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Physical and chemical quenching rate constants were mea-
sured for the reaction of singlet oxygen with oxazolidinone-
functionalized enecarbamates to investigate the role of vibra-
tional deactivation in product stereoselectivity.

Stereocontrol in photoreactions is problematic for photochemists,
chiefly owing to the short lifetimes of reactive species and
intermediates.1,2,3 In an attempt to influence stereoselection, pho-
tochemists have employed a variety of confined media with varying
degree of success.3–7 In spite of some elegant methodologies that
are employed to carry out asymmetric phototransformations,3–7

excited-state stereocontrol in solution presents new opportunities
and challenges to chemists.

Previous investigations in our laboratories have focused on the
reaction of the encarbamates 1–2 with singlet oxygen (1O2) to
form the dioxetane 3. The dioxetane subsequently decomposes
to the ketone 4 (methyldesoxybenzoin, MDB) and the chiral
aldehyde 5 (Scheme 1). In studying the stereoselectivity in the
dioxetane product 3 we employed optically pure enecarbamates.
The enantioselectivity in the MDB product 4 was obtained after
utilizing an epimeric mixture (50/50 R/S-isomers at the C-3¢
position) of the starting enecarbamate.

In exploring this system, several remarkable features came to
light with respect to the approach of 1O2 on to the enecarbamates
1: (a) 1O2 reacts with the Z-enecarbamates (Z-1) to produce
the dioxetane product 3 with diastereoselectivity values >95%
(Scheme 1, top).8–10 That is, >98% of the approaching 1O2 reacted
with one face of the p bond to form one dioxetane product and
<2% reacted with the other face to form the other dioxetane
product; (b) selectivity in both dioxetane product 3, and in the
MDB product 4 is independent of the size of the C-4 alkyl
group (Me, iPr or tBu) of the enecarbamates;11,12 (c) the R/S
configuration of the MDB product 4 is dependent on the C-4 R/S
configuration of the enecarbamates;11 (d) for the Z-enecarbamates,
the selectivity in the dioxetane product 3, is independent of the C-3¢
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Scheme 1 Photooxidative cleavage of Z/E enecarbamates 1–2 with
singlet oxygen (1O2).

R/S configuration of the enecarbamates;10,11,13 (e) the E-isomer
shows a solvent and temperature dependence of stereoselecti-
vity in the MDB product 4, in contrast to the corresponding
Z-isomer.11,14,15

These results raised key questions about the role of the C-4
position and its ability to direct the approach of 1O2—a small
eneophile that is blocked to the same extent by substituents
of varying size.11,12 Consequently, in view of these results, we
hypothesized that factors apart from steric ones were playing a
crucial role in the observed selectivity.11,13,14

To rationalize our observations we envisioned two distinct
quenching processes during the photooxidation of enecarbamates
1–2 by 1O2: the formation of dioxetane 3 (chemical quenching),
and/or deactivation of 1O2 to 3O2, the triplet ground state (physical
quenching). The rate constant for the reaction leading to dioxetane
3 is called the chemical quenching rate constant (kcq) and the
rate constant for deactivation (leading to 3O2) is called physical
quenching rate constant (kpq). The sum of both rate constants is
kq, the rate constant for total quenching (eqn (1)).

kq = kcq + kpq (1)

1O2 is known to be deactivated from its singlet excited state
to its triplet ground state when it encounters C–H bonds.16 For

912 | Photochem. Photobiol. Sci., 2009, 8, 912–915 This journal is © The Royal Society of Chemistry and Owner Societies 2009



this reason, the lifetime of 1O2 is longer in deuterated solvents
than in proteated solvents. This physical quenching phenomenon
is referred to as vibrational deactivation of 1O2 since the coupling
of the C–H vibration with the electronic excited state of molecular
oxygen leads to relaxation of the singlet excited state. To better
understand the role of vibrational deactivation in the observed
high stereoselectivities, we performed a systematic study of the rate
constants for both chemical (kcq) and physical (kpq) quenching.
Because 1 and 2 are electron deficient alkenes, these quenching
rate constants are expected to be relatively low and therefore
challenging to measure accurately. In addition, sorting out the
role of physical and chemical quenching adds another level of
experimental difficulty. In spite of the difficulty of extracting
accurate relative rate constants for the chemical portion of the
quenching, we felt that a careful study of the total quenching would
be important for exploring structure–reactivity relationships.

The chemical quenching rate constants (kcq) were measured us-
ing competitive kinetics. trans-4-Octene was utilized as a standard
(kcq = 4 ¥ 103 M-1 s-1).17,18 The relative ratios of the standard and
enecarbamate peaks were monitored by 1H-NMR spectroscopy
upon reaction with 1O2.12 After determining kcq for 1a (3¢R and
3¢S), these values were used as additional standards for subsequent
measurements.12

Total quenching rate constants (kq) of 1O2 by enecar-
bamates were determined by using a chemiluminescence
method, in which 1O2 was generated by thermal decomposition
of 1,4-dimethylnaphthalene-1,4-endoperoxide.19 Chemilumines-
cence (phosphorescence of 1O2) at 1270 nm was monitored to
determine Stern–Volmer quenching constants by varying the
quencher (enecarbamates 1 or 2) concentration. To convert
the Stern–Volmer quenching rate constants (KSV) into the total
quenching rate constants (kq), the known total rate constant of
trans-4-octene (kq = 1.8 ¥ 104 M-1 s-1)17,18 was used as standard to
calculate t 0, the 1O2 lifetime under our experimental conditions
(eqn (2)).12 After determining kq and kcq for the enecarbamates
experimentally, kpq was derived from these two values using eqn (1).

KSV = kqt 0 (2)

As we had employed a 50/50 epimeric mixture of enecarbamates
at C-3¢ position, the relative rates of photooxygenation, known as

Table 1 Conversion and stereoselectivity in the MDB product 4 upon
photooxidative cleavage of enecarbamates with 1O2 in CDCl3 at 15 ◦Ca

Configuration

Substrate C-4 C-3¢ sa [enhanced MDB enantiomer]

Z(Me)-1a R R/S 1.2 [R]
Z(Me)-1b S R/S 1.5 [S]
E(Me)-1c R R/S 9.2 [R]
E(Me)-1d S R/S 10 [S]
Z(iPr)-2a R R/S 2.2 [R]
Z(iPr)-2b S R/S 1.4 [S]
E(iPr)-2c R R/S 5.0 [R]
E(iPr)-2d S R/S 3.4 [S]

a Data taken from previously published reports: ref. 11, 15, 20.

the stereoselectivity factor (s factor),21 could be derived from the
observed enantiomeric excess (ee) values in 4 based on eqn (3). The
stereoselectivity factor (s), is a quantitative measure (corrected
for the extent of conversion) of the relative reaction rates for the
two stereoisomers in question (eqn (3)). In the present case, the
s factor may be computed for the two-epimeric enecarbamates
[C-3¢(R) and C-3¢(S) epimers] from the substrate conversion and
the MDB enantiomeric excess by using eqn (3).22 In the present
case, k1 is the reactive rate constant leading to formation of
the predominant MDB isomer and k2 the reactive rate constant
leading to formation of the subordinate isomer. A large s value
translates to high enantiomeric excess in the MDB product but
corrected for conversion. From Table 1, it is evident that the s
factor and consequently ee of the MDB products is higher in the
E-enecarbamates than in the Z-enecarbamates. By exploring the
chemical and total quenching rates independently, it would be of
relevance to the relative rates of the individual epimers, as it would
shed light into the factors that control the photooxygenation
process.

s
k

k

C ee

C ee
=

-
- -

1

2

1 1

1 1
=

+ln[ ( )]

ln[ ( )]
(3)

The experimentally measured rate constants are presented
in Table 2. The kpq/kcq values are experimentally the same
for all the entries in the table regardless of alkene geometry

Table 2 Chemical quenching rate constant (kcq), physical quenching rate (kpq) and total quenching rate constant (kq) for photooxygenation of
enecarbamates

Configuration Quenching rate constantsb/M-1 s-1

Substratea C-4 C-3¢ kcq (¥10-3)c kq (¥10-3)d kpq (¥10-3) kpq/kcq scq
f

Z(Me)-1a R R 2.4 43e 41 17
1.3

Z(Me)-1a R S 1.8 44e 42 23

Z(iPr)-2a R R 1.7 26 24 16
1.2

Z(iPr)-2a R S 1.3 24 22 17

Z(iPr)-2b S S 1.6 27 25 16

E(iPr)-2c R R 1.6 23e 21 13
1.8

E(iPr)-2c R S 0.9 20 19 21

a Concentration of the substrates is given in ESI.† b Experimental error within 25–35%; average of 2 or more runs. c Data from ref. 11, determined by
competitive kinetics using trans-4-octene as standard; in CDCl3 at 20 ± 1 ◦C. d CDCl3, 22 ± 1 ◦C; for experimental details see ESI.† e Values obtained
from optical antipode. f scq is the ratio of the chemical quenching rates of the C-3¢ epimers.
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Table 3 Stereoselectivity factors obtained upon photo-oxygenation of
proteated and C-4 deuterated E(Me)-1d in CDCl3

Substrate Temperature/◦C s [enhanced MDB enantiomer]

E(Me)-1d 15 10 [S]a

-15 39 [S]a

-40 71 [S]a

E(Me)-1d(D3) 15 11 [S]
-15 25 [S]
-40 41 [S]

a Data taken from previously published report: ref. 11.

(E vs. Z), the C-4 substituent or the C-4 and C-3¢ R/S config-
uration. The expected differences in physical quenching observed
for the C-3¢ diastereomers are not evident. This, however, does not
suggest the non-existence of vibrational quenching as one of the
stereoselective mechanism in operation in the photoxygenation
of the enecarbamates. The reactive rate constants are low, as
expected, due to the electron deficient alkene double bonds23 in
enecarbamates. It must be noted that when calculations of rate
constants are performed with kq that are one order of magnitude
larger than kcq, then associated inaccuracy undermines possible
conclusions.

As computed in Table 2, the ratio of chemical quenching rate
constants scq (Table 2) is significantly higher for the E enecarba-
mates (scq of 1.8) compared to the corresponding Z enecarbamtes
(scq of 1.2). As the ratio of chemical quenching rate constants are
not corrected for conversion they seem not to correlate with the s
factor computed from ee values (Table 1). Nevertheless, we were
encouraged to see the chemical quenching trend in line with the
s factors computed from the ee values. We could not correlate
physical quenching rates as it is not corrected for conversion. To
overcome this, we took an indirect approach to verify the physical
quenching process and to quantify the vibrational quenching
contribution to stereoselective photooxidation of enecarbamates
(in terms of the ee values in the product) by studying deuterated
and the corresponding H enecarbamates (Table 3).

Deuteration of the vibrationally distinguishing groups allowed
us to investigate vibrational quenching as a stereodifferentiation
mechanism. The C-4 substituents of the E(Me)-1d enecarbamate
(optically pure C-4 substituents and R/S epimer C-3¢ position)
were deuterated and the s values at various temperatures were
compared to the results for its proteated counterpart (Table 3).
Upon inspection of Table 3, it is clear that deuterated and
proteated enecarbamates gave different stereoselectivities under
identical conditions. For example, at -40 ◦C, an s value of 41
favoring the S-MDB product was observed with the deuterated
derivative, whereas an s value of 71 was observed with the
corresponding H-derivative. The differences in stereodifferenti-
ation decreased as the temperature was raised from -40 ◦C to
15 ◦C. At 15 ◦C, almost identical values were obtained for
both the proteated (s = 10) and deuterated (s = 11) derivatives
(Table 3). A rationale for the observation of a nearly doubled
s values at -40 ◦C for proteated enecarbamates compared to
deuterated enecarbamates is needed to quantify the selectivity.
We believe that the difference in the selectivity between the two
derivatives is a reflection of the ability of the proteated derivative
to deactivate 1O2 selectively from one of the stereotopic faces of
the epimeric enecarbamate (C-3¢ epimers) leading to noticeably

different stereoselectivities at a given temperature. As the rate
constants (physical and chemical quenching rate constants) are
dependent on the temperature, one would expect variation with
the reaction temperature. Based on the s values, the difference in
rate constants (physical and chemical) for a given pair of C-3¢
epimers is pronounced at lower temperatures leading to higher
selectivities. At the present time, with our limited experimental
data, we could only speculate about the origin of this difference.
One possibility is the dynamic movement/restrictions involved
leading to conformational changes in enecarbamates would be
temperature dependent. If there is conformational bias towards a
particular conformation of C-3¢ epimers, lowering the temperature
could likely result in a conformation that interacts (chemically
and/or physically) with 1O2 effectively from one C-3¢ epimer than
the other. If sterics alone is involved in determining the extent of
stereoselectivity, identical s values would be expected for both the
proteated and the corresponding deuterated derivatives even at
-40 ◦C. To rationalize the difference, factors apart from sterics
would have to be involved in the stereodifferentiation process
leading to the different stereoselectivities for the proteated and
deuterated derivatives of E(Me)-1d enecabamates. We attribute
the additional stereoselectivity (nearly doubling of the s value in
the case of E(Me)-1d at -40 ◦C; Table 3) obtained in the proteated
enecarbamate to vibrational quenching of singlet oxygen by C–H
bonds. This quenching is more pronounced at lower temperatures.

Thus our investigation has opened an opportunity to quantify
the extent of physical quenching during the photooxygenation
processes in terms of the enatiomeric excess in the photoproduct.
Deuteration of enecarbamates offers a more accessible means of
exploring this stereodifferentiating mechanism in the photooxy-
genation process. Efforts are underway in our laboratories to
quantify the rate constants for the individual epimers of both the
proteated and deuterated enecarbamates to obtain a more direct
evidence of vibrational quenching.
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