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Oxazolidinone-substituted enecarbamates offer a system to
explore vibrational quenching and the strategic placement of
CH bonds as a method for manipulating the stereoselectivity
of photoreactions.

The difficulty in manipulating the special requirements for stere-
oselection in photoreactions, due to the short lifetimes of the
reactive species and/or intermediates, has forced photochemists
to devise new methodologies.1,2 Unlike ground-state thermal
reactions, the lifetime of the reactive species dictates how much
stereocontrol will be achieved in the photoproduct and hence
presents photochemists with a formidable challenge.3 Of the many
elegant methods being devised and investigated, organized media
like crystals,4,5 polymer-thin films,6,7 zeolites,8–11 have been explored
with varying degrees of success.

For the past few years, our efforts have focused on enhancing
stereoselectivity in solution by employing the inherent properties
of photoreactions for imprinting stereocontrol. To explore this
concept, we chose singlet oxygen (1O2) as the reactive excited-state
species, since its lifetime (ls to s) may be controlled by environ-
mental parameters such as solvent and temperature.12–15 The main
reason for this distinct behavior is the physical deactivation of the
1O2 excited state to its triplet ground state when it encounters CH
bonds. Our studies exploited this unique property in an attempt to
augment the extent of the stereoselection in photooxygenations,
as well as explore whether this methodology could be extended
generally for photoreactions.

Previously, we showed that the approach of 1O2 onto the
double bond of enecarbamates Z-1-h8 may proceed with complete
diastereoselectivity to afford the corresponding dioxetane product
Z-2-h8 (Scheme 1).16–18 The selectivity was independent of the
size of the alkyl group (Me, iPr or tBu) at the C4 position of
the oxazolidinone, but did depend on whether this stereogenic
center was R or S configured. Moreover, the stereoselectivity
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Scheme 1 Stereoselective photooxygenation of oxazolidinone function-
alized enecarbamates Z-1-h8 to afford the dioxetane cycloadducts Z-2-h8.

did not depend on the configuration at the C3′ position.16–20 For
example, irrespective of the configuration at the C3′ position, the
oxazolidinone with an S configuration at the C4 position favored
the 1′R/2′R dioxetane Z-2-h8 (Scheme 1, top). Alternatively, the
oxazolidinone with an R configuration at the C4 position favored
the 1′S/2′S dioxetane Z-2-h8 (Scheme 1, bottom).16–20

Remarkable about our findings is the fact that irrespective
of the size of the substituent at the C4 position (Me, iPr and
tBu groups), essentially complete diastereocontrol is achieved
in the cycloaddition of 1O2, the smallest of all cyclophiles.16–20

This speaks against traditional steric effects in controlling the
approach of the 1O2 onto the oxazolidinone double bond. We
suspected that vibrational deactivation (physical quenching)21,22 of
the electronically excited 1O2 plays a significant role in enhancing
the stereoselectivity.19,23,24

To validate our suspicion that the enhanced diastereoselectivity
may be attributed to vibrational deactivation of 1O2, we deuterated
the enecarbamate substrate 1 at the C4 position of the oxazo-
lidinone ring (Scheme 2). The deuterated Z-enecarbamate Z-1-d8

was photooxygenated and the stereoselectivity of the dioxetane
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Scheme 2 Attack of 1O2 on the Z-enecarbamate Z-1-d8 with iPr-d8

substituent at the C4 position in the oxazolidinone ring.

Z-2-d8 determined16 by NMR spectroscopy (see the electronic
supplementary information (ESI) for details).‡ The dioxetane Z-
2-d8 was isolated and converted16 to the corresponding diol Z-3-d8,
then to the diol 4 (Scheme 3), and submitted to HPLC analysis, to
assess the extent of stereocontrol.‡

Scheme 3 Conversion of dioxetane Z-2-d8, derived upon photooxygena-
tion of the enecarbamate Z-1-d8, to the diol 4.

Direct comparison of the stereoselectivity results of the diox-
etane products Z-2-h8 and Z-2-d8, by keeping in mind the es-
tablished trends in the stereocontrol exercized by the Evans chiral
auxiliary,25 should reveal the contribution of the deuteration effect.
In this way, the relative efficacy of 1O2 vibrational deactivation
versus steric interactions imposed by the C4 substituent should
be disclosed. Further chiral HPLC analysis of the diol 4 products
should also offer additional corroboration of the structural details
provided by NMR studies of the dioxetane products.

Table 1 Diastereoisomeric excess values calculated for the dioxetane
intermediate formed in the photooxygenation of the proteated and
deuterated enecarbamates to assess the relative contribution of vibrational
deactivation versus steric interactions in the 1O2 attack

Diastereoisomeric excess

Classic steric
effect‡ (%)

1O2 Oxidiation of
proteated
enecarbamate (%)

1O2 Oxidation of
C4 deuterated
analogs (%)

X = Me 72 >98
X = iPr 81 >98 80
X = tButyl >98 >98

The results, summarized in Table 1, clearly expose that the
stereoselectivity for the deutero substrate Z-1-d8 is appreciably
less (by about 20%) than that of the proteo derivative Z-1-h8.
Evidently, the diminished stereocontrol in the deutero substrate
Z-1-d8, compared to the proteo Z-1-h8 analog, is attributed to the
absence of vibrational deactivation of the electronically excited
1O2 by the deuterium-substituted C4-alkyl group. Were it for
classical steric factors alone, the degree of stereocontrol would
be about 80%, in accord with the numerous results reported for
the steric efficiency exercized by an isopropyl group in the Evans
oxazolidinone chiral auxiliary. The additional 20% enhancement
derives from vibrational deactivation of 1O2 by the C–H bonds
in the proteo derivative Z-1-h8. Thus, for the deutero substrate
Z-1-d8, only classical steric effects operate (ca. 80%), whereas
in the proteo derivative Z-1-h8, both steric factors and physical
quenching (20%) cooperate synergistically to afford essentially
perfect stereocontrol.

To assess the influence of the E/Z alkene geometry on the
diastereoselectivity in the formation of the dioxetane 2 product, we
synthesized the corresponding E diastereomer of enecarbamate
substrate, namely E-1-h8 from the on-hand Z-1-h8.‡ Photooxy-
genation of the enecarbamate E-1-h8 in a manner analogous to
that presented in Scheme 3, gave only one dioxetane product E-2-
h8, as determined by 1H-NMR spectroscopy. The dioxetane E-2-h8

was converted to the diol 4 as before and its diastereomeric purity
determined by HPLC analysis, which revealed only the diol 4-
(R,S) product.‡ To rationalize the observed favored direction of
the 1O2 approach on the enecarbamate double bond, we inspected
the X-ray crystal structures of the related E-1-h4 enecarbamate
(unfortunately, a crystal structure of E-1-h8 is not available) with
a C4–Me methyl group instead of the here employed C4–iPr
substituent (Fig. 1).‡

By inference from the crystal structure of the C4-Me-substituted
enecarbamate E-1-h4 (Fig. 1) to the corresponding C4-iPr deriva-
tive E-1-h8, it is evident that the C3′ configuration dictates the
orientation of the oxazolidinone carbonyl group with respect
to the enecarbamate double bond. In turn, the carbonyl group
controls the direction of the 1O2 approach. As revealed in Fig. 1,
the C4-alkyl group is positioned too far away from the double
bond to interact with the attacking 1O2. Hence, there is negligible
vibrational deactivation by the proteated substituent at the C4

position! Indeed, for the E diastereomer, the carbonyl group
directs the 1O2 approach to the face of the double bond without
the C4-alkyl group.
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Fig. 1 X-Ray crystal structure of the C3′ (R)/(S) epimeric pair of the
C4-Me-substituted E-1-h4 enecarbamate; both C3′ epimers occupy the
same unit cell in the crystal.

In contrast, for the corresponding Z isomer, the structure in
Scheme 1 reveals that the carbonyl group does not play any ap-
preciable role in directing the approaching singlet oxygen whereas
the C4-alkyl group is positioned to interact with the incoming 1O2

molecule and, consequently, the vibrational deactivation by the
C4-alkyl group counts.

Our current study has convincingly demonstrated that stereo-
selective vibrational deactivation, a process that is unique to
photoreactions, may significantly enhance the stereoselectivity
in photooxygenation reactions (1O2). We anticipate that this
new concept of stereocontrol may prove to be general and be
of great promise to facilitate chiral selection in a variety of
phototransformations.
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