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I. Introduction 

In an earlier essay (Oudiz and Sachs, 1984) we investigated the quanti­

tative gains to international policy coordination in a static environment. In 

this paper, we begin to extend the analysis to a dynamic setting. However, 

because of several new methodological issues, this first step is more theoretical 

than empirical. The extension to dynamics introduces three important points of 

realism to the static game. First, the payoffs to beggar-thy-neighbor policies 

may look very different in one-period and multiperiod games, so that the need 

for policy coordination may be different in the two games. Second, it is often 

claimed that governments are shortsighted in macroeconomic planning, and 

support for this view has come from the literature on political business 

cycles. l We should therefore investigate whether international policy 

coordination is likely to exacerbate or meliorate this shortsighted behavior. 

Third, governments act under a fundamental constraint that they cannot bind the 

actions of later governments (or even of themselves at a future date). In 

principle, therefore, optimizing governments must take into account how future 

governments will behave in view of the economic environment that they inherit. 

We study the implications for policy coordination of this inability to bind 

future governments. 

Let us consider these three points in turn. In the static game, 

uncoordinated macroeconomic policy-making is typically inefficient because of a 

prisoner's dilemma in policy choices. Consider, for example, two countries that 

are attempting to move optimally along a short-run Phillips curve. It may be 

that each country will choose contractionary policies no matter what the other 

country selects, though the policy pair (expand, expand) is better for both 
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countries than the non-cooperative equilibrium (contract, contract). As we 

showed in our earlier stQdy, this situation arises naturally under flexible 

exchange rates, since by contracting while the other ·country is expanding, a 

country can appreciate its currency and export some of its inflation abroad. It 

is this beggar-thy-neighbor action that gives rise to the prisoner's dilemma. 

Cooperation, say in the form of a binding international commitment to expand, 

may be useful in moving the countries to the efficient equilibrium. 

The question arises whether the payoff structure in a ffiQltiperiod, or 

infinite-horizon game will look the same. The reason for doubt is simple. 

In almost all macroeconomic models, policies which lead to a short-run real 

appreciation also lead to long-run real depreciation, or at least a return to 

the initial real exchange rate. In this circumstance, farsighted players would 

understand that a short-run beggar-thy-neighbor appreciation is less attractive 

than it looks, since it will be reversed in the long run, at which point the 

country reimports the inflation that it earlier sent abroad. To this extent, 

the beggar-thy-neighbor policy loses its appeal, and the need for coordination 

is reduced. 

The second theme introduced in a ffiQltiperiod setting is the rrvopic 

behavior of governments. In considering public welfare in a ffiQltiperiod game, 

it is natural to consider a payoff of the form: 

Here, u~ is the intertemporal utility of country i as of time zero. U(T!) is 

the instantaneous utility of the country at time t, as a function of a vector 

of macroeconomic targets T~. B is a pure rate of time preference, with B < 1, 
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so that the future is discounted relative to the present. 

In view of the evidence on political business cycles, in which governments 

attempt to manipulate T! in conjunction with upcoming elections, it seems 

natural to suggest that if (1) is the "true" social welfare function, the 

government's social welfare function takes the form: 

where Tg ( T and pg < B. That is, its planning horizon is shorter than the 

econoITlf's, or its discounting of the future is higher. 

In this view, the public is partly a hostage of a self-serving government. 

The policy choices reflect the incumbent government's goals, and not the 

public's. If this is so, we can ask whether international policy coordination 

is likely to improve or worsen this sub-optimal situation. At an abstract 

level, the arguments seem to fallon both sides. Some critics, for example, 

have characterized policy coordination as a cartel of the incumbents, in which 

each policymaker helps the others to manipulate the political business cycle. 

As an example of this, policymakers may have a short-run expansionary bias if 

expansion shows up as output today and as inflation only many years in the 

future. To some extent, the fear of currency depreciation following a 

unilateral expansion keeps this bias in check. That is, the flexible exchange 

rate provides discipline on the shortsighted government. With policy 

coordination, the fear of currency depreciation can be removed by a commitment 

of all countries to expand. In this way, policy coordination may give incumbent 

governments a free hand to undertake overly inflationary policies. 
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On the other hand, we can think of circumstances in which policy 

coordination ties the hand of incumbents, and thus prevents such self-serving 

policies. An international gold standard, for example, might impose discipline 

on governments that would not exist in each country alone. To analyze this 

possibility fully we would have to examine each government's incentive to stick 

with a particular rule, and the extent to which internationally certified rules 

are more or less durable than rules undertaken unilaterally. For example, each 

country on its own could adopt a gold standard. What, if anything, is added by 

a multicountry commitment? 

The third theme introduced in a multiperiod setting is that of "time­

consistency" of optimal plans. Even in circumstances in which the current 

government (or current administration) has the public's interest at heart, its 

ability to maximize social welfare may be limited by its inability to pre-commit 

the actions of (well-meaning) future governments. In these circumstances, the 

current government must choose its optimal policy taking as given the policy 

rules that will be pursued in the future. That is, it must optimize today, 

assuming that future governments will optimize under the assumption that yet 

future governments will optimize, and so on. In general this constrained 

optimization yields a lower level of social welfare than does the case in which 

the government can choose not only its own policies but those of future 

governments as well. 

Many authors, including Barro and Gordon (1983) and Rogoff (1983), have 

given examples in which the inability to bind future policies imparts an 

inflationary bias to the economy. In these examples, wage setters set wages 



-5-

before macroeconomic policy is set. Once the wages are set, policymakers have 

an incentive to expand the economy to reduce real wages, and raise output. Wage 

setters anticipate these policies, and choose inflationary wage settlements in 

anticipation. If the government can pre-commit to avoid inflationary policies, 

the economy can get the same ~ post output levels at a lower rate of inflation. 

Unfortunately, such a pre-commitment is not credible since the government has an 

incentive to renege on it after the wages are set. 

As Rogoff stresses, this time consistency problem may have important 

consequences for international policy coordination. If the inability to bind 

future policies leads to an inflationary bias, international policy coordination 

may further exacerbate this bias by eliminating each country's concern about 

currency depreciation. Thus, even when a sequence of governments within each 

country is trying to maximize that country's true social welfare function, 

policy coordination may make the situation worse rather than better. 

We consider later on several factors that tend to weaken this pessimistic 

conclusion. First, in infinite-horizon games, governments may be able to invest 

in a "reputation" in order to OVercome the time-inconsistency problem (as 

illustrated in Barro and Gordon (1983)). In other words, a government's 

credibility may be judged by its willingness to honor a program laid down by an 

earlier government, so much that it continues the policy rather than 

reoptimizing during its incumbency. We will provide an example of this 

solution to the time inconsistency problem. Second, to the extent that the time 

inconsistency problem revolves around the exchange rate, policy coordination may 

actually eliminate the problem. In examples later in the paper, optimal 
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coordinated policies in our a two-country model turn out to be time-consistent. 

The plan of the paper is as follows. In the next section we set out a 

simple dynamic macroeconomic model characterized by flexible exchange rates and 

perfect foresight on the part of the private and public sectors. In 

Section III, we describe various equilibria in a one-country version of the 

model, to highlight the implications of time inconsistency. Next, in Section 

IV, we describe the various equilibria in the two-country version of the game, 

including the ~elfare gains or losses from policy coordination. Extensions and 

conclusions are discussed in a final section. 

II. ~ Simple Oynamic Macroeconomic Model 

We consider a simple model of the sort explored by Dornbusch (1976). The 

home country produces output Q, at price P, and trades with a foreign country, 

which produces Q* at price P*. The domestic exchange rate E measures units of 

home currency per unit of foreign currency, so that the relative price of the 

home good is P/EP*. Demand for the home good is a decreasing function of P/ZP* 

and of the real interest rate, and an increasing function of Q*. Letting lower 

case variables p, q, and e represent the logarithms of their upper-case 

counterparts, we write demand for home goods as: 

o. = -o(p -e -p*) - a Ii _(pe -p )] + '\'0* 
"0 t t t t t+l t "0 

Here, i is the nominal interest rate, and it - (P~+l-Pt) the home real interest 

rate at time t (P~+l is the expectation of Pt+l at time t). Under the perfect 

e 
foresight assumption, which we hereafter maintain, Pt+l = Pt+l for all t ~ O. 

The money demand equations take the standard transactions form: 



-7-

For convenience, we will invert this equation and write 

with ~ = a/~ and p = l/~. Following Dornbusch, we assume perfect capital 

mobility, so that uncovered interest arbitrage holds: 

(6 ) 

e 
Again, assuming perfect foresight, we solve for equilibria with e

t
+l = et +l 

for all t. 

It remains to specify wage and price qynamics. First, the (log) consumer 

price index (pc) is written as a weighted average of home (p) and foreign 

(p*+e) prices: 

Home prices are written as a fixed markup over wages: 

Finally, nominal wage change, w
t

+
l 

- w
t

' is made a function of lagged nominal 

. h c c d prlce c ange, Pt - Pt-l' output, an output change: 

Note that since w - w is a function of lagged rather than contemporaneous 
t+l t 

price change, the system will display typical Keynesian features, particularly 

the non-neutrality of ~ with respect to contemporaneous and future anticipated 

changes in m
t

• This is the standard presumption in the Dornbusch model that the 
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labor market clears more slowly than the asset markets. 

In the next section, we will introduce corresponding e~uations for the 

second country, in order to construct a two-country model. Here, we focus on 

the one-country case qy making the small-country assumption for the home economy 

that p*, i*, and ~* are given for all t ) O. By doing so, we can write the 

one-country model as a four-dimensional difference e~uation system as in (10):2 

c 
In any given period, Pt' Pt-l' and ~-l are given qy the past history of the 

econoIJU. These are the "pre-determined" variables of the economy. ffit , and 

indeed the entire se~uence of m, is chosen as a policy variable. p~, i~, and 

~ are exogenous forcing variables of the system from the point of view of the 

home economy. 

As is typical of perfect foresight models, an asset price such as e is t 

determined not qy past history but qy forward-looking behavior of asset holders. 

c 
In particular, for given values of P

t
, P

t
- 1 ' ~-1' and given sequences of p*, 

i*, and ~* from t to infinity, there is typically a uni~ue value of et such that 

the exchange rate does not grow or collapse explosively (technically, this 

uni~ue value of e
t 

puts the economy on its stable manifold). Such a uni~ue 

value of e
t 

exists as long as the eigenvalue associated with et in the A matrix is 

is outside of the unit circle, and the remaining eigenvalues are on or within 
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the unit circle. In the simulations reported belov, this condition is alvays 

satisfied. 

The goal of economic policy in our model will be to maximize a social 

welfare function as in (1) or (2), subject to the constraint in (10). The 

assumption that et is always such as to keep the economy on the saddlepoint path 

(or stable manifold) re~uires that economic agents have complete knowledge as to 

the path of future policies. In this sense, the government is like a 

Stackelberg leader with respect to the private sector, choosing monetary policy 

with a view to affecting e
t 

and thereby more basic economic targets, while e
t 

is 

chosen taking as given the future se~uence of m. This is not to say, however, 

that governments can necessarily choose any se~uence of m that they desire. A 

large part of the discussion that follows describes the "admissible" se~uences 

of policies. 

As a concrete example of this model, we will suppose that instantaneous 

utility U(T!) is a ~uadratic function of inflation, TIt = p~ 

deviation of output from full employment~. That is, ut = 
Thus, intertemporal utility is 

(ll ) 

the 

2 
4TI t)' 

Note that 4 is a parameter reflecting the weight attached to R
t 

relative to ~. 

~ is the discount factor. We have written the utility function with an infinite 

horizon, and we will point out shortly some special features of the problem that 

arise with such a formulation. 

We now turn to the optimal policy for m. It may seem straightforward to 
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maximize (11) subject to (10), but as Phelps and Pollak (1968) first explained, 

and Kydland and Prescott (1977) further elucidated, the maximization is Quite 

problematic. Here we sketch the problem, and treat it in greater detail below. 

Suppose that we apply optimal control techniques to the problem of 

maximizing Uo subject to (10), taking as given PO' P~l' Q-l' For simplicity, 

we set p* = i* = a* = 0 for all t ) O. The result of this straightforward 
t t c 

control problem will be an infinite seQuence rnu,m
l

, ••• , denoted hereafter (m)~, 

that maximizes U
O

' Let us write this optimal choice of monetary policy as 

(m) ~. c 
We have already noted that eO will in general be a function of PO' P-l' q-l 

and the entire sequence (m)~. The first step of this sequence is mO' 

Given mo' eO' PO' P~l' and Q-l' we can use (10) to find p~, PO,~. Suppose 

now that at time 1 the policymakers reoptimize, in order to maximize U lsubject 

(10). Once again, a simple control problem will yield a sequence ~,m2"'" now 

denoted as (~)~. In general, m
t 

will not equal m
t 

for t ~ 1, so that the 

government at time 1 will not want to carry on with the optimal plan as of time 

zero. If the government at time 1 is not bound (e.g. by a constitution) to 

carry out lm)~, the earlier plan will be scrapped. 

~s Kydland and Prescott stressed, we cannot simply assume away this 

problem by letting the initial government choose rna, the next choose ~, etc.; 

i.e. by letting each succeeding government optimize anew, using the optimal 

control solution (this is close to what Buiter (1983) proposes, incorrectly we 

believe, as discussed below). The problem is much deeper, for the following 

reason. The choice rna is optimal only under the assumption that it is followed 

by ~,m2"" It has no particular attractiveness given that it will be 

followed by ~ and other m
t 

" m
t 

for t ~ 2. Moreover, the exchange rate eO 
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will be a function not of {nu}, as the original government's solution assumed, 

but rather of the actual m
t 

that will be selected. 

Phelps and Pollak, and Kydland and Prescott, provided the answer to this 

difficulty. Unless the original government can act to bind all future 

governments, it must optimize with the full knowledge that all future 

governments will be free to optimize. A time consistent equilibrium is one in 

which each government optimizes its policy choice taking as given the policy 

rules (or specific policy actions) that future governments will use. With a 

finite time horizon, such an optimization is easy to carry out. Let 

~ represent the inherited state of the economlf in the final period T. In our 

example ~ would be the vector <PT' P~-l' ~-l>. Given xT ' it is easy to find 

the best policy ITT = fT(xT ) that maximizes ~~=TBTUt. At time T-l, the 

penultimate government knows that its successor will follow ITT = fT(xT). It 

is then an easy task to maximize ~~=T_laTUt subject to (10) and the constraint 

~ = fT(x
T

). This second optimization will yield the rule ~-l = fT_l(XT_l )· 

By backward recursion, every government could thereby find a policy rule f.(x.) 
1 1 

that is optimal given the rules that succeeding administrations will follow. 

Such rules will be credible to the private sector (e.g. the asset holders in the 

foreign exchange market) because each government is doing the best that it can 

given the freedom of action of future governments. 

In an infinite-horizon setting, the solution of the time-consistency issue 

is a bit more complex, as we shall soon see. The problem is that there is 

likely to be a multiplicity, perhaps an infinity, of policy rules that have the 

property that they are optimal given that future governments will also choose 
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the rule. There is an embarrassing abundance of time-consistent policies. Not 

only is it hard to find all of these solutions, but it is not necessarily 

straightforward to choose among them. 

In summary, there are typically two types of equilibria in multiperiod 

planning problems. The first type assumes that the initial government can 

pre-commit to an entire sequence of moves, or to a policy rule. For this type 

of problem, optimal control suffices. The second type of problem more 

realistically assumes that each government can make its "move," but cannot bind 

the hand of future governments. It must therefore optimize, taking as given the 

freedom of choice of future governments. Before proceeding to the multicountry 

setting, it is useful to study some more technical aspects of these two 

approaches. 

Pre-commitment Equilibria 

There are two types of pre-commitment equilibria. In the first, the 

government selects an entire sequence {m)~ that by assumption will be carried 

out at all future dates. In the second, the initial government selects a rule 

m = f(x,x , ••• ) that is also assumed to bind all future governments. The 
t t t-l 

first equilibrium is termed an open-loop solution, and the second, a closed-loop 

solution. Both solutions will tend to be time-inconsistent, except in special 

cases, in the sense that future governments will want to deviate from the 

original sequence (in the open-loop case), or the original rule (in the 

closed-loop case), even if they believe that other governments would abide by 

the original plans. 
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We now calculate the optimal open-loop equilibrium in order to pinpoint the 

source of the time inconsistency. Starting with (10), we write the elements of 

the A matrix as a
ij

, the B matrix as bij , and the C matrix as cij (the specific 

values of a
ij

, b
ij

, and c
ij 

are given in the footnote preceding equation (10)). 

In fact C can be ignored under our simplifying assumption that pt = ~ = it = 0 

for t ~ O. Thus 

c 
similar expressions hold for Pt' ~, and et +l • The goal is to choose the 

sequence \ml~ that maximizes Uo in (11) subject to (10). To solve this problem, 

we write down the Lagrangian £ as follows: 

As is well known, ~ '~2 0' and ~3 0 are shadow values which describe how 
1,0, , 

c 
U

o 
is affected by different inherited values of PO' P-l' and q-l. In particular, 

~l 0 = auo/apO; ~2 0 = aUojap~l; and ~3,0 = aUofaq_l· , , 
By analogy, ~4 0 equals aUOfae ; that is ~4 measures the change in , a ,0 

intertemporal utility for a small change in eO. 
c 

Unlike PO' P-l' and q-l' 

however, the policymaker does not inherit eO' but rather determines eO as a 

function of the policies that are selected. Because eO is a policy choice, a 

necessary condition of the optimization must therefore be that aUo/aeO = ~4,O 

=0. At the optimum, ~4t will equal zero at t = O. 
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The time consistency problem arises because along the optimum sequence 

lml~, ~4t will (in general) not always equal zero. (~4t will follow 

a difference equation of the form described in the Appendix). Since ~4t will 

tend to mve away from zero, reoptimization at any t when ~ 4t " 0 would lead to 

a new sequence of m such that ~4t would again start at zero (a necessary 

condition of the optimization). From a technical point of view, the open-loop 

sequence is time consistent if and only if the equation for ~4t can be 

satisfied with ~4 = 0 for all t ) O. If this condition is met, then future 
,t 

governments will choose [ml~ at all dates t even if they are not bound by the 

original government. If the condition is not satisfied, the open-loop solution 

makes sense only if future governments are not allowed to reoptimize. 

Consider a simple illustration using our mdel. We select simulation 

values for the key parameters of the model, as shown in Table 1. The economy 

inherits a ten-Eercent domestic inflation rate, and lagged full employment 

( Le. PO = 0.10 ; P-l 0.0 ; c = P-l = 0.0 ; q-l = 0.0). With a constant exchange 

rate (eO = 0) , CPI inflation will equal ten percent in period zero (i.e. nO = 0.10), 

while a currency appreciation can reduce the initial CPI inflation rate. Given 

our parameter values, the optimal sequence {m}~ is sharply contractionary at 

t = 0, so that output is pushed below zero, with the goal of reducing inflation. 

The real exchange rate Po - eO - P~ appreciates at t = 0, 4.7 percent above its 

long run value, with the currency appreciation helping to export inflation 

abroad. Figure 1 shows the optimal paths of inflation, output, and the real 

exchange rate. (19B4 is taken as t = 0). 

Consider the behavior of ~4 ' as shown in Figure 2. After t = 0, ~4 turns 
,t 
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Table 1. Par~meter Values 

(l = 1.00 

B = 0.75 

y = 0.00 

6 = 1.50 

£ = 0.50 

9 = 0.30 

A = 0.75 

0 = 1.50 

'" 
= 0.10 

<!> 2.00 
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Figure 1. Open-Loop Control in the One-Country Model 
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positive, meaning that an increase in e would raise welfare. From the point of 

view of the government at time t = 3 (1987), for example, the original plan is 

too contractionary, since a currency depreciation would raise welfare. A new 

optimization at t = 3 would lead to a new sequence Im!~, with ~ > ~. 

This is shown in Figure 3, where we superimpose 1m}; and 1m!;. Loosely speaking, 

the initial government, at t = 0, has an incentive to announce a stern set of 

future monetary policies in order to induce a currency appreciation at t = 0, 

and thereby to reduce ~O (which is otherwise very high). Of course, eO can be 

reduced by extremely low un and higher m
t 

for t ) 1, or by more moderate ITU and 

somewhat lower m
t 

for t ) 1. The optimal policy is to opt for moderate un and 

low future m, rather than extremely restrictive m
O

' since the approach with 

restrictive future m achieves the same currency appreciation with a somewhat 

lower loss of initial output, ~. 

Thus, from the perspective at t = 0, it is worthwhile to commit future m to 

low values for the sake of eO' However, from the perspective of future 

governments, eO is a bygone, and m should reflect tradeoffs in the present and 

future, not the past. Thus, by the time a future government assumes office, 

part of the original incentive to keep m low has disappeared, and the new 

optimization in period t consequently yields a higher value of m
t

• 

It is interesting to note that there is a single special case in which the 

open-loop policy is also time consistent, and that is when a = ° in the original 

model (i.e. output is not affected by the real interest rate). In that case, 

~4t = ° satisfies the equation for ~4t derived in the Appendix. 3 From an 

economic point of view, when a = 0, only the exchange rate eO' but not the 
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Figure 2. Shadow Price on the Exchange Rate (~4t) 
In Open-Loop Control 
(one-country model) 
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Figure 3. Reoptimization of Open-Loop Control in 1987 
(Comparison with original solution; one-country model) 
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seqllence of future m, affects ~ amd 1f 0' so that there is no reason to prefer 

one path of m over another as long as they both lead to the same eO' The same 

is trlle about all future et • This property allows the original government to 

specify a path [m} ~ that all future governments will be content to honor. 

The open-loop equilibrium is the best pre-commitment equilibrium available. 

It is sometimes argued, however, that while governments cannot credibly 

pre-commit future governments to a sequence of policy moves, they may be able to 

pre-commit governments to a specific policy rule for m. Such a closed-loop 
-- t 

rule might not be as good as the open-loop reslllt, but it might be better than 

no rllie at all. There is some merit to this argument, as we shall soon see. 

The rule can of course be of varying complexity. We illustrate this case by 

choosing a simple rllle, which links m
t 

to the current state of the economy, as 

described by the vector xt <Pt'P~-l' ~-l>' Such a· rll1e is termed rnemoryless, in 

c . 
that the past history of the economy, in arriving at <Pt,Pt-l'~-l>' 1S not 

permitted to affect m
t

• We simplify further by specifying m as a linear 
t 

c 
function of Pt,Pt-1' and q. : ,,-1 

(13 ) 

Our method of solution is straightforward. A solution of the form (13) is 

guessed. Using (10) and the assumption that eO places the economy on the stable 

manifold, we find Uo as a function of the rule. Implicitly then 

Uo = UO(~O'~1'~2'~3)' Using a standard numerical optimization technique, we 

then proceed to maximize Uo with respect to BO,Bl,B2'~3' to arrive at the 
A • 

c 
+ 82Pt_l + B3~_1' Given our assumed parameter 

values for the structural model, we find: 
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(14) mt = -.038 Pt + 1.027 P~-l + 0.322 ~-1 

Note that this is the optimal linear rule for a given Xo = <PO' P~l' q-1> = 

<0.1, 0.0, 0.0>. For a different starting point, we would find a different rule. 

Time-Consistent Equilibria 

The previous equilibria depend on the unsatisfactory assumption that future 

governments can be bound qy rules made at an earlier date. Some writers have 

suggested that macroeconomic policies must therefore be formulated as 

constitutional rules, in order to bind successfully at a later date. For many 

reasons, including conflicting views about the correct rules, unwillingness to 

tamper with a constitution, and the realization that even constitutions can be 

amended at a later date, there is little likelihood the macroeconomic policy 

will soon be etched in constitutional stone. In practice, therefore, 

governments must operate with the knowledge that future governments have freedom 

to change course and will have incentives to do so, relative to the open-loop 

or closed-loop optimum, even when the future governments share the goals of the 

earlier governments. 

In this circumstance, we can reformulate the policy problem as a game among 

an infinite number of players (i.e., governments), who are identified qy the 

time period in which they act. The initial move is made qy the government at t 

= 0 (hereafter Go), then qy G
l

, and so on. The payoff functions for G
t 

is 

w t i 
Ei=t~ Ut(Tt ), and the move is ~. 

Now, we can think of various types of Nash equilibria among these 

governments. In analogy to the pre-commitment case, we can think of Nash 
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equilibria in which each government takes as given the moves of other 

governments. or Nash equilibria in which each government takes as given policy 

rules of other governments. A Nash equilibrium in moves will be called 

"open-loop." and a Nash equilibrium in strategies or policy rules will be called 

"closed-loop." 

Consider first the case of open-loop Nash equilibrium. Let {ml_t denote 

the sequence of moves before and after. but not including. period t: 

mo.~ ••••• mt_l.mt+l.mt+2' •••• An open-loop Nash equilibrium is a sequence 

{ Nl~ N m O. with the property that for all governments. m is optimal taking as 

given {mNt : I_t 

(15) {mbl~is an open-loop Nash equilibrium if and only if for 

all t. m~ maximizes L:=t~iUi subject to (10) and given {mNl_t • 

In performing the optimization at period t. the government assumes that et 

adjusts to keep the economy on the stable manifold. given the past history of m, 

N N 
the current policy choice mt , and the assumed future path mt +l .mt +2 •••• 

With this definition. the problem with the precommitment equilibrium is 

that the resulting path is not a Nash equilibrium among the infinite sequence of 

governments (this was verified in Figure 3). Taking as given that other 

governments will play rot (the open-loop sequence). only the initial government 

will want its part of the sequence (i.e. mol. For all other governments (in 

general). there will exist a superior choice of policy. 

Now" consider the "closed-loop" version of Nash equilibrium, in which 

we assume that G
t 

plays a rule (or strategy) ft' which maps (xt.Xt _l •••• ) to 
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mt , rather than just a move mt • As before, define the sequence {fl_
t 

as fO' 

fl, ••• f t _l , f t +l , ••• ). Now, we define a Nash equilibrium in this strategy space 

as follows: 

() {fNI~o 16 is a closed-loop Nash equilibrium if and only if for all t, 

mt = f~(Xt' Xt _l ' ••• ) maximizes L:=taiUi subject to (10), 

and gi ven [~I . 
-t 

In general, there will be many such Nash equilibria, some of which (as we shall 

see) are not very desirable. 

As is typical in such circumstances, we further refine the nature of the 

equilibrium to include only Nash perfect equilibria. A strategy sequence Ifl~ 

is said to be a perfect equilibrium if for any history of the economlf from time 

o to t (even histories not resulting from a Nash equilibrium during periods 

o to t), strategies Ifl~ constitute a Nash equilibrium in the sub-game 

from t to co. We now define time consistency: 

(17) [fl~ time consistent if and only if Ifl~ is a Nash 

perfect equilibrium. 

In general, open-loop Nash equilibria, as in (15), will not be perfect 

equilibria. Suppose, for example, that the sequence ~,m2' ••• has the Nash 

property. In most models, including those in our paper, the sequence 

~,~, ••• will not be sub game Nash (starting at period 2), if ~ is set 

differently from~. Thus, from this point on, we restrict our search for 

time-consistent equilibria to closed-loop Nash equilibria, in which governments 

take as given the policy rules of other governments. 

Unfortunately, even the perfectness concept does not eliminate the problem 
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of a multiplicity of equilibria. There will in general be many truly time-

consistent equilibria. To narrow the search, we begin with the simplest case, 

in which mt is a function of the current state xt (= <P~-I'Pt'~-l» 

alone (see Maskin and Tirole (1983) for some justification for restricting our 

search to such "memoryless" strategies). Thus" we are searching for a function 

m = t 
f( X

t
) such that: 

~ i 
mt = f(xt ) maximizes "i=ta ui 

subject to (10) and to the restriction that 

m = r(x.) for all i * t. 
i 1 

(Note that in this case the government at time t does not actually care about 

the rules up to time t, since the past is fully summarized in x
t

). Implicit 

throu~hout is the assumption that e
t 

is always such as to keep the economy on 

the stable manifold. In practice, this means that along with f there is another 

Our strategy is to search for f among the class of linear functions. 

I\lthough we cannot prove that the resulting function is the unique memoryless, 

time-consistent equilibrium, we suspect that it is in fact unique, in view of 

the linear-quadratic structure of the underlying problem. Consider the 

necessary conditions for a time-consistent optimum. 

be a candidate solution (call it the y-rule). Plugging this rule into 

can also determine a unique linear rule e
t 

= hO + hlPt + + h n 
3"t-l 

that keeps the economy on the stable mani fold. Now, Sllppose that these rules hold 

for all t > 1. It is possible to calculate L03 13 tu liS a function of the rule 
t=l t 

and the state of the economy at t = 1, i.e. Xl. T"et us call the value of the 
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utility function Vi(xl }, where VY denotes the dependence of utility on the 

rule y. 

th - ~-At time zero, the 0 government wants to maximize Lt=OS-Ut , which equals 

U
o 

+ BVi(xl} under the assumption that future governments will use the y-rule. 

c 
Note that xl = <PI'PO'~>. Specifically, the initial government solves the 

following: 

Subject to: 

(a) el = hO + hlPI + h2P~ + h3'lo 

(b) PI = all Po 
c + a I2P_I + a13'l_1 + a l 4eo +bll~ 

(c) 
c 

PO = a2lPO 
c 

+ a 22P_I + a23 'l_1 + a24eO + b21~ 

(d) 
c 

'lo = a3lPO + a32P_I + a33'l_l + a34eO + b3l~ 

(e) 
c 

+ a43'l_1 + a44eO + b4lmO el = a4lPO + a42P_I 

( f) U = 
0 

2 2 
-ho +<pw

o } 

(g) c V
y 

given PO,P_I,'l_1 and I 

In this optimization problem, (a) is determined by the candidate y-rule. 

(b}-(e) are the structural dynamic e'luations summarized in (10). (f) is the 

( c c) instantaneous utility function note that Wo = Po - P-I • Finally, (g) defines 

the state of the economy for the initial government. 

The optimization is straightforward. Using (a) and (e) we can write 

eo = (l/a44}[hO + hlPI + h2P~ + h3'lo - a4lPO - a42p~1 - a43'l_l - b4l~l. Now 

using (b), (c) and (d) together with the new e'luation for eO' we have four 
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c 
equations that make eO' PO' ~, and PI linear functions of "D and the 

c predetermined variables PO' P-l , q_lo Let us write this system as: 

(20) eO = dUpo + 
c 

d12P -1 + d13q_l + d14mO 

c c 
d23q_l + Po = d21PO + d22P -1 + d24mO 

~lPO + 
c 

+ d33q_l + d34mO ~ = d32P -1 

c 
+ d43q_l + d44mo PI = d41 Po + d42P -1 

2 2 Now simply impose the first-order condition that d[-(qo+~nO) 

+ SV~(pl,p~,~)l/dmo equals zeroo By direct substitution we have: 

(21) 0 = -2d34(d31PO+d32P~1+d33q_l+d34"D) 

-2$d24(d21PO+d22P~1+d23q_l+d24mO-p~1) 

+B(aV~/aPl)d44 

+B(aV~/ap~)d24 

y 
+B (aV

I 
la~ )d34 

c 
This gives us a linear rule for "D as a function of PO' P-l , q-l and implicitly 

(through VY) the y rule: 
1 

(22) 2 "D = [II (d34 +$d24 ) I [(d34 d31 +$ d24 d21 )PO 

c 2 2 
+ (d34d32+$d24d22)P_l + (d33+$d23 )q_l 

+ 1/26(aV~/apI)d44 + 1/2B(avi/ap~)d24 

+ 1/2B(aV~/a~)d341 
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Under our assumptions, the partial derivatives of vi are linear functions of 

PO' P:l' and q-l (though not easy to write down analytically!). Thus, mO is a 

c 
linear rule in PO' P-l' and q-l: 

As long as (23) is the same as the Y rule, we have found a stationary, 

time-consistent rule. That is, for 60 = YO' 61 = Yl , 02 = Y2 , 6
3 

= Y
3

, the Y 

rule is validated as a time-consistent policy. Starting at ~ period t and any 

state t, the tth government will choose the Y rule given that all future 

governments will make that choice. 

In general, the time-consistent rule must be found numerically (see Cohen 

and Michel (1984) for an elegant treatment of the one-dimensional case for the 

state vector x, for which an analytical solution is found). To do so, we start 

T t 
with a finite-period problem, in which Lt=OB ut • It is then easy to find the 

opt imal final period rule lllr = fT (XT) • Gi ven f
T

, f
T

_
l 

is readily found by the 

type of backward recursion Just described. For each T, we can readily compute 

T Denote this rule as fO(xO) to denote the dependence of the rule on the 

periods remaining. Then it is a simple matter to find the limiting value of 

The rule f(xO) = lim f;(X
O

) can then be verified directly to 
T+-~ 

have the time-consistency, Nash equilibrium property for the infinite-horizon 

game. We provide details of this method in the Appendix. 

Using the parameter values described earlier, the time-consistent rule is 

calculated to be: 

(24) c 
mt = -.032 Pt + 1.032 Pt-l + .2,5 ~-l 

As is shown in the Appendix, the open-loop optimal policy can be written as a 
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linear function of the state variables and ~4 : 
--- t 

(25) 
c 

mt = -.019 Pt + 1.019 Pt-l + .272 ~-l + .389 ~4t 

Starting, as before, with 10 percent inflation, we can compute the path of output 

and inflation for the time-consistent policy, for comparison with the open-loop 

pre-commitment e~uilibrium. In Figure 4a, we compare the inflation performance 

in the two cases; in Figure 4b, we compare the exchange rates; and in Figure 4c, 

we compare the output paths. We have already seen that the open-loop control 

holds future governments to an over-contractionary policy relative to the one 

that they would select upon reoptimization. Since the time-consistent policy 

explicitly allows for (expansionary) reoptimization in the future, it is 

not surprising that the real exchange rate is less appreciated in the time-

consistent (TC) case than in the open-loop (OL) case. Simply, agents recognize 

that future governments will select more expansionary m, and e
t 

is an 

OL T 
increasing function of the entire sequence of m. Thus, nO < TIO' via the 

exchange rate effect. 
OL TC. 

In general, ~ < ~t 1n the early periods, as 

governments in the OL case pursue a steady, contractionary policy. After a 

certain period (shown as t in Figure 4c), the ine~uality is reversed. Both 

policies reduce the inherited inflation to zero in the long run. 

Before turning to a welfare ranking of the various policies, we must note a 

key feature of the disinflation process (pointed out earlier in Buiter and 

Miller (1982) and elsewhere). The price e~uation is: 

exchange rate. Thus, 

p*+e -p ) is the real 
t t t 
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Figure 4. A Comparison of Open-Loop and Time-Consistent Policies 
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Suppose an econo~ inherits an inflation rate of ~O = PO - P-l' with r_l = q-l = O. 

By simple forward integration of (26) from t = 0, we have 

(27 ) 

Now, for all of the equilibria so far considered, Pt+l - Pt equals zero in the 

long run (i.e. inflation is eliminated), r
t 

returns to zero (i.e. no long-run 

change in competitiveness), and ~ returns to zero (i.e. long-run full 

employment) • Thus, taking limits of (27), we 

(28) 

All policies have the same cumulative output loss, no matter what is the time 

path of exchange rates, money, etc.! Thus, the welfare issue is always one of 

timing, rather than the overall magnitude of lost output. 

On purely logical grounds, we can rank the welfare achieved by the three 

policies so far studied: open-loop control, closed-loop control (with 

pre-commitment), and time-consistent control. The open-loop control is clearly 

first best, since both of the other solutions reflect the same optimization, but 

under additional constraints. The closed-loop, linear feedback rule also must 

produce higher utility than the time-consistent rule. Both the linear rule and 

time-consistent solution choose m
t 

as a linear function of x
t

; the linear rule 

is chosen as the best among this class of functions, so in particular it is 

better than the time-consistent rule. Thus we know that U~L > U~L > U~C. In 

general, the inequalities will be strict, though we have already noted special 

cases (e.g. a = 0) in which all of the policies are identical. 
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Buiter (1983) has recently proposed an alternative strategy for finding a 

time-consistent linear rule (we describe his approach at length in the 

appendix). His reasoning is as follows. Consider the open-loop control 

solution, with shadow prices ~l' ~2' and ~3 on the state variables, and ~4 on the 

exchange rate. At t = 0, the initial government chooses policies so that 

~4 0 = O. For t > 0, we know that ~4 t will tend to deviate from zero. Each , , 
government in period t would like to reset ~4 t = O. , 
therefore, that a time-consistent solution is found qy 

Buiter proposes, 

assuming that ~4 
,t 

_ 0 

for all t, and dropping the open-loop dynamic equation for ~4 • When this 
,t 

procedure is followed, we obtain the following linear rule: 

(29) mt = .237 Pt + .763 P~-l + .229 ~-l 

There are two counts against this proposed solution. Most important, 

it is simply not time consistent. If all governments for t ) 1 adopt the Buiter 

rule, the government at t = 0 would not choose this rule. ~ following the 

procedures described earlier (for calculating the best rule at t = 0 for a given 

rule at t ) 1) we find that the initial government would choose: 

The logic underlying the Buiter solution seems problematic as well. The 

merit for a government to choose ~4 = 0 comes if the sequence of m 
,t 

corresponding to ~ 4 t = 0 will in fact be carried out qy future governments. , 
But, qy construction, each succeeding government alters the chosen sequence of 

m. There is simply no attraction to choosing ~4,t = 0 if the government knows 

that its plans will not be carried forward. The private sector understands this 

point perfectly, qy setting e
t 

to correspond to the actual sequence of m rather 
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than to the sequence planned by each government. In a nutshell, Buiter's 

government is naive in assuming that future governments will carry out its 

open-loop optimum, at the same time that the private sector is completely on top 

of the policy-making process, and knows that future governments will reoptimize. 

Reputation and Time-CDnsistency 

In the previous section we simplified our search for a time-consistent 

policy to "memory less" rules. Such rules make m
t 

a funct ion of the 

contemporaneous state vector x
t

' but not of the past history of x and m. Many 

policies in the real world depend on the history of a game as much as the 

current state. In competitive environments, for example, aggressive behavior by 

one player at time t-l might bring forward retaliation by others at period t, as 

in "tit-for-tat" strategies. Game theorists have long understood that such 

history-dependent strategies can help competing players to achieve more 

efficient outcomes than those obtainable from memoryless strategies alone. 

It turns out that similar complex strategies can help a sequence of 

governments to achieve a better equilibrium than the one obtained by the 

memoryless rule "t = f(X
t

). Consider a compound rule of the sort: 

(31) (a) Government t chooses its policy according to m
t 

= g(x
t

), as long as 

all governments j < t have also selected policy this way; 

If any government j < t selects m " g(x ), then government t selects 
j j 

m
t 

= f(X
t

), where f is the memoryless, time-consistent rule. 

Suppose now that the rule g(x
t

) is better than f(x
t

) in the sense that if all 
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( 
g f 

governments t ) 0 choose g Xt ) they achieve utility U
t 

> U
t

• Also, suppose that 

g(Xt ) itself is not time consistent in the sense of (19): If all governments 

t )1 are known to choose g(x
t
), it is not optimal for the government at t = 0 to 

select g( xO) • 

The surprising result is that while g(x
t

) is not time consistent, a 

compound strategy like (31)(a)-(b) can be time consistent with the result that 

all governments end up playing g(x
t
), leading to higher social welfare. In the 

memoryless time-consistency problem, each government takes as given the choice 

of policy rule followed ~ future governments. If future governments are going 

to choose m
t 

= g(x
t

), the current government may have no particular incentive to 

choose g. With a compound rule as in (31), the government at time t knows that 

it affects the policy rule selected ~ future governments. It takes as given 

the two-part decision mechanism (a)-(b), but it recognizes that if it is the 

first government to deviate from g(x
t

), it will cause all future governments to 

choose f(X
t

) instead of g(x
t

). Since Ug 
> Uf ~ assumption, this deviation from 

g(x
t

) imposes a cost, which deters the government from deviating from g(x
t

). 

Thus, each government operates under a "threat" that future governments 

will revert to f(x
t

) if the current government fails to play m
t 

= g(x
t

). Game 

theorists have long recognized that such a threat mechanism is viable only if 

the reversion to f( X
t

) is credible. For example, suppose that the rule is "let 

money growth obey the open-loop strategy or else each future government lets 

money grow ~ one million percent." If every government takes it ~ given that 

future governments hold this rule, then money growth will indeed obey the 
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open-loop strategy (governments would seek to avoid the hyperinflation that they 

fear would otherwise ensue).A true intertemporal Nash equilibrium is obtained, 

in which the open-loop sequence is carried out by every government. The problem 

here, of course, is that the threat of hyperinflation is not rational. Surely, 

if any government does violate the open-loop rule, the next government will not 

exercise the threat. Knowing this, no government really has an incentive to 

persist in the open-loop path. 

Game theorists therefore restrict the threats to actions that would indeed 

be carried out if deviations from g{x
t

) occur (even if, as in the example, the 

threats need never actually be carried out). It is here that the assumption of 

perfection of equilibrium becomes important. In the hyperinflation example just 

cited, not all subgames are Nash, and thus the proposed equilibrium is not 

perfect. To see this, suppose that Go deviates. Even if G
l 

assumes that all 

future governments will play the hyperinflation threat, it is not optimal for 

government 1 to play the threat. Thus the subgame in which government 0 

deviates, and all G
t 

(t ) 1 ) let m grow by 1 million percent per period, is not 

a Nash equilibrium. G
l 

can do better unilaterally, taking as given the actions 

of other G
t

• 

As long as the reversion is to f{x ), i.e. the threat is to return to the 
t 

time-consistent rule, the threat is credible. After all, if a government 

believes that all future governments will play f{x ), it is optimal for the 
t 

government itself to play f{X
t

). Every subgame consisting of the infinite 

sequence of governments playing f(X
t

) is therefore a Nash equilibrium. 

Now we argue that by this mechanism the sequence of governments can sustain 
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any linear rule mt = 1(xt ), as long as the utility from this rule is higher than 

the utility from the memory less time-consistent rule for any xt ' We want to show, 

therefore, that the following strategy for each government constitutes a perfect 

Nash equilibrium, in which ~ = 1(Xt ) is always played. 

(32) (a) Each government chooses m
t 

= t(xt ) as long as all governments 

j < t have also selected this rule; 

(b) If any government j < t selects a different m
t

, then all governments 

t select m
t 

= f(Xt ). 

Now let us examine the incentive of any government to deviate from mt = 

1(X
t

). It knows that all future governments will then play f(Xt ). But knowing 

that all future governments will play f(X
t

), it is optimal for the government in 

question to choose ~ = f(xt ) as well, ~ the definition of f. In other words, 

if a government is going to deviate, the best deviation is simply to revert to 

f(X
t

) immediately. Thus, the cost of defecting from the m
t 

= 1(X
t

) rule is to 

revert immediately and permanently to the m
t 

= f(x
t

) rule. Since utility is 

higher under 1 than f, there is never an incentive to deviate from 1. The 

equilibrium is perfect, since in any subgame in which a defection from 

m = 1(x ) has occurred, it will be a Nash equilibrium for all governments to 
t t 

revert to f(X
t

). 

For the case 6 = 0.0, we have found a rule m
t 

= 1(Xt ) that has the property 

that U~(Xt) ) U~(Xt)' and thus have verified that such reputational equilibria 

exist in our model. With 6 = 0, and all other parameter values as in Table 1, 

the time consistent rule is: 
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The following Mlle has higher utility for all x
t

: 

mt = t(xt ) = -.185 Pt + 1.185 P~-l 

The loss functions corresponding to these Mlles are: 

u (x ) = -(-)x 
f 1 ,[ 1.726 

t 2 t -1.726 

1 [ 1.725 
= -(;:slx' 

t -1.725 

-1. 726} x 

1. 726 t 

-1.725} 

1. 725 
X
t 

= -x',f x 
t t 

Since sf_ st is positive definite, we have for all xtthat 

U
t _ Uf '( f t) = xt S - s x

t 
> O. 

We have not found such an example for 6 > 0.0. 

In an important sense, then, the time inconsistency problem is exaggerated, 

in that many "pre-commitment" equilibria can probably be sustained even in 

situations where actions of future governments cannot be bound. The memory less 

time-consistent equilibrium is the lower limit of what can be obtained by a 

sequence of governments, not the only outcome. We should stress, however, that 

time consistency does impose costs, since the first-best, open-loop strategy 

almost surely cannot be sustained as a perfect equilibrium. The reason is as 

follows. Suppose that the sequence of governments pursues the open-loop solution 

under the threat of reversion to m
t 

= f(X
t

) if it ever violates the open loop Mlle. 

We know that it will follow the sequence {ml~, to which corresponds a sequence of 

states, denoted {xl~. At each t, we may calculate the utility of continuing 
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with the open-loop sequence, ~L(Xt)' with the utility of reverting to 

the time-consistent equilibrium, U~C(Xt). The threat of reverting to f will 

continue to work only when ~L(Xt) ~ U~C(Xt). Hovever, at some point this 

equality is reversed, and the government at that date actually prefers to revert 

to the time-consistent equilibrium. Knoving that such a date vill be reached, 

earlier governments will also know that the open-loop path cannot be sustained. 

This phenomenon is shovn in Figure 5, Where at each t, we OL(.) UTC(.) graph Ut xt - \ ' 

with the x
t 

calculated along the open-loop path. As long as UOL(x ) _ UTC(x ) 
t t t t 

is positive, the government at t does not have an incentive to deviate. At 

time t (here 19B7), the government prefers to revert to the time-consistent 

solution. 

III. Policy Coordination in the Tva-Country Model 

The first part of the paper has dealt vith economic policy in a single 

economy. We now extend the same set of techniques to a twa-country setting. 

The goal is to compare "non-cooperative" equilibria (NC), in which each country 

optimizes while taking as given the policies abroad, with "cooperative" 

equilibria (C), in which binding commitments can be made between the two 

countries. Formally, we treat the cooperative case as one in which a single 

controller chooses the policies of the two countries. As in the early section, 

we must treat two separate types of equilibria: (1) the pre-commitment case, in 

which the two countries (in NC) or the single controller (in C), can credibly 

pre-commit to a rule or to an infinite sequence of actions; and (2) the 

time-consistent case, in Which no pre-commitment in future periods is possible. 

We turn first to the pre-commitment case. 
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Figure 5. The Cost of Reversion to Time 
OL A TC A 

rUt tXt) - Ut (Xt )] 

(One-country model) 

a 
Consistent Control 
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a 
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Note that the y-axis has been adjusted by a multiplicative factor for 
graphical convenience. 
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Open-Loop Control and· Policy Coordination 

The open-loop case is most easily dealt with. We. first append a symmetric 

foreign-country model to the home-country model just discussed. The model is 

shown in Table 2. In the NC solution, each government at t = 0 solves for an 

optimal sequence of monetary policies taking as given the sequence selected from 

abroad. In the C solution-, a single controller chooses {m} ~ and {m*l~ to 

maximize a weighted average of intertemporal utilities at home and abroad. In 

view of the symmetry assumed between the countries, {ml~ will equal {m*l~ as a 

feature of both solutions, with the adjustment paths at home and abroad identical. 

The key result is that non-cooperative control leads to over-contractionary 

anti-inflation policies relative to the social optimum. Both countries are made 

better off by a coordinated policy of less rapid disinflation. 

In general, the dimensionality of the control problem is too high to 

analyze the NC case analytically. An important special case, however, allows us 

to establish analytically the key features of the NC versus C solutions. Since 

the findings are insightful, we begin with that special case. In particular, we 

first assume that aggregate demand and money demand are not interest sensitive 

(0 = £ = 0 in the original model). This simplification allows us to determine 

e as a function of the current state vector together with m
t 

and m*, rather 
t t 

than as a forward-looking variable dependent on the entire future sequence of 

policies. Also, to reduce further the dimensionality, we set e = 0, so that 

wage change depends on the level of output but not its lagged rate of change. 

Denoting the real exchange 

+ (l-A)r , and n = pc _ pc = 
t t t t-l 

c 
rate as r t = pt + e t - Pt' we can write Pt = Pt 

(Pt-Pt-l) + (l-A)(rt-rt _l ). Therefore, from the 



Table 2. Two-Country Model 

Aggregate Demand 

Money Demand 

m* 
t P~ = a~ 

Consumer Price Index 

£1 

Ei* 

P~ = APt + (l-A)(pt+et ) 

Pt
c* = AP* + (l-A)(p -e ) t t t 

Domestic Price Level 

Nominal Wage Change 

(w -w) =" + "'Q. + e (q -q ) t+ 1 t t ~ "'t t t-l 

Inflation 

Exchange Rate 

-40-
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wage equation, and the fact that Pt = wt ' we have wt +l = wt + (l-A)(rt+l-r
t

) 

+ ~~. Note from this expression that inflation accelerated when r
t

+
l 

> r
t 

or 

~ > O. In other words, a real depreciation between periods t and t+l causes 

inflation to accelerate, basically because real import prices rise. Carrying 

out the same manipulation for the foreign country yields W~+l = w~ - (l-A) 

(rt+l-rt ) + ~~. Note that a real depreciation at home causes inflation to 

fall abroad, while an appreciation at home causes foreign inflation to rise. 

Here is the nub of the coordination problem: each country may have an incentive 

to contract the economlf in order to appreciate the currency and thereby export 

inflation abroad at the expense of the other country. Since the exchange rate 

effects are bound to cancel out if each country chooses contractionary policies 

to appreciate its currency, a coordinated policy can avoid the contractionary 

policies, to the mutual benefit of both countries. 

It only remains to determine r before solving for the two equilibria. 
t 

Subtracting the foreign aggregate demand schedule from the home schedule we 

find: 

(33) a = (1+y)/20 > 0 

From (33), we see that the key to a real appreciation is to be more 

contractionary than one's neighbor. The effort towards contraction leads to the 

inefficiency of the non-cooperative outcome. 

In any period, Pt and P~ are predetermined variables, so that the choice 

of ~ and m~ fix ~ and ~ respectively, in view of the money demand schedules. 

Thus, we may think of the policy authorities as controlling ~ and ~ directly, 
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and then use the sequences {~l~ and {q*l~ to find the paths of prices and 

the policies mt and ~ as Pt + ""t and P~ + a~. 

We now write the home country's optimization problem in canonical form. At 

any moment, there are two state variables, Pt and P~-l' and we write the 

dynamic system in terms of these states: 

[ 
P~+l J = [2 -1 ] [P~ ] + [" (l-y) + ljI] 
Pt 1 0 Pt - l ,,( l-y ) 

Note that ~ is the control variable, and ~ is an exogenous forcing variable 

from the point of view of the home country. The objective function is again 

a discounted sum of quadratic loss functions in "t and 1f t: 

We set up a Lagrangian £ and take first-order conditions in the standard 

way (note that ~lt is the co-state variable for Pt , and ~2t for P~-l)' 

(36) £ = -l/n~=o~t{~ + ~1(Pt-P~_l) + "(1_Y)(~_~)J2 

+ ~ltl2pt - P~-l + ljI"t + "(l-Y)(~-~) - pt+1J 

+ ~2tlpt + "(l-Y)(~-~) - P~J 

First order conditions are: 

C£/C"t = 0=> a. + ~"(l-Y)l(p _pc) + ,,(l-y}(a-a*)J 
" t t-l " " 
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af/a~lt = 0 => Pt+1 = 2pt - P~-l + "''it + a(l-y )('it-'l't) 

a£/a~2t = 0 => P~ = Pt + a(l-Y)('it-'l't) 

ailap~_l = 0 => -"d(Pt-P~_l) + a(l-Y)('it-'l't)] - ~lt - ~2t-1/~ = 0 

We now invoke a sleight of hand. The foreign country is carrying out an 

identical optimization, which qy symmetry must yield 'it = 'l't. Without specifying 

the foreign country's problem, we simply invoke this symmetry condition as a 

property of the equilibrium, in order to simplify the first-order conditions. 

C C C c 
Note that when 'it = 'l't' Pt equals Pt' so that n t = Pt - Pt-1 = Pt - Pt-1. 

Using these facts, we rewrite the first-order conditions as: 

(37) ~lt['" + a(l-y)] + ~2ta(l-Y) + ~a(l-y)nt + ~ = 0 

2~lt - ~lt-1/~ + ~2t + ~nt = 0 

~1 t + ~2t-1/~ + ~n t = 0 

n - n - o/Q. = 0 t+1 t -,; 

By direct inspection of (37)(b) and (c), we can see that the system will satisfy 

~2t = -~lt·4 We now make that substitution and also substitute for 'it' to write 

a 2x2 system in ~lt and n
t

: 

~lt 
= 

1 - o/a(l-Y)~ n
t 

As long as ~ < [l-o/a(l-y)~I, this system has a single root within the unit 

circle and a single root outside the unit circle (the condition is sufficient, 

though not necessary). 5 Denote the stable root as AN (the superscript N 
1 
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denotes non-cooperative case). Thus, the dynamics of inflation are: 

(39) N 
"t+l = Al"t 

Starting from an inherited inflation rate "0' the two economies converge to zero 

N N inflation, with a mean lag of Al/(l-A
l

) years. 

Now let us consider the cooperative case. Here, a single controller 

chooses ~ and ~ to maximize an average of utilities in the two countries. 

Since the countries are identical, we may assume simply that the controller 

maximizes domestic utility subject to the constraint that ~ = ~ for all t. 

With this constraint, the inflation equation is " = "t + 1jIQ.. The 
t+l "'t 

Lagrangian for the single controller problem is therefore: 

(40) 

The dynamic equations for the first-order conditions of (40) are: 

(41) 

Note the relationship between (38) and (41). The cooperative dynamics are 

found qy setting a = 0 in (38). a is the parameter which measures how large a 

real appreciation is achieved for a given contraction of q relative to q*. It 

thus indicates the importance of the ''beggar-thy-neighbor'' phenomenon, in which 

each country (vainly) attempts to keep output lower at home than abroad in order 

to export inflation. Since the single controller recognizes the futility of 

each country, in a closed sYstem, trying to export inflation, the controller 

simply sets a = O. That is the root of the gain to cooperation. 
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The matrix in (41) again has a single stable root, this time denoted 

,C 6 Th "1' e dynamics of inflation are now 

(42) :AC1I 
"t+l 1 t 

It is a simple matter to prove that Ai > A~ for a > 0, so that cooperative 

control results in slower disinflation than non-cooperative control.1 Figure 6 

illustrates the inflation and output paths of the home econornw under cooperation 

and non-cooperation. The faster disinflation under NC is clearly brought about 

by increased unemployment (i.e. reduced output) in the early years of the 

disinflation process. Remember from our earlier discussion that the cumulative 

output loss is the same for all paths that asymptotically reduce inflation to 

zero. 

Welfare Aspects of Cooperation 

Assuming that governments are pursuing appropriate objectives (e.g. that 

they use the "right" discount rate), it is easy to show that the cooperative 

path, with less extreme disinflation, dominates the non-cooperative path. A 

simple argument is as follows (direct computation would also make the same 

point). Define the set of pareto efficient (E) pairs of sequences I{q}~, 

{q*}~]E that have the property that Uo is maximized given u~, and U~ is 

maximized given U
O

' It is well known that the set of pareto efficient 

pairs may be found by maximizing wUo + (l-w)U~ with respect to {q}~ and {q*}~ 

for all weights wEIO,l]. Every pareto efficient sequence pair maximizes some 

weighted average of Uo and UO' and every sequence pair that maximizes 

wU
O 

+ (l-w)UO is pareto efficient. 
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Figure 6. 

A Comparison of Non-Cooperative and Cooperative Control 
(Simplified two-country model) 
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The cooperative solution, by construction, gives the sequence pair 

corresponding to w = 0.5 (i.e. equal weighting of the countries) • It is the 

unique solution to the problem. Since the non-cooperative solution also 

yields a symmetric equilibrium, with Uo = ug, it must be that ugc < C 
UO' since 

otherwise the non-cooperative solution would pareto dominate a known pareto 

efficient solution. 

We mentioned in the introduction that some critics of cooperation are 

dubious of the assumption that governments maximize the proper social welfare 

function. In particular, plausible arguments have been made that the 

government's discount rate ~G is less than the "true" ~. If so, cooperation 

might exacerbate rather than meliorate social welfare. The point is that 

cooperation allows governments to pursue a more "leisurely" disinflation. 

However, short-sighted governments might already be postponing the necessary 

disinflation, in return for short-run gains to output. In an already distorted 

policy environment, cooperation might further retard the necessary adjustment. 

To examine this view, we computed the open-loop cooperative and 

non-cooperative intertemporal utilities for a range of ~G, holding fixed the 

"true" ~ at (1.1)-1 (we use the simplified version of the two-country model for 

these calculations). For each ~G, we calculate the two equilibria and then 

evaluate the social welfare of the resulting paths using ~ = (1.1)-1. As seen 

i 
QG • • • from Figure 7 non-cooperation dominates cooperat on when" lS sufflclently 

G . smaller than ~, and cooperation dominates non-cooperation as long as ~ lS 

"close enough" or somewhat greater than ~. G Of course, for any ~ =~, open-loop 

cooperation will necessarily be superior to open-loop non-cooperation. It is 
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Figure 7. The Gains from Cooperation with Myopic 
a 
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not the level of 6G but the difference of 6G and 6 which might cause cooperation 

to be welfare reducing. 

Policy Coordination and Time Consistency 

We now leave the case of open-loop control and return to the more realistic 

assumption that governments cannot bind their successors. In the 

non-cooperative setting we are looking for an equilibrium characterized Qy rules 

m = f(x ) and m* = f*(x ) that have the following property: for the home 
t t t g 

country, f is optimal at time t given that all future governments at home play f 

and that abroad the contemporaneous and all future governments play f*; while 

for the foreign country, f* is optimal under the analogous conditions. Note 

that x
t 

is the state vector including predetermined variables of both the home 

d f . I rti 1 = <p p* pc pC* Q. Q~ > an ore1gn economy. n pa cu ar, xt t' t' t-l' t-l' "-1' "-1 . 

There are two key differences with the open-loop model previously 

described. First, of course, is the inability of GO and G~ to bind the 

entire sequence of future moves. Second is the assumption that each government 

takes as given the foreign rule rather than the foreign actions, so that optimal 

moves today take into account the effects of today's actions on tomorrow's state 

vector, and thus on the foreign governments' moves. It would be possible 

instead to calculate a time-consistent multicountry equilibrium in which each 

government takes as given the sequence of future moves (i.e. open-loop time 

consistency), but we have not pursued that choice here. 

As in the one-country case, the time-consistent equilibrium is solved as 

the limit of a backward recursion. (For the calculations that follow, we revert 
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to the complete two-count~ model, with non-zero values of cr, E, and e). Using 

the parameter values of the one-count~ model, we arrive at the following rules: 

(43) mt = -.286Pt + .953 P~-l - .132 P~ + .246 P~-l + .23 ~ + .072~ 

Figure 8 compares the paths of the home econo~ output for the non-cooperative 

open-loop and non-cooperative time-consistent e~uilibria. As in the one-country 

model, output losses are smaller in the early periods for TC than OL. The 

inability to bind one's successors causes a bias towards more expansiona~ 

policies and thus more rapid inflation, relative to the open-loop solution. 

Significantly, it is no longer possible to rank social welfare under 

open-loop versus time-consistent policies (for non-cooperative e~uilibria), as 

it was in the one-count~ model. Remember the argument in the one-count~ 

context. Open-loop control, by definition, picks the optimal se~uence; 

time-consistent policy, on the other hand, reflects an optimization under 

additional constraints and therefore is inferior to the open-loop control. In 

the two-count~ setting, the same logic does not apply. The open-loop se~uence 

is no longer the optimal se~uence. Indeed we have seen that open-loop, 

non-cooperative control is typically pareto inefficient. There is no 

presumption that adding constraints to the optimization will now lower welfare, 

particularly since constraints are being added abroad as well as at home. It is 

true that the home country can no longer pre-commit to a se~uence of moves, but 

nOW neither can the foreign count~. It is true that the home count~ prefers 

an open-loop to time consistent policy assuming that the other count~ is fixed 

at one or the other. With the other count~'s policy fixed, an open-loop policy 
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Figure 8. A Comparison of Non-Cooperative Control: 
Open-Loop versus Time-Consistent Solutions 

(Two-country model) 
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at home can exactly replicate the time-consistent sequence, and presumably it 

can do it better. 

There are good economic reasons to believe that the time-consistent policy 

may actually dominate the open-loop solution in the non-cooperative game. The 

open-loop policy, we know, is over-contractionary relative to the efficient 

equilibrium. Moving from"open-loop control to time consistency causes policy to 

become less contractionary and therefore pushes the economy towards the 

efficient equilibrium. 

NOw, let us consider the time-consistent cooperative equilibrium. Here we 

imagine that a single controller each period sets m and m*, but now subject to 

the time-consistency constraint. The single cooperative controller must 

optimize while taking as giving the actions of single cooperative controllers in 

later periods. We should like to determine whether time-consistent cooperation 

is superior to time-consistent non-cooperation. As we have noted in several 

places Rogoff (1983) has devised an ingenious example where cooperation reduces 

welfare. Simply, time-consistency leads governments to be over-inflationary 

relative to the open-loop pre-commitment equilibrium. Cooperation further 

exacerbates this over-inflationary bias by removing each government's fear of 

currency depreciation. 

Interestingly, our results run counter to Rogoff's: cooperation is 

superior in welfare terms to non-cooperation. While the cooperative solution is 

more inflationary (see Figure 9), as we might expect, it is not overly inflation­

ary in a welfare sense. The less rapid disinflation merely corrects the 

contractionary bias of the non-cooperative case. The key point here is as 
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follows. In the symmetric country model, the single controller always adopts 

symmetric rules so that e
t 

= 0 for all t. Since the exchange rate is the sole 

potential source of time inconsistency in this model, and since it is always 

equal to zero, the cooperative time-consistent solution is also the open-loop 

cooperative solution. For a cooperative controller, there is no 

time-consistency problem in our model (since the countries are symmetric). The 

single controller can reach the first-best optimum solution for open-loop 

cooperative control. 

ln sum, we have shown examples where cooperative control is more 

inflationary than open-loop non-cooperative control and time-consistent 

non-cooperative control. In both cases, the cooperative solution is welfare 

improving relative to the non-cooperative equilibrium. In view of Rogoff's 

example, it will be difficult indeed to set out general principles on the gains 

from cooperation under the constraint of time consistency. Comparing our 

example with his, the key difference seems to rest on the source of the 

time-consistency problem. In Rogoff's case, the problem arises from 

forward-looking wage setters and cooperation exacerbates the problem. In our 

model, the problem arises from forward-looking exchange market participants, and 

cooperation eliminates the problem. 

Conclusions 

This study represents work in progress on the gains to coordination in 

dynamic macroeconomic models. Our focus has been purely methodological, and 

preparatory to attempts at a quantitative assessment of international policy 



-55-

coordination. The methodological issues arise from the wide variety of possible 

equilibrium concepts in IDllticountry dynamic games. The games can be solved 

under the assumption of pre-commitment versus time-consistency; open-loop versus 

closed-loop behavior; and non-cooperative versus cooperative decision-making. 

These three dimensions are all independent, so any choice along each dimension 

is possible. 

Moreover, in some cases there may be multiple equilibria. For example, 

there are probably many time-consistent, non-cooperative equilibria that depend 

on the "threat-reputation" mechanism outlined in the paper. As yet, we have 

made no systematic attempt to search for such equilibria. 

This work should now be used to gain empirical insight into the cooperation 

issue. For all of the discussion surrounding time consistency, for example, 

there is not a single empirical investigation of its importance in the 

macroeconomics literature. Similarly, there are no reliable measures of the 

gains to cooperation in the simpler, pre-commitment equilibria. Such 

quantitative work deserves a high priority. 
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Appendix 

We shall present in this appendix the derivation of the four policy rules 

discussed in this paper. All of these rules are obtained as the stationary 

limit of backward recursions using a methodology similar to Easar and Olsder 

(1982) or Kydland (1975). The only significant difference with these authors is 

the fact the followers' actions are represented here by a forwardlooking 

variable, the exchange rate. 

Let us consider a two-country world. The world economy is characterized by 

an n-dimensional vector of state variables, x
t 

and the domestic currency price 

of the foreign currency is e • 
t 

In each country the authorities seek to maximize 

a welfare function W., i = 1,2, and can use a set of policy instruments denoted 
1 

Uit , where Uit is an mi-dimensional vector. The dynamics of the world economy 

can be represented by a system of difference eQuations. 

(Al) xt +l = AXt + Bet + CUt 

et +l = DXt + Fet + GUt 

where U
t 

denotes the stacked vector of instruments for the world economy and A, 

B, C, D, F and G are matrixes of parameters. Note that matrixes A, B, Care 

defined differently than matrixes A, B, C in the rest of the paper. 

Let us denote by T it the 'rectors of targets for each country. T lt and T 2t 

are linear functions of the state variables, the exchange rate and the values of 

the policy instruments: 

(A2) i = 1,2 





where 

(A14) J t = (F-Ht+1B)-1(Ht+1A-D) 

Kt = (F-Ht+1B)-1(Ht+1C-G) 
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The value function of country 1 for period t is defined by: 

(A15) 

Substituting (A13) into (Al) and (A2) leads to the following first order 

conditions: 

(A16) [(Nll+L1Klt)'Ql (N1+L1Kt ) + 61(Cl+BKlt)'Slt+l(C+BKt)]Ut 

= -[(Nll+L1Klt)'Ql (M1+L1Jt ) + 61 (Cl+BKlt)'Slt+l(A+BJt)]Xt 

where Klt and Zl is the submatrixes of Kt and ~ corresponding to U1t • 

A similar set of conditions holds for country 2. We thus obtain: 

(Al7 ) 

where MMt is an (ml + ~)x(~+ ~) dimensional matrix and NNt is an (ml + ~)x n 

dimensional matrix. 

Let us divide MM
t 

and NN
t 

in submatrixes corresponding to U
1t 

and U
2t

: 

(AlB) 

Then we 

(A19 ) 

(A20) 

. [~'" ~u,] NNlt 
MMt NNt = 

MM2lt MM22t NN2t 

have: 

MMijt = (Nii+LiKit)'lli (Ni/LiKjt ) + 6 i (Cit +BKit)'Sit+l (Cj+BKjt ) 

NNit = (Nii+LiKit)'·li (Mi+L/t ) + 6 i (Ci+BKit)'Sit+l (A+BJ t ) 

These formula hold for period T with JT and ~ defined as above and SiT+l 

Finally we can derive f
t

, H
t 

and Sit: 

= o. 
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(A2l) 

(A22) 

(A23) 

i = 1,2 

We have thus obtained both recursion rules and starting values for the set 

of matrixes r
t

, Ht' Slt and S2t' We define as the time consistent solution the 

stationary solution to which this system converges for t = 0 as T goes to 

infinity. We do not know of any general result concerning the convergence of 

this process. However in our empirical applications we have not run into major 

problems. Cohen and Michel (1984) show that in a one dimensional case this kind 

of a recursion does have a fix-point. 

The Open-Loop Solution 

The open-loop solution corresponds to a one-shot game where the authorities 

announce at time zero the whole path of their policies. It thus does not by 

definition require the use of a backward recursion procedure. The set of 

dynamic equations formed by the state variable difference equations and the 

first-order conditions corresponding to the optimal control problem of the 

authorities could for example be solved explicitly by using the method proposed 

in Blanchard and Kahn (1980) or numerically with a multiple shooting algorithm 

(see Lipton, Poterba, Sachs and Summers (1982)). However, we shall present here 

a backward recursion procedure which leads to a simple algorithm. 

The optimal control problem faced by the authorities of country i leads to 

the definition of the Hamiltonian Hit 
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(A24) 

where Pit+l is the vector of co-state variables or shadow costs which the 

authorities of country i associate with each of the state variables and, 

similarly ~it+l is the co~state variable corresponding to the exchange rate. 8 

The set of first-order conditions is then: 

(A25) aHit/auit 
= N' n t 

ii i it + BiC~Pit+l + BiG~~it+l = 0 

(A26) aH
it 

/ax
t = M~I\Tit + BiA'Pit+l 

B n' + i ~it+1 = Pit 

(A271 a Hit /aet = L~niTit + BiB'Pit+l + B/')Jit+l = qit 

Let us first of all derive the recursion equations at period t. One major 

difference with the time consistent case is the existence of )Jt' the co-state 

variable corresponding to the exchange rate at time t. Since eO is not 

pre-determined, it can be set freely by the authorities in the initial period by 

annOllncing a proper pa.th of future policies. Its shadow cost in the first 

period, ~l' is zero. )Jt is thus a predetermined variable equal to zero in the 

first period and has to be added to the vector of state variables, x , when the 
t 

recursion relations are defined. 

More precisely we shall assume that the problem is solved for t+l and that 

the following relations hold: 

(A28) et +l = Ht +l xt +1 + h )J 
t+1 t+l 

(A29) Pt+1 = II x 
t+l t+l 

+ 6 
t+l)Jt+l 

(A30) u =r x +y )J 
t+l t+l t+l t+l t+l 

Let us now define the following matrixes: 
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i 
N~i'li; 

i 
M~!l i ; ~l L~lli All = A21 = = 

(A31) ~2 aic~; 
i = a .A'; i B .B' 1,2 = A22 A32 = i = 1 1 

i 
aiG~; ~3 ai D'; i = a F Al3 = = A33 i 

\;.t 0 

(A32) '\R. = 
0 ~ 

All ~2 A13 

Al = A21 A22 A23 

A31 A32 ~3 

Equations (A25) to (A27) can be rewritten in matrix form: 

't 0 0 0 Ut 0 0 

(A34) ~ Pt +l = 0 0 12n ~t+l + 0 0 [ ::1 
~t+l 0 0 0 Pt 0 12 

where 12n and I2 denote identity matrixes of dimensions 2n and 2 respectively. 

Then using equations (A28) to (A30) we get: 

(A35) 

(A36) 

(A37) 

where' and P are the stacked vectors of targets and co-state variables t t+l 

and 
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B2t 0 0 

A2t = IIt +1 (C+BK
t

) IIt+lBRt~t+l 0 

0 12 0 

BIt B3t 

A3t = IIt+l (A+BJt ) 0 

0 0 

-[ ~ · ~', I; [, · ~~ I; -~R, I 
Blt B2t = B3t = 

M2 + L2J t N2 + L2Kt 
L2Rt 

J t = (F-Ht +1B)-I(Ht +1A-D) 

Kt = (F-H
t

+1B)-I(H
t

+1C-G) 

Rt = ( -)-1 
F-Ht+lB ht+l 

(A3B) [~H = _MM-
1

NN [x
t 

] 
t t lit 

where: 

-[: 
0 :', ] MMt = ~A2t 0 

0 

NNt = ~A3t -[: U 
From (A3B) we can derive ft' Yt , lit' 0t' At and At where the two last variables 

are defined by: 
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Lastly we get: 

We now need to obtain starting values for the recursions thus defined. If 

we assume as above that the exchange rate stabilizes at time T and that 

PT+l = 0, we get: 

0; II 
t+l = 0; 0T+l = 0 

The open-loop solution is the stationary limit to which this recursion 

converges. It should be noted that here the policy rule is not only a function 

of the state variables, xt ' but also of the costate variables ~t' 

Let us give a simple example in the case where each country has a single 

policy instrument. The policy rule is U
t 

= rX
t 

+ Y~t' where y is a (2x2) I!E.trix. 

We also have: 

~ = Ax + A~ 
t t-l t-l 

which, given the policy rule, yields: 

Thus we finally obtain 
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The policy rule appears to be of a more complicated form than the time 

consistent rule. It is a function not only of the current state variables but 

of the lagged values of these state variables and of the lagged moves. 

The Buiter Solution 

Buiter (19B3) proposes a solution to the time inconsistency problem which 

we discuss in the paper. Formally his strategy amounts to setting ~t equal to 

zero and suppressing equations (A37). 

Using the same notation the set of first order conditions becomes: 

where 

Equations (A2B) to (A30) become: 

(A2B' ) e 
t+l 

(A29') Pt+l 

(A30') U 
t+l 

Then we get: 

(A36') 

= H 

= IJ. 

= r 

x 
t+l t+l 

x 
t+l t+l 

x 
t+l t+l 

+ K U 
t t 
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(A37') 

where 

[B~ 0 

J A2t A3t = 

IIt+l (C+Bkt ) 0 

and finally: 

(A38) 

where 

MMt = 'l.A2t - [ ~ ~2J 

From (A38) we derive r
t 

and lit which give Ht : 

J
t 

+ K r 
t t 

The system of recursive equations thus obtained is solved backward from T with 

the same starting values as above: 

-1 -1 
J

T 
= (l-F) D; ~(l-F) G; IIT+l = 0 

The Optimal Linear Rule 

The problem here is to derive the optimal linear rule, i.e. the constant 

feedback rule which yields the higher welfare for the authorities of each 

country. It can be divided into two steps. The first step consists in 

obtaining for a given rule 
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r = [ ~~] such that 

Ut = rxt , the value of the welfare for each country, wl(r) and w2(r). Then, in 

a second step, the optimal values of r l and r 2 are calculated using a numerical 

gradient method. We shall not discuss here the second step for which we refer 

the reader to Roth (1979). The first step is again solved qy backward recursion 

which proved more tractable for the repeated calculations imposed qy the 

gradient method. 

Substituting U
t 

= rX
t 

into (Al) yields: 

(A39 ) 
[ 

Xt+l ] = [ A+Cr B ] - xt ] 

e t +l D+Gr F e
t 

For period T assuming eT+
l 

= e
T 

yields 

(A40) 

Then if we assume: et +l = Ht+lxt +l , 

the recursion is thus simply 

which, starting with H
T

, has a stationary solution for values of the parameters 

such that the transition matrix in (A39) has only one eigenvalue greater than 

unity. More precisely: 
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"here C22 and C21 are sllbmatrixes of C, the matrix of row eigenvectors of the 

transition matrix defined qy 

Cll C12 

C nxn nxl = 
C21 C22 
lxn lxl 
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Footnotes 

1. See, for example, W. Nordhaus, "The Political Business Cycle," Review of 

Economic Studies 42 (1975), pp. 169-190. 

2. 
1+A-(~+6)~-1(5+oP-aA) -l-(~+e )0~-1 -6 l-A+(~+e )~ -1 [5+0 (I-A) I 

A 0 0 1- A 
A = 

_(o+op_oA)~-l -a~ 
-1 

0 [5+0 (I-A) I~-l 

P_II~ -1 (O+OP-OA) -all~ 
-1 

0 1+1I~ -1 [0+0 (I-A) I 

Op (II +e )~-l 

0 
B = 

op~ 
-1 

-1 
-P -11!~ 06 

l+A- (~+6)~-1[5+0(1_A)1 0 y(~+e )~-1 

I-A 0 0 
C = 

[O+O(l_AI~-l 0 -1 
y~ 

[o+o(l_A)III~-l -1 Yll~ 
-1 

where ~ = 11+0 (1l-~-6) 1-1 

3. Using the notation of the appendix, it is readily checked that if 0 = 0, C 

and N1 in (AI) are null matrixes, and G in (AI) is equal to -p. This implies 

that the money stock has no direct effect on either the state variables or on 
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the government's targets: output and inflation. Thus the first-order condition 

(A25) reduces to -ePll t +l = o. 

4. This point is easily proved qy considering the following change of variables: 

where ~t = Illt + Illt 

The differential system (38) becomes: 

lIe + ~1/12 2 
III t+l $ 1/Ia(1-Y)-$ -lIe Il lt+l 

11 
t+l 

_1/12 l-'~1Cl (l-Y )$ -1/Ia (l-Y ) 
" t 

~t+l 0 0 lIe ~t 

This system is saddle point stable under the conditions discussed in the 

N 
text and has one stable root Al and two unstable roots 

N A2 and lIe. One 

variable "r is backward looking while Il
lt 

and ~t are forward looking. 

Given that lIe > 1, it is clear from the third e~uation that along the stable 

path ~t lIlllst always be e~ual to zero, so that 1l 1t = -1l 2t for all t. 

5. The roots of the system can be found by solving the characteristic 

equation: 

w > o. root 0 
N 

We assume To show that there is exactly one stable < Al < 1 and 

one unstable root 1 
N 

< A
2

, observe the values of the characteristic e~uation 

e (A) at A = o and A l. e(o) = (l/e)w > 0 and e(l) 
2 

[lIe - lJ1/Icdl-y)~ = = -$1/1 -

< O. Also, for A » 1, etA) > O. Thus, there is exactly one root between 0 

and 1, and one root exceeding 1. 
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The stable root is 

The unstable root is: 

6. The roots for the cooperative case can be found by setting a = 0 (i.e. 

w = 1) in the equations for the roots derived in Footnote 5. 

The stable root is 

The unstable root is 

shown in footnote 6 C N o. 7. It was that A1 = Al when Cl = To prove that 
N 

AC C N A1 > 1 for Cl > 0, we need only show that a (A 1-A 1 )(aa > 0 for all a. We know 

that a(A~l!aa = o. Consider a(A~)(aa 

N 2 2 2 -1(2 a("I)(aCl = (l(2)IjI(l-y)q,!-1 + (w - l(~ +.pjI II (w + l(~ +.pjI) _ 4w(~) I 

We want to prove that the last expression is negative. 

Therefore, 

or 

Taking the square root of both sides and dividing gives 

(w - l(~ + .pjI2)( (w + l/~ + .pjI2)2 _ 4w/~) -1/2 < 1 

Substituting into the expression for a(A~)(aa, we see 

2 
We know -4q,1jI (~ < o. 
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8. Note that in the paper the notation is slightly different, with ~4t being 

the co-state variable corresponding to the exchange rate in the one-country 

case. 
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