

uyn(s) = yn(rn(s)) if rn(s) ∈ Disc(yn)
c, n ≥ 1,

where Disc(y) ≡ {t : |y(t) − y(t−)| > 0} and Disc(y)c is the complement.
Now suppose that s is such that r(s) ∈ Disc(y)c. Then from (1.1),

uy(s) = y(r(s)) = x(r(s)) +
∫ r(s)

0
h(y(z)) dz

(3.1)
= u(s) +

∫ s

0
h(y(r(w)))r ′(w)dw,

where the second line follows by making the change of variables r(w) = z, so that
r ′(w)dw = dz (e.g., see Problem 13 on page 107 of [6]).

In fact, because of Lemma 3.1, we can extend the representation in (3.1) to all
s by simply letting

uy(s) = u(s) +
∫ s

0
h(y(r(w)))r ′(w)dw, 0 ≤ s ≤ 1.

Now observe that y(r(s))r ′(s) = uy(s)r
′(s) for almost all s with respect to

Lebesgue measure because r ′(s) = 0 whenever y(r(s)) �= uy(s). Hence we can
write

uy(s) = u(s) +
∫ s

0
h(uy(w))r ′(w)dw, 0 ≤ s ≤ 1.

Applying the same reasoning to uyn , we can write

uyn(s) = un(s) +
∫ s

0
h(uyn(w))r ′

n(w)dw, 0 ≤ s ≤ 1.
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Using these representations and the notation ηn ≡ ‖un − u‖, we can then write

|uyn(s) − uy(s)|

≤ |un(s) − u(s)| +
∣∣∣∣
∫ s

0
h(uyn(w))r ′

n(w)dw −
∫ s

0
h(uy(w))r ′(w)dw

∣∣∣∣
≤ ηn +

∣∣∣∣
∫ s

0
h(uyn(w))r ′

n(w)dw −
∫ s

0
h(uy(w))r ′

n(w)dw

∣∣∣∣
+

∣∣∣∣
∫ s

0
h(uy(w))r ′

n(w)dw −
∫ s

0
h(uy(w))r ′(w)dw

∣∣∣∣(3.2)

≤ ηn + ‖r ′
n‖c

∫ s

0
|uyn(w) − uy(w)|dw + ‖h(y)‖

∫ s

0
|r ′

n(w) − r ′(w)|dw

≤ (
ηn + ‖h(y)‖‖r ′

n − r ′‖1
) + ‖r ′

n‖c
∫ s

0
|uyn(w) − uy(w)|dw

≤ (
ηn + ‖h(y)‖‖r ′

n − r ′‖1
)
e‖r ′

n‖cs,

where ‖h(y)‖ ≡ sup0≤t≤T |h(y(t))|, and we use the fact that h is Lipschitz with
Lipschitz constant c together with (1.4) in the third line and apply Gronwall’s
inequality, as in Lemma 4.1 of [4], in the final line. Combining (1.4) and (3.2), we
obtain

‖uyn − uy‖ ≤ (
ηn + ‖h(y)‖‖r ′

n − r ′‖1
)
e‖r ′

n‖c → 0 as n → ∞. �

4. Proof of Theorem 1.2. We break up the proof into parts presented in the
following subsections. First, in Section 4.1 we establish some bounds on the max-
imum jump function and the uniform (or supremum) norm

‖x‖ ≡ sup
0≤t≤T

|x(t)|.

In Section 4.2 we show that the time component r of the parametric representation
(u, r) of the limit function x can have the desired representation in Theorem 1.2.
We then define the associated function u in the parametric representation (u, r) of
x as required, using linear interpolation where there is freedom.

We construct the desired parametric representations of xn in Sections 4.3–4.7. In
Section 4.3 we partition the domain [0,1] into finitely many subintervals, of which
there are three kinds. We then carry out the proof for each of the three kinds. We
obtain this finite number by considering the finite number of discontinuities of
x exceeding some small ε1. The first kind of subinterval corresponds to the flat
spots in r associated with the large (of size bigger than ε1) discontinuities in x.
The second kind of subinterval corresponds to short connecting open subintervals
between the closed subintervals with large jumps and the closed subintervals with
no large jumps. The third kind of subinterval corresponds to subintervals where
there are no large jumps, but there may be (even infinitely many) small jumps. We
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construct the new parametric representations for these three kinds of intervals in
Sections 4.5–4.7. In each case we show the convergence as required for the metric
in (1.3) with the extra properties in (1.4). In Section 4.4 we show how to construct
the spatial part of the parametric representations of xn.

4.1. Bounds on the uniform norm. For treating the closed intervals without
jumps exceeding a small threshold, we apply some bounds on the maximum-jump
function and the uniform norm, which may be of independent interest, so we es-
tablish them first. We will use the uniform norm for real-valued functions with
different domains; the desired domain should be clear from the context. Normally,
when we write ‖x‖ for x ∈ D, the domain is understood to be [0, T ], but when
we write ‖u‖ and ‖r‖ for a parametric representation of x, the domain is usually
understood to be [0,1]. However, we will also consider the uniform and L1 norms
over subintervals; the relevant subinterval should be clear from the context.

A key role is played by the maximum-(absolute)-jump function. Let

Jmax(x) ≡ sup{|x(t) − x(t−)| : 0 ≤ t ≤ T }.(4.1)

(The supremum in (4.1) is always attained because, for any ε > 0, |x(t)−x(t−)| >
ε for only finitely many t in [0, T ].)

LEMMA 4.1. If xn → x in (D,M1), then

lim sup
n→∞

{Jmax(xn)} ≤ Jmax(x).

Note that we need not have equality in Lemma 4.1, because the functions xn

could have smaller jumps. Indeed, the functions xn might be continuous, in which
case the lim sup is zero.

PROOF OF LEMMA 4.1. We will show that a subsequence of the locations and
sizes of the maximum jumps of xn necessarily converge to a limit for x which pro-
vides a lower bound for the maximum jump of x. We will exploit compactness to
obtain convergent subsequences. Let {a(1)

n } ≡ {a(1)
n :n ≥ 1} denote a subsequence

of the sequence {an} ≡ {an :n ≥ 1}, and let {a(2)
n } denote a subsequence of the

subsequence {a(1)
n }, and so forth.

Given dM1(xn, x) → 0, we can choose (u, r) ∈ �(x) and (un, rn) ∈ �(xn) for
n ≥ 1, such that ‖un − u‖ ∨ ‖rn − r‖ → 0 by Theorem 12.5.1(i) in [8]. For each
n ≥ 1, let s1,n and s2,n be points in [0,1] such that

dn ≡ |un(s2,n) − un(s1,n)| = Jmax(xn), n ≥ 1.

[Recall that the supremum in (4.1) is attained.] Choose a subsequence {d(1)
n } of

{dn} such that

d(1)
n → lim sup

n→∞
{Jmax(xn)} as n → ∞,
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which is always possible by the definition of the lim sup.
Let {s(1)

1,n} and {s(1)
2,n} be the associated subsequences of the original sequences

{s1,n} and {s2,n} yielding the sequence {d(1)
n }. Let t

(1)
n = r

(1)
n (s1,n) = r

(1)
n (s2,n) be

the associated flat spots. Since t
(1)
n is an element of the compact set [0, T ], there

exists t ∈ [0, T ] and a subsequence {t (2)
n } of the subsequence {t (1)

n } such that t
(2)
n →

t as n → ∞.
Let {s(2)

1,n} and {s(2)
2,n} be the associated subsequences of the subsequences {s(1)

1,n}
and {s(1)

2,n} corresponding to {t (2)
n }. We can thus find points s1, s2 ∈ [0,1] and further

subsequences {s(3)
1,n} and {s(3)

2,n} of these subsequences so that s
(3)
1,n → s1 and s

(3)
2,n →

s2 as n → ∞. However, by the uniform convergence (un, rn) to (u, r), we have the
associated limits

r(3)
n

(
s
(3)
1,n

) → r(s1) = t and r(3)
n

(
s
(3)
2,n

) → r(s2) = t as n → ∞,

u(3)
n

(
s
(3)
1,n

) → u(s1) and u(3)
n

(
s
(3)
2,n

) → u(s2) as n → ∞,

d(3)
n ≡ ∣∣u(3)

n

(
s
(3)
2,n

) − u(3)
n

(
s
(3)
1,n

)∣∣ → lim sup
n→∞

Jmax(xn).

Since r(s1) = r(s2) = t , we necessarily have

Jmax(x) ≥ |x(t) − x(t−)| ≥ |u(s2) − u(s1)| = lim sup
n→∞

Jmax(xn). �

Next we introduce several oscillation functions. As in (2.5) (on page 393, (3.1)
on page 394, (4.4) on page 402 and (5.1) on page 404 of [8]), let

ν(x,A) ≡ sup
u1,u2∈A

{|x(u1) − x(u2)|},

ν(x, δ) ≡ sup
0≤t≤T −δ

{ν(x, [t, t + δ))},

|c − [a, b]| ≡ sup
0≤p≤1

{∣∣c − (
pa + (1 − p)b

)∣∣},(4.2)

ws(x, t, δ) ≡ sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧T

{|x(t2) − [x(t1), x(t3)]|},

ws(x, δ) ≡ sup
0≤t≤T

ws(x, t, δ).

In our proof of Theorem 1.2, we exploit part (b) of Lemma 4.2 below.

LEMMA 4.2 (Maximum-jump bound on the uniform norm). (a) Suppose
x, xn ∈ D with (u, r) ∈ �(x) and (un, rn) ∈ �(xn). Then

‖xn − x‖ ≤ ws(xn,‖rn − r‖) + 2Jmax(xn) + Jmax(x) + ‖un − u‖.(4.3)

(b) If xn → x in (D,M1) then

lim sup
n→∞

{‖xn − x‖} ≤ 3Jmax(x).(4.4)
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(c) If, in addition, xn is continuous, then

lim sup
n→∞

{‖xn − x‖} ≤ Jmax(x).

PROOF. By the triangle inequality,

‖xn − x‖ = ‖xn ◦ r − x ◦ r‖
≤ ‖xn ◦ r − xn ◦ rn‖ + ‖xn ◦ rn − un‖ + ‖un − u‖ + ‖u − x ◦ r‖.

We bound the first term on the second line by observing that

‖xn ◦ r − xn ◦ rn‖ ≤ ν(xn,‖rn − r‖) ≤ ws(xn,‖rn − r‖) + Jmax(xn),

using the definitions in (4.1) and (4.2). Since ‖xn ◦ rn − un‖ = Jmax(xn) and ‖u −
x ◦ r‖ = Jmax(x), that explains (4.3).

We now turn to part (b). First, we note that

lim
ε↓0

lim sup
n→∞

ws(xn, ε) = 0,(4.5)

by Theorem 12.5.1(iv) of [8]. Since xn → x as n → ∞, we can select parametric
representations such that ‖un − u‖ ∨ ‖rn − r‖ → 0 as n → ∞. Together with the
limit in (4.5), that implies that ws(xn,‖rn − r‖) → 0. Since ‖un − u‖ → 0 as
n → ∞, the limit in (4.4) follows from Lemma 4.1. Finally, part (c) follows easily
from parts (a) and (b) because Jmax(xn) = 0 when xn ∈ C. �

4.2. Constructing the parametric representation of the limit function. We start
by constructing a special parametric representation (u, r) of the limit function x.

LEMMA 4.3 (Choice of r in the parametric representation of x). For any
x ∈ D([0, T ],R), there exists a parametric representation (u, r) of x such that
r is absolutely continuous with respect to Lebesgue measure, having derivative r ′
almost everywhere, satisfying ‖r ′‖ < 2T . Moreover, this function r can serve to
build the parametric representation (u, r) of x needed to establish convergence
dM1(xn, x) → 0 for any sequence {xn :n ≥ 1} for which convergence holds.

PROOF. By Theorem 12.5.1(i) of [8], there is total freedom in the choice of
the parametric representation (u, r) of the limit function x. We can start with any
proper parametric representation of x, and if convergence xn → x holds, then it
will be possible to find suitable parametric representations (un, rn) of xn. So the
construction we carry out for r and u are necessarily without loss of generality as
far as establishing the convergence is concerned. However, we need to show that it
is possible to find a parametric representation of x with the additional structure.

Given that r : [0,1] → [0, T ] is onto, the maximum value of its derivative (if it
exists) must be at least T . Indeed, when x is continuous, we can just let r ′(s) = T ,
so that r(s) = T s, 0 ≤ s ≤ 1. However, there is no need for the M1 topology unless
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the limit x has at least one jump. So henceforth we assume that is the case. Then
the parametric representation must have a flat spot for each jump; that is, if x has a
jump at t , by which we mean |x(t) − x(t−)| > 0, then there must exist an interval
[s1, s2] ⊆ [0,1] such that r(s) = t for s ∈ [s1, s2], r(s) < t for s < s1, and r(s) > t

for s > s2. To concisely express that, we write r−1(t) = [s1, s2] where r−1(t) ≡
{s ∈ [0,1] : r(s) = t}. We now show that r can be constructed by combining linear
pieces such that each piece either has slope 0 (is a flat spot) or has slope 2T . We let
r have a flat spot at t for each t ∈ Disc(x). It is possible that the interval endpoint
T is a discontinuity point of x. Whether or not T ∈ Disc(x), we include a flat spot
at T in r . Otherwise, r has no flat spots at t ∈ Disc(x)c. We guarantee that

0 ≤ r(s2) − r(s1)

s2 − s1
≤ 2T for 0 ≤ s1 < s2 ≤ 1 and n ≥ 1.

The construction is elementary if x has only finitely many discontinuities, but
the number of discontinuities can be countably infinite, even dense in [0,1]. Thus
to carry out the construction, we initially order all the discontinuity points of x in
order of decreasing size of the jumps so that t1 is the location of the largest jump
while t2 is the location of the second largest jump, and so forth. We can break ties
arbitrarily. To be definite, suppose that ties are broken by taking the discontinuities
in order of their time value; for example, if the jumps at the points t1 and t2 are
the same size, then we order them so that t1 < t2. We assign a flat portion to r of
length fj for the j th discontinuity. We choose these lengths fj such that their sum
is 1/2. That leaves a total length of 1/2 in the domain [0,1] to be the support of
the increase of r . Wherever r can have an interval without discontinuities, we let r

increase at slope 2T . Thus ‖r ′‖ = 2T .
We start by letting the successive lengths of the flat spots, when first introduced

in the construction process, satisfy the inequalities

fj >

∞∑
i=j+1

fi for all j ≥ 1;(4.6)

that is, the length of each flat spot exceeds the sum of the lengths of all remaining
flat spots. (For example, that can be achieved by letting fj ≡ 2−2j , j ≥ 2, and
f1 ≡ 5/12.) Inequality (4.6) allows us to remove portions of an initially assigned
flat spot, taking away the length of a new flat spot. Requirement (4.6) ensures that
there is a positive length for each flat spot after all these subsequent changes. There
will also be a flat spot at T , making the sum of all flat spots be 1/2.

We construct our function r iteratively. In particular, we will construct a se-
quence of functions {rn :n ≥ 1} (not to be confused with the parametric repre-
sentations of xn discussed later) such that rn → r as n → ∞. Let λ be Lebesgue
measure on the interval [0,1]. For each n, r ′

n(s) will equal either 2T or 0 for almost
all s with respect to Lebesgue measure. We will further have

λ
({s : r ′

n(s) �= r ′(s)}) = 2
∞∑

i=n+1

fi → 0 as n → ∞.(4.7)
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FIG. 1. Constructing the time component r : [0,1] → [0, T ] of the parametric representation (u, r)

of the graph �x of a function x. We show the function r4 which is the result of the first four steps of
the construction. The functions rn are all piecewise linear, with rn containing 2n + 1 pieces, each
either of slope 0 or slope 2T .

As a consequence, r ′ will also equal either 2T or 0 for almost all s. An example
of the first four steps of the construction to be described, yielding r4, is shown in
Figure 1.

Specifically, to construct r , we start with r0(s) = 2T s, 0 ≤ s ≤ 1/2, and r0(s) =
T , 1/2 ≤ s ≤ 1. Flat spots with value T will be present in rn for all n and in r .
To construct the next function r1, we append a flat piece of length f1 to the initial
function r0, extending out to the right of length f1 at t1 on the y axis. The flat
portion starts at s1 = t1/2T and extends to s1 + f1. We then add an increasing
portion with slope 2T , starting at the right endpoint s1 + f1. The new function is
the lower envelope of these pieces.

We continue in this way to construct a sequence {rn :n ≥ 1} of functions which
decrease toward the limit r . The construction of rn given rn−1 proceeds in the
same way when tn > tj for all j , 1 ≤ j ≤ n − 1; that is the case for t2 in Figure 1.
Otherwise, like t3 in Figure 1, the linear piece added at sn + fn will hit rn−1 on
the y axis at t̃n ≡ min{tj : tj > tn,1 ≤ j ≤ n − 1}. For t3 in Figure 1, that occurs
for t̃3 = t1. Then rn coincides with rn−1 except for two new linear pieces: first, the
flat spot mapping [sn, sn + fn] into tn and, second, the linear piece with slope 2T ,
rn(sn + fn) = tn and rn(sn + fn + (t̃n − tn)/2T ) = t̃n.

Note that the functions rn are all piecewise linear, with rn containing 2n + 1
pieces, each either of slope 0 or slope 2T . Thus rn is absolutely continuous with
respect to Lebesgue measure for each n. For all n and almost all s, r ′

n(s) ∈ {0,2T }.
In addition, rn(s) ≥ rn+1(s) ≥ 0. By this construction, the flat portions at any level
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tj may decrease as flat portions are added for t < tj , as is the case for t1 in Figure 1
when we add the flat portion of length f3 corresponding to t3. If we add a flat spot
of length fj at step j , then the total length of the change in the derivative is 2fj ,
which gives (4.7). By condition (4.6), there always will be a remaining flat portion
at tj whenever one was initially inserted there. Since, rn is strictly decreasing, there
necessarily exists a function r such that rn(s) → r as n → ∞ for all s. In addition,
we have convergence of the derivatives, as in (4.7).

In general, the values r ′
n(s) could oscillate among the two values 2T and 0

infinitely often, but

0 ≤ rn(s2) − rn(s1)

s2 − s1
≤ 2T for 0 ≤ s1 < s2 ≤ 1 and n ≥ 1.

Indeed, this construction guarantees (4.7). As a consequence, the sequence
{r ′

n :n ≥ 1} converges to r ′ in L1, that is, as n → ∞,

‖r ′
n − r ′‖1 ≡

∫ 1

0
|r ′

n(s) − r ′(s)|ds ≤ 2T λ
({s : r ′

n(s) �= r ′(s)}) → 0.

We now specify the space component u of the parametric representation of x.
Recall that Disc(x) ≡ {t ∈ [0, T ] : |x(t) − x(t−)| > 0}. We must have u(s) =
x(r(s)) for each s with r(s) = t ∈ Disc(x)c and r(1) = T . [We could have
T ∈ Disc(x), but we necessarily have 0 ∈ Disc(x)c.] It remains to specify u at
s if r(s) = t ∈ Disc(x) (with t �= T ). Whenever [s1, s2] = r−1(t) for s2 > s1, let
u(s1) = u(s1−) and u(s2) = u(s2+), where the left and right limits are over s such
that r(s) = t ∈ Disc(x)c. Since x has left and right limits everywhere, these limits
are well defined, with u(s1) = x(t−) and u(s2) = x(t). Then let the remainder of
u be defined by linear interpolation, that is,

u(s) ≡ pu(s1) + (1 − p)u(s2) = px(t−) + (1 − p)x(t)

for all s = ps2 + (1 − p)s1, 0 ≤ p ≤ 1. Thus we have constructed the desired
parametric representation (u, r). �

Given the constructed parametric representation (u, r) of x, and given that xn →
x in (D,M1), let (un, rn) be a parametric representation of xn, n ≥ 1, such that
‖un − u‖ ∨ ‖rn − r‖ → 0 as n → ∞, which must exist, by Theorem 12.5.1 of [8].
Our goal, then, is to construct new parametric representations (ũn, r̃n) of xn such
that r̃n has the properties in Theorem 1.2, including (1.4), and ‖ũn − u‖ ∨ ‖r̃n −
r‖ → 0 as n → ∞.

Our goal can be expressed as showing that there exists n∗∗ ≡ n∗∗(ε, u, r, {xn;
n ≥ 1}) for any specified ε > 0, (u, r) ∈ �(x) as constructed above and {xn;n ≥ 1}
where dM1(xn, x) → 0, such that, for all n > n∗∗, there exist parametric representa-
tions (ũn, r̃n) of xn, such that r̃n has the properties in Theorem 1.2, including (1.4),
and

‖ũn − u‖ ∨ ‖r̃n − r‖ < ε.(4.8)
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Indeed, we will construct such an n∗∗, with the final specification being (4.30).
There will be several steps.

4.3. Constructing the finite partition of the domain. Here is where we start:
We are given the limit x and the sequence {xn :n ≥ 1} with xn → x as n → ∞ in
D([0, T ],R) endowed with the M1 topology. Let (u, r) be the parametric repre-
sentation of x constructed in Section 4.2. Let (un, rn) be the parametric represen-
tations of xn such that ‖un − u‖ ∨ ‖rn − r‖ → 0 as n → ∞. Let ε > 0 be given.

Choose ε1 < ε/9. [The reason for this inequality is explained at the very end, in
(4.31)]. To simplify the presentation, assume that x has no discontinuity at T . It is
not difficult to treat that case too, but it is slightly different. Let Disc(x, ε1) ≡ {t ∈
[0, T ] : |x(t) − x(t−)| > ε1}. Let m ≡ m(ε1) ≡ |Disc(x, ε1)|, the cardinality of the
set Disc(x, ε1), which is necessarily finite (see Theorem 12.2.1 of [8]). Let these
jump times be labelled, so that

0 ≡ t0 < t1 < · · · < tm < tm+1 ≡ T .

Note that this labelling is different from the labelling used in Section 4.2.
We next introduce ε2 and n(ε2) so that ‖un − u‖ ∨ ‖rn − r‖ ≤ ε2 for all n ≥

n(ε2). With that in mind, we now choose ε2 such that the following four properties
are satisfied:

(i) 0 < ε2 < ε1,

tj + 2ε2 < tj+1 − 2ε2, 1 ≤ j ≤ m − 1,(4.9)

0 < t1 − 2ε2, and tm + 2ε2 < T ;
(ii)

ν
(
x, [tj , tj + 3ε2)

)
< ε1/2 and ν

(
x, [tj − 3ε2, tj )

)
< ε1/2(4.10)

for 1 ≤ j ≤ m, where ν is the modulus of continuity defined in (4.2);
(iii) There exist time points s−

2j−1(ε2) and s+
2j (ε2), 1 ≤ j ≤ m, such that

r−1(tj − 2ε2) = {s−
2j−1(ε2)} and r−1(tj + 2ε2) = {s+

2j (ε2)}(4.11)

for 1 ≤ j ≤ m, that is, s−
2j−1(ε2) and s+

2j (ε2) are points of increase (not in flat
spots) for the function r (tj ± 2ε2 are continuity points of x);

(iv)

s2j−1 − s−
2j−1(ε2) ≤ ε1

6mT
and s+

2j (ε2) − s2j ≤ ε1

6mT
(4.12)

for 1 ≤ j ≤ m, s0 = 0 and s2m+1 = 1, where r−1(tj ) = [s2j−1, s2j ], 1 ≤ j ≤ m.

The second property holds for all sufficiently small ε2 because of right conti-
nuity and the existence of left limits everywhere. As a consequence of property
(4.9),

0 < s−
1 (ε2), s+

2j (ε2) < s−
2j+1(ε2), 1 ≤ j ≤ m − 1, s+

2m(ε2) < 1.
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FIG. 2. An example of the partition of the domain of the time component r : [0,1] → [0, T ] of the
parametric representation (u, r) of the graph �x of a function x into 4m + 1 disjoint subintervals,
associated with the m large jumps. In this example, there are m = 2 large discontinuities in [0, T ],
so that the domain is partitioned into 4m + 1 = 9 disjoint subintervals.

We can obtain all these properties because we are imposing only finitely many
requirements. For condition (4.11), we use the fact that x has at most countably
many discontinuities.

As a consequence of the construction above, we have partitioned the domain
[0,1] of (u, r) into 4m + 1 disjoint subintervals:

[s2j−1, s2j ], 1 ≤ j ≤ m,

(s−
2j−1(ε2), s2j−1) and (s2j , s

+
2j (ε2)), 1 ≤ j ≤ m,

[0, s−
1 (ε2)], [s+

2m(ε2),1] and [s+
2j (ε2), s

−
2j+1(ε2)], 1 ≤ j ≤ m − 1.

The case of m = 2 is shown in Figure 2. The m closed subintervals [s2j−1, s2j ],
1 ≤ j ≤ m correspond to the m large (of size bigger than ε1) discontinuities of x,
and the associated m flat spots of r . Corresponding to each of these m subintervals,
we have two connecting open subintervals. Thus, overall, there are 2m connecting
subintervals of the form (s−

2j−1(ε2), s2j−1) and (s2j , s
+
2j (ε2)), 1 ≤ j ≤ m. Finally,

we have m + 1 closed subintervals in which there are no jumps exceeding ε1:
[0, s−

1 (ε2)], [s+
2m(ε2),1] and [s+

2j (ε2), s
−
2j+1(ε2)], 1 ≤ j ≤ m − 1.

Before proceeding, we explain the strategy of our proof and the details in prop-
erties (4.9)–(4.12): the use of 2ε2 in (4.9), 3ε2 in (4.10) and ε1/6mT in (4.12)
(see Section 4.6 for more details). We will let r̃n be a minor modification of rn
and r , respectively, in the m large-jump closed subintervals [s2j−1, s2j ], and in the
m + 1 small-jump closed subintervals [s+

2j (ε2), s
−
2j+1(ε2)]. We use the remaining
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2m connecting open subintervals to make adjustments ensuring that r̃n is nonde-
creasing with the desired properties. Condition (4.10) ensures that these small open
subintervals are manageable.

Toward that end, we let

r̃n(s2j−1) ≡ rn(s2j−1) ≥ r(s2j−1) − ε2 = tj − ε2,
(4.13)

r̃n(s2j ) ≡ rn(s2j ) ≤ r(s2j ) + ε2 = tj + ε2

for all j and n ≥ n(ε2), but

r̃n(s
−
2j−1(ε2)) ≡ r(s−

2j−1(ε2)) = tj − 2ε2,
(4.14)

r̃n(s
+
2j (ε2)) ≡ r(s+

2j (ε2)) = tj + 2ε2

for all j and n ≥ n(ε2). Note that r̃n is defined in terms of rn in the first two cases
and in terms of r for the second two.

We have used 2ε2 in (4.9) to ensure that r̃n(s2j−1) > r̃n(s
−
2j−1(ε2)) and

r̃n(s2j ) < r̃n(s
+
2j (ε2)) for n ≥ n(ε2). We will typically need strict inequality in or-

der to construct r̃n properly in the subintervals (s−
2j−1(ε2), s2j−1) and (s2j , s

+
2j (ε2))

for 1 ≤ j ≤ m.
We use 3ε2 in (4.10) to control the oscillations of ũn in the small open in-

tervals (s−
2j−1(ε2), s2j−1) and (s2j , s

+
2j (ε2)) for 1 ≤ j ≤ m. We intend to let

ũn(s) ≡ un(r̃n(s)). Hence, we apply (4.10) and (4.14) to obtain, first,

r̃n(s
−
2j−1(ε2)) = r(s−

2j−1(ε2)) = tj − 2ε2 > tj − 3ε2,

r̃n(s
+
2j (ε2)) = r(s+

2j (ε2)) = tj + 2ε2 < tj + 3ε2

and, second,

tj − ε2 > rn(s
−
2j−1(ε2)) > tj − 3ε2,

(4.15)
tj + ε2 < rn(s

+
2j−1(ε2)) < tj + 3ε2

for all j and n ≥ n(ε2).
Finally, we use ε1/6mT in (4.12) to make these 2m open subintervals

(s−
2j−1(ε2), s2j−1) and (s2j , s

+
2j (ε2)) for 1 ≤ j ≤ m so short that they all can only

contribute ε1 to the L1 norm ‖r̃ ′
n − r ′‖1 when 0 ≤ ‖r ′‖ ≤ 2T and 0 ≤ ‖r̃ ′

n‖ ≤ 3T

[see (4.26) in Section 4.6].

4.4. The spatial component of the parametric representations. In this subsec-
tion we show how to construct ũn, the spatial component of the new paramet-
ric representation of xn. As a basis for having a simple construction, we require
that r̃n, the temporal part of the spatial representation of xn, have its flat spots be
in one-to-one correspondence with the flat spots of rn. The given function rn must
have a flat spot corresponding to each discontinuity point of xn, but it could have
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additional flat spots (which could be removed, but we do not do that). We take rn
to be as given, and set as a requirement for r̃n that its flat spots correspond to those
of rn. Specifically, We define r̃n so that

r̃n = rn ◦ φn,

where φn is an increasing homeomorphism of the domain [0,1]. We will be con-
structing r̃n and φn in the remaining sections. To achieve the desired order, as
specified for φn, we will do the construction in each case so that the flat spots in r̃n
correspond to those of rn and appear in the same order (just as was done for r in
Section 4.2). Given that direction, here we are showing how to construct ũn given
r̃n and φn.

As part of our construction, we directly relate the flat spots: If r−1
n (t) = [ŝ1, ŝ2]

where ŝ1 < ŝ2, then r̃−1
n (t) = [s̃1, s̃2] where s̃1 < s̃2, and φn(s̃i) = ŝi for i = 1,2.

Moreover, for each flat spot, we define φn within such a subinterval by linear in-
terpolation; that is, we let

φn

(
ps̃2 + (1 − p)s̃1

) = pŝ2 + (1 − p)ŝ1.(4.16)

Finally, we construct r̃n and φn so that the order of the flat spots is preserved. (To
do that, we can order the flat spots of the given rn in order of their length. We can
do the construction, as in Section 4.2, preserving the desired order at each step.)
Whenever, r−1

n (r̃n(s)) is a one-point set, we have

φn(s) = r−1
n (r̃n(s)).(4.17)

Given the homeomorphism φn described above, it is elementary to define the
function ũn: We let

ũn(s) ≡ (un ◦ φn)(s) ≡ un(φn(s)), 0 ≤ s ≤ 1.(4.18)

Whenever r−1
n (r̃n(s)) is a one-point set, we have

ũn(s) ≡ (un ◦ φn)(s) = (un ◦ r−1
n ◦ r̃n)(s)

= (xn ◦ rn ◦ r−1
n ◦ r̃n)(s) = (xn ◦ r̃n)(s) = xn(r̃n(s)).

With ũn defined in this way, we will want to bound ‖ũn − u‖. We will do that
by applying the triangle inequality:

‖ũn − u‖ = ‖un ◦ φn − u‖ ≤ ‖un ◦ φn − u ◦ φn‖ + ‖u ◦ φn − u‖
(4.19)

≤ ‖un − u‖ + ‖u ◦ φn − u‖
and work to control the second term on the right, for example, using (4.10).
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4.5. Case 1: The flat spots corresponding to the large jumps. In this subsection
we consider the m closed subintervals [s2j−1, s2j ], 1 ≤ j ≤ m, corresponding to
the m identified “large” jumps of x. We have r(s) = tj for all s ∈ [s2j−1, s2j ].
Since r is constant on these intervals, these intervals are easiest to treat. We are
given rn such that ‖rn − r‖ → 0 as n → ∞. However, these functions rn need
not satisfy the smoothness properties of Theorem 1.2. Thus we will construct new
parametric representations (ũn, r̃n) over this subinterval. We will let r̃n(s) = rn(s)

at the end points s2j−1 and s2j of the interval [s2j−1, s2j ] and also at finitely many
points sj,k within the subinterval [s2j−1, s2j ], but we will make a new definition
at other points s, using a minor modification of the construction in Section 4.2.
The end points s2j−1 and s2j have been specified in the process of choosing ε2 in
Section 4.3. We choose the internal points sj,k , 0 ≤ k ≤ nj , so that sj,k < sj,k+1
for all k and the constructed subintervals [sj,k, sj,k+1] are of equal width

wj ≡ sj,k+1 − sj,k = s2j − s2j−1

nj

,(4.20)

where nj will be specified below in (4.22). We will let r̃n(sj,k) = rn(sj,k) and
ũn(sj,k) = un(sj,k) for all j and k.

Since we are redefining our parametric representations within these small subin-
tervals, we want to construct the widths wj sufficiently small so that the fluctuation
of u within the interval [sj,k, sj,k+1] is suitably small. Recall that u has been de-
fined by linear interpolation. Thus

|u(sj,k+1) − u(sj,k)| = |x(tj ) − x(tj−)|
nj

.

Let nj be chosen for each j so that

ν(u; [sj,k, sj,k+1]) = |u(sj,k+1) − u(sj,k)| ≤ ε2/2;(4.21)

that is, let

nj = �2|x(tj ) − x(tj−)|/ε2�,(4.22)

where �t� is the least integer greater than or equal to t . Then the subinterval width
wj is obtained by combining (4.20) and (4.22).

By focusing on u, which depends on x, we have specified nj and wj . It remains
to ensure that the slope of r̃n need not exceed 2T . We let

ε3 ≡ min
{
ε2/2m,T min{wj : 1 ≤ j ≤ m}/2

}
.(4.23)

[We explain this choice after (4.24) and (4.25) below.] Given the above, we choose
n∗ ≡ n∗(ε3), so that dM1(xn, x) ≤ ε3 for n ≥ n∗(ε3). (We will need to impose yet
another constraint on n [see (4.30)].)

We now can construct our desired parametric representations (ũn, r̃n) of xn such
that ‖ũn −u‖∨‖r̃n − r‖ ≤ ε2 for n ≥ n∗ ≡ n∗(ε3), specified above, where the uni-
form norm is restricted to the intervals [s2j−1, s2j ], 1 ≤ j ≤ m. As indicated above,
we let r̃n(sj,k) = rn(sj,k) for all j , k and n. Our idea is to use the construction in
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Section 4.2 within each subinterval [sj,k, sj,k+1] to construct r̃n at other s, but we
modify the construction slightly. In Section 4.2, we constructed r to have a flat
spot corresponding to each discontinuity point t of x. However, as indicated in
Section 4.4, here we construct r̃n so that it has a flat spot for each flat spot in rn
(which may or may not correspond to the same jump point of xn). Since rn has at
most countably many flat spots in all, we can apply a variant of the construction in
Section 4.2 to them. We can order these flat spots of rn according to their length in
the domain.

First, we let r̃n(s) = rn(sj,k) for all s ∈ [sj,k, sj,k+1] if rn(sj,k) = rn(sj,k+1).
Hence it suffices to consider subintervals for which rn(sj,k) < rn(sj,k+1). We ad-
just the construction in Section 4.2 in the obvious way to allow for the different
values at the endpoints in this context. In particular, here we have

tj − ε2 = r(s2j−1) − ε2 ≤ rn(s2j−1) ≤ rn(sj,k)

< rn(sj,k+1) ≤ rn(s2j ) ≤ r(s2j ) + ε2 = tj + ε2

for all k and n ≥ n(ε2). Hence, by the definition of ε3 in (4.23), for n ≥ n∗(ε3),

rn(sj,k+1) − rn(sj,k)

sj,k+1 − sj,k
≤ 2ε3

wj

≤ T .

We initially let r̃n,0((sj,k + sj,k+1)/2) = rn(sj,k+1), which makes the maximum
possible slope in the subinterval be 2T , just as in Section 4.2. We then carry out
the same complete construction on each subinterval, getting r̃n,l for l ≥ 1, and then
the limit r̃n,∞ ≡ r̃n (on this subinterval [sj,k, sj,k+1]).

That construction gives us the function r̃n which is absolutely continuous with
respect to Lebesgue measure, having derivative r̃ ′

n almost everywhere, satisfy-
ing ‖r̃ ′

n‖ ≤ 2T for n ≥ n∗(ε3) where the uniform norm is restricted to the in-
tervals [s2j−1, s2j ], 1 ≤ j ≤ m. Moreover, since r is constant on the subinterval
[s2j−1, s2j ],∫ s2j

s2j−1

|r̃ ′
n(w) − r ′(w)|dw ≡

∫ s2j

s2j−1

r̃ ′
n(w)dw

(4.24)
≤ 2ε3(s2j − s2j−1) ≤ 2ε3 ≤ ε2

m

for all n ≥ n∗(ε3). The sum of these integrals over the m intervals [s2j−1, s2j ] is
then bounded above by ε2. Thus ‖r̃ ′

n − r ′‖1 ≤ ε2 for all n ≥ n∗(ε3) where the L1
norm is restricted to the union of the intervals [s2j−1, s2j ], 1 ≤ j ≤ m.

Moreover, since dM1(xn, x) ≤ ε3 for n ≥ n∗(ε3), ‖rn − r‖ ≤ ε3 for n ≥ n∗(ε3),
which implies ‖r̃n − r‖ ≤ ε3 for n ≥ n∗(ε3) by the construction of r̃n above from
rn where the uniform norm is restricted to the intervals [s2j−1, s2j ], 1 ≤ j ≤ m.

We have already indicated how to construct ũn in Section 4.4. Formulas (4.16)–
(4.18) imply that ũn is defined by linear interpolation within each flat spot, just
like u. Hence (ũn, r̃n) is a parametric representation of xn for each n, restricted to
the given subinterval [s2j−1, s2j ].
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Finally, we need to bound ‖ũn − u‖. By (4.19) and (4.21), on the subinterval
[s2j−1, s2j ],

‖ũn − u‖ ≤ ‖un − u‖ + max
k

{ν(u; [sj,k, sj,k+1])} < ε3 + ε2

2
≤ ε2(4.25)

for n ≥ n∗(ε3) by (4.21) and our assumption that n ≥ n∗(ε3) [which implies that
dM1(xn, x) ≤ ε3 for those n and those subintervals]. Thus, we have established
(4.8) for n ≥ n∗(ε3), where ε3 is given in (4.23), which in turn depends on wj (or,
equivalently, nj ) and ε2, and where the uniform norm is restricted to the intervals
[s2j−1, s2j ], 1 ≤ j ≤ m.

4.6. Case 2: The connecting open subintervals. We have introduced the con-
necting intervals (s−

2j−1(ε2), s2j−1) and (s2j , s
+
2j (ε2)) in order to provide a bridge

between the closed intervals with large jumps and the closed intervals with-
out large jumps. We have already let r̃n(s2j−1) = rn(s2j−1), r̃n(s2j ) = rn(s2j ),
r̃n(s

−
2j−1(ε2)) = r(s−

2j−1(ε2)) and r̃n(s
+
2j (ε2)) = r(s+

2j (ε2)) for all j and n ≥ n(ε2)

in (4.13) and (4.14). These short open subintervals allows us to make the transition
between these two different definitions. By condition (4.12), we have made these
intervals short, so that their contribution to the total L1 distance ‖r̃ ′

n − r ′‖1 can
be controlled without carefully examining the derivatives. We only discuss a typ-
ical “lower” interval, (s−

2j−1(ε2), s2j−1), because the associated “upper” interval,

(s2j , s
+
2j (ε2)), can be treated in essentially the same way.

We already have observed that (4.9) ensures that r̃n(s2j−1) > r̃n(s
−
2j−1(ε2)). We

initially define r̃n by linear interpolation between the established assignments at
the interval endpoints. We then make asymptotically negligible adjustments by
adding flat spots as necessary to account for the given flat spots of rn (which in-
cludes all discontinuity points of xn in this range). Note that r̃n maps the subinter-
val [s−

2j−1(ε2), s2j−1] into some interval [t ln,j , t
r
n,j ]. We include flat spots in r̃n with

domain in [s−
2j−1(ε2), s2j−1] to match all flat spots of rn with values in [t ln,j , t

r
n,j ].

Since ‖rn − r‖ ≤ ε3 < ε2/2 for n ≥ n∗(ε3), 0 ≤ r(s2j−1) − r(s−
2j−1(ε2)) =

2ε2, r̃n(s2j−1) = rn(s2j−1) and r̃n(s
−
2j−1(ε2)) = rn(s

−
2j−1(ε2)) by the construc-

tion, we must have r̃n(s2j−1) − r̃n(s
−
2j−1(ε2)) < (5/2)ε2 and ‖r̃n − r‖ ≤ 3ε2 for

n ≥ n∗(ε3) where the uniform norms are restricted to the connecting open subin-
tervals. Moreover, before the addition of any flat pieces, over the open subinterval
(s−

2j−1(ε2), s2j−1),

‖r̃ ′
n‖ = r̃n(s2j−1) − r̃n(s

−
2j−1(ε2))

s2j−1 − s−
2j−1(ε2)

<
(5/2)ε2

s2j−1 − s−
2j−1(ε2)

=
(

5

4

)(r(s2j−1) − r(s−
2j−1(ε2))

s2j−1 − s−
2j−1(ε2)

)
= 5

4
‖r ′‖ = 5

2
T
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for n ≥ n∗(ε3). Hence we can achieve ‖r̃ ′
n‖ ≤ 3T over the subinterval in the first

and the second cases for all n ≥ n∗(ε3) even after adding small flat pieces corre-
sponding to the flat spots of rn and thus making the linear pieces slightly steeper.

Since 0 ≤ ‖r ′‖ ≤ 2T and 0 ≤ ‖r̃ ′
n‖ ≤ 3T for n ≥ n∗(ε3), we have the crude

bound ‖r̃ ′
n − r ′‖ ≤ 3T on the subinterval (s−

2j−1(ε2), s2j−1) for n ≥ n∗(ε3). Since
the length of this subinterval is very short, with bound in (4.12), on this subinterval,
we have ∫ s2j−1

s−
2j−1(ε2)

|r̃ ′
n(w) − r ′(w)|dw ≤ 3T

(
s2j−1 − s−

2j−1(ε2)
) ≤ ε1

2m
(4.26)

for n ≥ n∗(ε3). Hence the total contribution to the overall L1 norm ‖r̃ ′
n − r ′‖1 from

all the 2m connecting open intervals is bounded above by ε1.
We have already indicated how to construct the spatial portions ũn of the para-

metric representations of xn in Section 4.4. However, we modify the bounding
argument in (4.25). Since (4.14) and (4.15) hold for all n ≥ n∗(ε3), and by con-
struction r , rn and r̃n are all nondecreasing over the interval (s−

2j−1(ε2), s2j−1), we
must have

tj − 3ε2 ≤ r(φn(s)) ≤ tj for s−
2j−1(ε2) ≤ s ≤ s2j−1

for n ≥ n∗(ε3). Hence we can apply the oscillation bound in (4.10) to obtain

‖u ◦ φn − u‖ ≤ ν
(
x, [tj − 3ε2, tj )

)
< ε1/2(4.27)

for n ≥ n∗(ε3), where the uniform norm is over the connecting open subintervals.
Applying (4.25) and (4.27), we get

‖ũn − u‖ < ε3 + ε1

2
≤ ε1

for n ≥ n∗(ε3), over the connecting open subintervals.

4.7. Case 3: The closed intervals without large jumps. We now treat the m+1
closed intervals [s+

2j (ε2), s
−
2j+1(ε2)], 0 ≤ j ≤ m, corresponding to the portions of

x without any large jumps. Here we do not pay careful attention to the jumps of the
limit function x. The idea is that the resulting error is bounded above by a constant
multiple of the size of the largest jump in the limit function x in this region, and is
thus controlled by the fact that the size of each jump is at most ε1, as stipulated in
Section 4.3.

The smoothness properties required by Theorem 1.2 are achieved by letting r̃n,
the time portion of the parametric representation (ũn, r̃n) of xn, be a minor mod-
ification of r , which has already been shown to have all the desired properties in
Section 4.2. If there are no unnecessary flat spots in rn and if xn is continuous or,
more generally, if Disc(xn) ⊆ Disc(x), then we can simply let r̃n = r , but more
generally we cannot, and must insert extra flat spots in r̃n; we will return to that
later. Since we will not pay close attention to the jumps, we can let r̃n be only a
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minor perturbation of r , obtained by inserting all necessary flat pieces, but only
very short ones, so that the sum of all the lengths of the differences of r̃n from r

due to the addition of these flat pieces is less than δn, where δn → 0 as n → ∞. In
that way, we can ensure that ‖r̃ ′

n‖ ≤ 3T and ‖r̃ ′
n − r ′‖1 → 0 as n → ∞.

We now construct the desired parametric representation (ũn, r̃n), again focusing
on a single subinterval [s+

2j (ε2), s
−
2j+1(ε2)]. We consider the case where it is nec-

essary to add new flat spots to r̃n. Hence we will add extra flat spots to r in order
to create r̃n over the subinterval. The endpoints of the interval correspond to points
of increase in r by (4.11), so that we can let r̃n = r there. We will change r only in
the interior of the subinterval [s+

2j (ε2), s
−
2j+1(ε2)].

Suppose that we are considering inserting a flat spot in r̃n at t . (We need to
be careful because x and xn could have countably many discontinuities in this
region.) Let s1 be such that r(s1) = t . Now we choose a second point s2 so that
s2 > s1, where, first, s2 is in the middle of a flat spot of r , so that r(s2) = t2 > t

and, second, |t2 − t | and |s2 − s1| are both very small. We do a new construction
here. We remove a small portion f of the flat spot at level t2 and insert a flat spot
of that length f at level t . In order to be consistent with the rest of r̃n constructed
so far, to carry out this construction we move the entire function r̃n to the right by
the amount f between s1 and s2. Since we have deleted the interval of length f

from the flat spot at t2, this step of the construction leaves the original function r̃n
completely unchanged outside the interval [s1, s2]. Thus the change can be kept
arbitrarily small.

By this construction, we can make the Lebesgue measure of the set on which
r is changed in the construction of r̃n be less than any δn > 0, we can then let
δn → 0. At the same time, we can keep ‖r̃ ′

n‖ ≤ 3T for all n ≥ n∗(ε3). Hence we
can achieve the desired L1 convergence ‖r̃ ′

n − r ′‖1 → 0 as well as ‖r̃n − r‖ → 0.
In particular, it is easy to achieve over all m + 1 subintervals

‖r̃ ′
n − r ′‖1 ≤ ε1 for n ≥ n∗(ε3).(4.28)

We now consider the spatial portion of the parametric representation, ũn

where again we use the construction in Section 4.4. Over this subinterval
[s+

2j (ε2), s
−
2j+1(ε2)], by this construction and the triangle inequality, we have

‖ũn − u‖
≤ ‖ũn − xn ◦ r̃n‖

+ ‖xn ◦ r̃n − x ◦ r̃n‖ + ‖x ◦ r̃n − x ◦ r‖ + ‖x ◦ r − u‖(4.29)

≤ Jmax(xn) + ‖xn − x‖ + ν(x,‖r̃n − r‖) + Jmax(x)

≤ Jmax(xn) + ‖xn − x‖ + ws(x,‖r̃n − r‖) + 2Jmax(x),

where Jmax and ws are defined in (4.1) and (4.2), respectively, restricting to this
subinterval [s+

2j (ε2), s
−
2j+1(ε2)].
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In order to apply the bound in (4.29) to control the distance ‖ũn − u‖ over
[s+

2j (ε2), s
−
2j+1(ε2)], we let ε4 be defined such that ε4 ≤ ε3 for ε3 in (4.23), and

ws(x, ε4) < ε1.

We then let n∗∗ ≡ n∗∗(ε4) ≡ n∗∗(ε4, u, r, {xn}) be such that all of the following
hold for n ≥ n∗∗:

‖r̃n − r‖ ≤ ε4,

Jmax(xn) ≤ Jmax(x) + ε1,(4.30)

‖xn − x‖ ≤ 3Jmax(x) + ε1,

where the uniform norms and the maximum-jump functions of xn and x are re-
stricted to the interval [s+

2j (ε2), s
−
2j+1(ε2)] and Jmax(x) < ε1 over this interval by

the construction in Section 4.3. The last two relations follow from Lemmas 4.1
and 4.2. Combining (4.29) and (4.30), we have

‖ũn − u‖ ≤ 9ε1 < ε for all n ≥ n∗∗(ε4).(4.31)

This final bound is the “weak link” in the collection of bounds we obtain for the
three cases. Overall, if n ≥ n∗∗(ε4), then we obtain

‖ũn − u‖ ∨ ‖r̃n − r‖ < ε

with ‖r̃ ′
n‖ ≤ 3T . Combining (4.24), (4.26) and (4.28), we also obtain (over all of

[0,1])
‖r̃ ′

n − r ′‖1 ≤ ε2 + ε1 + ε1 ≤ 3ε1 < ε

for n ≥ n∗∗(ε4).
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