View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

The Changing Global Distribution
of Malaria: A Review

Amar Hamoudi and Jeffrey D. Sachs

CID Working Paper No. 2
March 1999

© Copyright 1999 Amar Hamoudi, Jeffrey D. Sachs,
and the President and Fellows of Harvard College

ey Working Papers
¥ Center for International Development

at Harvard University


https://core.ac.uk/display/161434424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CID Working Paper no. 2

The Changing Global Distribution of Malaria: A Review

Amar Hamoudi and Jeffrey D. Sachs

Abstract

Organized efforts to reduce the burden of malaria are as old as human societies. Understanding
the historical relationships between humankind and malariais important for natural and social
scientists studying the disease, as well as policy makerstrying to control it. Malariaonce
extended widely throughout the old world, reaching as far north as 64°N latitude and as far south
as 32°S |atitude. Today, however, maariais amost exclusively a problem of the geographical
tropics. Analysisof historical changesin malaria prevalence suggests a number of factors which
help to determine the likelihood and sustainability of successin malaria control. Among these
are geography, evolutionary history of floraand fauna, infrastructure, and land use. It isdueto
these factors, much more than socio-economic ones, that attempts to control or interrupt
transmission of the disease have historically been most successful on islands, in temperate
climates, or at high elevations.
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Humankind shares along and tumultuous history with the four protozoan parasites that cause malaria. In
spite of numerous organized attempts to reduce their impact, these pathogens have prospered over the millenia,
spreading far beyond their evolutionary originsin Africaand Southeast Asia. Even now, a century since its etiology
and life-cycle were elucidated, malaria continues to present a daunting public health challenge. In 1990, the WHO
estimated global malariaincidence at about 120 million clinical cases annually; in 1994, they estimated 300-500
million cases annually (1; 2). Understanding the historical relationships between humankind and malariais
necessary on at least three levels. First, in biological terms, it is necessary for our understanding of the evolutionary
history of the disease (3). Second, in programmatic terms, it is necessary for the design of malaria control efforts
which do not repeat past mistakes (4). Third, in economic terms, it is necessary for our efforts to determine the ways

that malaria takes atoll on human communities, and to design targeted policies to alleviate the burden of the disease

().

The life-cycle of vector-borne diseases like malariais complex relative to that of many directly-transmitted
human diseases (including bacterial or viral diseases like bacterial meningitis or HIV). On the whole, directly
transmitted diseases require a threshold level and complexity of population agglomeration, and are therefore
relatively recent phenomena—perhaps evolving within the last 10 millenia (6; 7). In contrast, the relationship
between humans and malaria may date back several million years (8). Because malaria parasites appear to have
coevolved with the human species, these two populations appear to be well adapted to each other. The various
Plasmodium species may not even stem from the same ancestor; the genus may be polyphyletic. Although certain
evidence suggests that P. falciparum coevolved with Homo sapiens, other observations indicate that it may have
emerged first in a non-human host such as the chimpanzee. Either model would help explain some of the complexity
of malaria’ s mechanisms for evading our immune system (9; 10). Historically, it has been proposed that diseases

evolve toward reduced virulence for their hosts; using thislogic, the relative age of the parasite-host relationship

! The authors wish to thank Andrew Spielman, Anthony Kiszewski, and Gerald Keusch of the Harvard School of Public Health, for advice with
the manuscript. Any errors are the authors' alone.



might be taken as a suggestion that malaria has become more tame than other, younger diseases. The proposition of
such an evolutionary tendency, however, has been widely dismissed by scholars as inconsistent with empirical data.

Malaria remains extremely burdensome, causing about 2 million deaths annually.

The archives of numerous ancient human societies refer frequently and in varying detail to intermittent
fevers that may have been malaria (11). Malaria once extended widely throughout the old world, reaching as far
north as 64°N latitude and as far south as 32°S |atitude (12). Today, however, malariais ailmost exclusively a
problem of the geographical tropics. Figure 1 shows an overlay of data from World Health Organization maps of
malariarisk in 1946, 1966, and 1994, illustrating the extent of thislocalization to the tropics. Of about 120
countries, ilands, or colonies where malaria was endemic in 1945, the disease has disappeared from 15 European
countries, about seven islands or archipelagoes, the United States, Israel, and Chile (13). José N§jera and others
have broadly classified trends in the remaining countries where malariais endemic (14). Astable 1 shows, the
current situation is not uniform. For example, only 9% of Malaysia s population livesin regions where maariais
transmitted, and in 1994 59,000 cases of malaria were diagnosed in health clinics serving atotal population of 20
million people. In contrast, the whole of Tanzania's population of 29 million remains at risk of contracting the
disease, with more than 8 million diagnosed in health clinicsin 1994. About 40% of the world’ s population remains
at risk for infection, of whom 19% live in Africa; in addition, about 90% of clinical malaria cases occur in sub-

saharan Africa (2).

Data on malariaincidence, morbidity, and mortality are incomplete and often of questionable quality. In
Africa, for example, it has been estimated that the approximately 28 million reported cases of malaria account for
only 5-10% of total malariaincidence on the continent. N§jeraet al. report that the most accurate reporting of
malariaincidence likely takes place in Brazil, India, and Thailand, where about half of clinical cases are reported.
The WHO estimates malaria to account for 1.5-2.7 million deaths each year, although it is noted that this statistic
“may vary by afactor of 3, depending on the method [of estimation].”(2) Incidence datain Africaare so
underreported that they are misleading, and therefore often excluded from assessments of the world malaria
situation, although on the order of 90% of malaria cases occur on the continent. In many of the regions where
malaria remains endemic, the situation is growing increasingly difficult to control. Parasite strains resistant to

choloroquine, the most common anti-malarial drug, have spread throughout Asia, Africa, and parts of South



America. In someregions, particularly in Southeast Asia, multi-drug resistant strains are beginning to spread,
posing athreat to all means of effective case management. An effective vaccineis still many years away. In
addition, the spread of insecticide resistant vectors poses a challenge to epidemiological control efforts. According

to the Malaria Foundation International, malariaincidence in Africamay be increasing by 20% each year (15).

Ronald Ross modeled the epidemiology of malaria mathematically, and his equations were refined in 1957
by George Macdonald (16). These models, although they have been extensively refined (17; 18), still form the basis
of our understanding of malaria transmission. Macdonald defined the basic reproduction number (originally
described as a“rate”) as the number of secondary infections which result from a single infection over the period of a
case' sinfectivity, assuming a perfectly immunologically naive environment. As the basic reproduction number
increases, it becomes more difficult to protect a community from infection, since each single case poses a danger to

alarger proportion of the community. Macdonald denotes the basic reproduction number, z, as follows:

:masznz
-rinp

where mis defined as the abundance of anophelines relative to the human population
a describes the propensity of a vector to bite a human host
b is defined as the proportion of mosquito bites which are infective

p is defined as the probability that a mosquito will survive asingle day (p is greater for longer-lived

Species)
n is defined as the extrinsic incubation period, or duration of the mosqguito phase of the parasitic life-cycle

and r isthe rate of recovery of the human host

2 This equation is derived from:
2
z=i1- ax A*Frnabpnl
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where x is the proportion of the human population which isinfected at any given time.
7, isthe limit of z as x approaches zero—the postulation of a perfectly immunologically naive community. In acontext of sustained transmission,




Although numerous simplifying assumptions are embedded in these equations, they illustrate some of the

most important determinants of malaria transmission.

m, mosguito abundance

Macdonald defines m as “the anopheline density relative to man.” More specifically, misthe quotient of
the population of vector mosquitoes and the human population. Itisin part determined by a number of
environmental, geographical, and species-specific factors. Mosquito larvae mature in aguatic environments;
therefore the presence of suitable water is a requirement for mosquito reproduction. However, there is enormous
heterogeneity between mosquito species in the specific environmental factors which favor efficient reproduction.
Some of these factors include the presence or absence of shade, brackish or fresh water, and deep or shallow pools.
Since mislinearly related to z,, the abundance of mosquitoes can be shown to have a small impact on the efficiency
of malariatransmission relative to other factors. Historically, therefore, efforts to control malaria by reducing
mosquito populations have been aimed at mosquito breeding sites; only if breeding sites could be eliminated, the
thinking went, could anopheline populations be reduced sufficiently to control malariatransmission. Outside of
Europe and the United States, malaria transmission has almost never been dampened sustainably by reduction of

anopheline abundance.

a, host specificity

Macdonald defines a as “the number of people bitten by a single mosquito in asingle day.” Therefore, this
variable provides an indication of the narrowness within which a vector’ s attention is focused on humans—vectors
which are more likely to be diverted from a person by the presence of a horse would, of course, bite fewer people
than those which avidly forego the horse in favor of the person. Two factors largely govern a—first, the
mechanisms of host seeking behavior of the vector mosquitoes, and second, the presence or absence of alternative
hosts. The species-specific mechanisms of host-seeking behavior can be described as determining an underlying
value of a, indicating how anthropophilic® alocal vector would be in an environment with an optimal distribution of

potential hosts. The relative abundance of hosts, on the other hand, would determine aruling value of a where the

however, this condition is contrary to fact. Therefore, in a static context, the “ruling reproduction number,” which gives the slope of the observed
epidemic curve, is often far less than the basic reproduction number.



relative abundance of potential hosts was not optimal. The mosqguito may prefer a cow to a human, but where no
cows are available, the mosqguito will content itself as an anthropophile. The mechanisms of host-seeking behavior
in mosquitoes are the object of an enormous amount of research among entomologists, but there is general
consensus that host preference is genetically determined within mosquito species by means of variations among
olfactory organs (19). In addition to distracting more zoophilic vectors by introducing animal “barriers’ these
vectors may be diverted by improvements in animal husbandry, whereby sufficient distance is maintained from the
animal hosts (these practices have been described as “zooprophylaxis’).* z isrelated to the square of a; therefore,

host specificity is one of the more powerful determinants of the efficiency of malaria transmission.

b, proportion of infective bites

Macdonald defines b as “the proportion of anophelines with sporozoitesin their glands which are actually
infective.” It describes the probability that a bite by an infected mosquito will cause the person hitten to contract
malaria. It isgoverned by a number of factors, including the infectiousness or “quality” of the sporozoites injected
by the feeding mosquito, the number of oocysts which form on the mosquito stomach wall, the number of
sporozoites which emerge and infect the mosquito salivary gland, and the number of sporozoitesinjected. These
factors vary between both vector and parasite populations. Although b relates only linearly to z, control strategies
have been designed which aim to reduce this variable by introducing a vaccine to prevent sporozoite invasion of the

liver cells of vaccinated hosts.

p, probability of survival

Macdonald defines the variable p as the “ probability that a mosquito will survive awhole day.” Therefore
p" is the probability that the mosquito will live for n days, diminishing as n increases. Of course, as p approachesits
limiting value of 1, mosquito longevity increases. In nature, p has been observed to range between 0.6 and 0.95,
varying between mosquito species (20). Macdonald' s equation shows that, holding all other things constant, zis
proportional to p"/Inp, which, it can be shown, is the same as Ee¥" where E=-1/Inp is defined as the life expectancy

of the mosquito. Therefore, thisterm plays by far the most powerful rolein defining z,. Historically, control

5A zoophylic vector prefers to feed on non-human animals; an anthropophilic vector prefersto feed on humans.
4 Of course, zooprophylaxisis often not a deliberate intervention strategy. As described below, in Europe, improvements in animal husbandry



strategies aimed at manipulating this variable have involved the residual application of insecticides on surfaces
where recently blood-fed mosquitoes are likely to rest. Thiswas the strategy of the World Health Organization's

Global Malaria Eradication Program in the 1950s and 1960s.

n, extrinsic incubation period

n isthe total number of days required for the completion of the mosquito portion of the parasite life-cycle,
including the fusion of micro- and macro-gametes, ookinesis, oocyst formation, sporozoite formation, and
sporozoite migration. After biting an infected human, a mosquito will not be able to infect another person until n
days have passed. Therefore, p”is the probability that a mosquito will live long enough to become infective. Under
laboratory conditions, a number of factors may affect n, including temperature, chemical and biochemical factors
(for example, pH), host abundance, competition, and nutrition. In nature, values for n usually only exist for ambient
temperatures between 18°C and 30°C for vivax malaria, and between 20°C and 30°C for falciparum malaria,
although this range varies between microhabitats. As shown above, n plays a very powerful role in defining z, and
in those climates and habitats where ambient temperature and species specific factors render p” sufficiently close to

zero, transmission of malariais unstable or even impossible.

r, recovery rate

According to Macdonald, r is often considered to be constant in a perfectly naive community (r=0.0125).
He defines it as “the proportion of affected people, who have received one infective inoculum only, who revert to
the unaffected statein one day.” However, r may be described as dependent on a number of factors. The
“molecular arms race” between humans and malaria parasites may be millions of years old, possibly resulting in
more evolutionary adaptations in humans than any other disease (9; 21). These adaptations, which vary between
human population groups, help to determine varying susceptibility to infection and immune responsiveness. Among
the most well known of these adaptations are sickle-cell trait, the Duffy blood group negativity, and Glucose-6-
phosphate dehydrogenase deficiency. Sickle-cell trait and Duffy are most common in African populations, and may
help to illustrate malaria’ s long history on the continent. Adaptations which reduce susceptibility to infection

effectively reduce the value of b, while those which enhance immune responsivenessincreaser. Of course, the

had a profound, yet unexpected, impact on malaria transmission during the interwar period.



effects of these adaptations may be mimicked by effective primary health care; the availability of effective
prophylaxis affects b and therapy affectsr. The variablesb and r are unlike the othersin Macdonald' s basic
equation in that they relate directly to individual infections. These variables, therefore, are the quantitative link

between patient care and epidemiological control.

In considering Macdonald's model, it is also important to note that in nature there are complicated
rel ationships between these variables which may make it difficult to manipulate one while holding the others
constant. For example, “larval control strategies,” designed to reduce mosquito abundance (m) by disrupting
reproduction may actually result in selection for a stronger and healthier adult mosguito popul ation, thereby

increasing p (22).

Another important concept to consider in understanding the dynamics of malariais the stability of
equilibrium A stable transmission equilibrium is one which is not sensitive to changesin z,. Macdonald originally
described the stability of equilibrium as the rate of change of L,, which is the limiting value of the infected

proportion of the population, per unit change of z, or dL, _ - Inp. Note that by this definition, the stability of
dz, a

equilibrium isinversely proportional to both host specificity and vector life expectancy. Therefore, a short lived
vector which is not specifically inclined toward biting humans supports a lower initial value of z, and therefore
provides a“head start” for antimalaria efforts. 1n addition, the transmission equilibrium in such a context is more

sensitive to subsequent changesin z,.

TheHistory of Control Efforts

Organized efforts to reduce the burden of malaria are as old as human societies. Russell, for example,
provides detailed descriptions of the efforts from pre-Roman Etruscans to Napoleon to drain the marshes
surrounding Rome, whose “noisome smells” were believed to cause pestilence (23). But it was considerably more
difficult to fight an unseen enemy, and before the parasites were discovered and their life cycle characterized a
century ago, malaria could only be associated with poor sanitation. Harrison explains that malaria was seen as a
“disease of rural decay, spawn of ill-kempt, savage, and uncultivated land, yielding to good husbandry and
civilization.” (24) Hippocrates observed that “[where] there berivers. . . which drain off from the ground the

stagnant water. . . [the people] will be healthy and bright. But if there be no rivers, and the water that the people



drink be marshy. . . the physique of the people must show protruding bellies and enlarged spleens.” (23)
Accordingly, therefore, most early efforts at malaria control focused on sanitation and land use strategy. But the
germ theory of disease, when it became universally accepted during the 19" century, suggested that underlying these
environmental determinants, malaria had a fundamentally biological cause. The expansion of colonial powersinto
the malarious tropics brought new urgency to European efforts to understand the etiology of malaria. According to

Harrison (25),

equatorial Africa, the principal arenaof 19" century empire, had notoriously resisted white settlement. . . everywherein the

topics the white men languished and died, wasted by the heat and ravaged by disease, above all by malaria.

Throughout the century, a succession of colonia army officers, aswell as scientists from Italy (malaria
endemic at the time), doggedly tracked the disease until its entire life-cycle, etiology, and epidemiology had been
elucidated in detail. When Ronald Ross provided irrefutable empirical support for the mosguito theory, it seemed
logical to focus anti-malaria efforts on the mosguito. Ross himself delivered alecture in 1900 at University College,
Liverpool, entitled “ The possibility of extirpating malaria from certain localities by a new method.” (26) Every
noted malaria intervention during this period was aimed at reducing vector populations (min Macdonald’ s equation,
above—although, of course, this equation would not be published for another half century). Ross, for example,
spearheaded an effort designed to reduce anopheline populations in Freetown, Sierra Leone by isolating and
eliminating breeding sites, without success (hisinitia studies led him to conclude that there were about a hundred
puddles which were likely to be Anopheles breeding sites; if these could be eliminated, malaria would be eradicated
from the city. He anticipated that a successful effort would cost around £140) (25). Ross, in his memoirs, describes
similar effortsin Havana, Lagos, and Hong Kong. Stephens and Christopher tried to improve on these effortsin the
Indian city of Mian Mir, also without success. These efforts are described in detail elsewhere (4; 23; 25; 26),
although it isfairly clear that the failure in controlling anopheline populations stemmed from poor understanding of
the behavior of the vectors; the science of medical entomology was yet to emerge. Some early efforts at malaria
control succeeded, however. For example, in 1901, Malcolm Watson was able to save colonia plantationsin
Malaya through “fine tuning of the environment” to eliminate the local vector, thereby reducing fevers by 90% in
two years (25). Watson's positive results have been attributed to the strategies of exfoliation and reduction of the
salinity of some coastal swamps (he had built dikes to cut the swamps off from the sea). His success would lead to

the concept of “species sanitation,” which employed environmental engineering designed to have specific and



devastating impact on local disease vectors. Ten years later, however, the disease returned to cause a cataclysmic
outbreak, demonstrating the precariousness of malaria control. Similarly, in 1904, Gorgas' success in controlling
malaria and eliminating yellow fever in the Panama Cana Zone—informed by successful vector control strategiesin
Havana and Panama city (of Aedes aegypti, ayellow fever vector)—allowed the United States to complete the canal
project which the French had been forced to abandon. In an exhaustive history of the effort (27), Simmons describes

Gorgas' intensive sanitary strategy in the Canal Zone, as well as the cities of Panama and Colon:

Listed in the order of their development the procedures advocated or used have passed through the following phases, which
overlapped in some instances: (1) the therapeutic and prophylactic use of quinine; (2) the use of mosquito nets, and the
screening of houses; (3) the killing of adult mosguitoes in dwellings and the elimination of harboring places by cutting
away sheltering underbrush; (4) the destruction of mosguito larvae and pupae by the use of oil and other larvicides; (5) the
elimination of breeding places by filling, draining, training streams, and by admitting the tide to replace impounded fresh
or brackish water with circulating sea water; and (6) the attempt to drain all standing water by permanent sub-soil tiling and

concrete-bottomed ditches.

Extremely detailed data were made available to Gorgas about the population of the Canal Zone, its
topography and geography, the epidemiology of its diseases, and its climate and temperature variations. In addition,
he was given enormous financial support for his efforts. He designed an extremely centralized programmatic
approach, and achieved rapid and sustained success (4; 25). Gorgas' success was awatershed in the history of
malariaintervention, and played an essential role in Panama’ s subsequent malaria control efforts. It isimportant to
note, however, that his scheme was focused exclusively on the Canal Zone and the cities of Panama and Colon
(situated close to the canal’ s endpoints). According to Simmons, “[b]ecause of the expense involved, intensive anti-

mosquito work has been limited to the immediate vicinity of the more important towns and Army posts.”

Italy produced many of the world's most important early malariologists, owing possibly to itslong and
problematic history with the disease. Bruce-Chwatt, in summarizing this relationship, proposes that malaria may
have figured prominently in the downfall of Rome (24). Angelo Celli was one of the great Italian malariologists and
an avid social reformer. At the beginning of the 20™ century, Celli devised amalaria control strategy for Italy which
differed markedly from the emerging “species sanitation” approach. In fact, where virtually all contemporary

interventions had been vector focused, Celli’ s approach focused entirely on the human victims of the disease, most



of whom were the rural poor of the Roman Campagna—peasant farmers in the employ of absentee landlords.
Malariain Italy, asin the rest of southern Europe, followed a cycle of seasonal epidemics, with outbreaks of vivax
malariain the spring, and falciparum malariain the fall. These cycles interacted with the cycles of communal
immunological memory® to produce regular peaks in malaria mortality every 5 years. Beginning in 1883, when the
first statistics were compiled, total malaria mortality had already begun to decline, in the absence of any intervention
program. In 1900, Celli advocated the distribution of quinine, at a price equivalent to its cost to the government,
across the Campagna. He also successfully campaigned for the institution of economic and social reforms designed
to provide the local population with the necessary tools (e.g., better houses, nutrition, etc.) to avoid or overcome
malaria (an approach dubbed the “bonifica integrale”). This approach appears to have greatly accelerated the
naturally occurring decline in malaria mortality, and was the beginning of a steady trend which ended in Italy’s

eradication of malaria after World War I1.

In addition to spurring the development of modern malariology, the increase of global traffic during the
colonial period resulted in the importation of many infectious diseases to areas where they had not previously been
endemic. In the case of malaria, such an importation occurred in Mauritiusin 1866. Part of the three-island
Mascarene archipelago, Mauritius has been separated from Africafor millions of years, and was not inhabited either
by humans or anophelines until relatively recently. The first human inhabitants of the island were probably slaves
transported by the Dutch from Madagascar in the middie of the 16™ century. Owing to the ravages of periodic
hurricanes, however, the island defied continuous habitation and served primarily as atemporary resting place for
malarial travelers on the way back to Europe, until control of the island devolved to Britain in 1810. The British
deforested much of Mauritiusin order to establish sugar cane plantations, and despite the importation of laborers
from malaria-endemic regions, malaria was not transmitted due to the absence of anopheline vectors (28). Over the
course of the next half century, An.gambiae and An.funestus were imported via ship traffic and, owing to the
previous deforestation and irrigation of the island, became indigenous. The combination of malaria vectors and
malarial humans set off a series of massive epidemics, starting in the port city of Albion and following trade routes
along the coast, then moving inland. In less than a decade, the disease became endemic. The dynamics of these

epidemics are described elsewhere (25; 28; 29). Similar introductions of malaria occurred at the same time on

5 Natural ly acquired immunity to malaria only lasts a short time in the absence of frequent reinfection.
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Grand Comoros Island and Reunion Island. Malaria remained endemic in Mauritius and Reunion for a century
before being successfully eradicated. The Mascarene experience remains one of the most informative illustrations
of the dynamics of malaria epidemicsin naive regions where climate, geography, and fauna favor endemicity—
dynamics which were later observed in regions where interventions had drastically reduced transmission for a
sustained period of time, but where small parasite populations escaped surveillance.® This dynamic was also

observed in the resurgence of malariain Malayain 1911, after Malcolm Watson’s successful intervention in 1901.

By the time of the outbreak of World War [, therefore, other than the emerging success stories in Panama
and Italy, the crusades to control the transmission of malaria had largely failed, although they offered a number of
important lessons. These efforts had spawned a few debates which would shape the emergence of later international
control policies. Among these, the alternative conceptions of malaria as a primarily socia disease (as suggested by
Cdlli and others) which is naturally and inevitably eliminated with the elimination of poverty, and malariaas a
primarily entomological and clinical problem (as suggested by Watson and others), which required proper scientific

intervention strategy, vied with each other for decades.

The two World Wars, and the concomitant social upheaval and economic decay, as well as the end of the
colonial period, transformed anti-malaria efforts around the world. Between the wars, the reorientation of priorities
among the colonial powers restricted these efforts aimost exclusively to the United States and Europe, where the
prevalence of malaria had begun to decline, even in the absence of any concerted intervention efforts. This
spontaneous decline is primarily attributable to changes attendant on rapid economic growth in three important
ways. First, the drainage of swampsin order to establish new agricultural land had drastically reduced the
indigenous anopheline populations of malaria endemic regionsin southern Europe and the American rural south.
Similarly, improved facilitiesin animal husbandry led to better separation of humans and livestock, and diverted the

attention of more zoophilic vectors.” Second, increased income provided at-risk individuals with the means to

6 A similar but hi storically more important story of malariaimportation may involve the introduction of the disease in the Americas by the
conquistadores in the 17" century. However, as Russell points out, evidence is inconclusive as to whether or not the disease was already endemic
before their arrival. Malariaremains endemic and virulent in tropical regions of Latin America.

"ltisi mportant to note that no environmental change leads inevitably to areduction in vector populations, owing to the wide heterogeneity of
reproductive and biting behavior among anopheline species. For example, eliminating forest cover, which had made Malaya hostile to
An.maculatusin 1901, had made Mauritius hospitable to An.gambiae in the 1860s. In fact, it was this awareness of heterogeneous behavior
which theoretically underlay the concept of species sanitation. It happened, however, that the changes concomitant with economic devel opment
in Europe and the United States al so rendered the environment hostile to most of the local vectors. Aswe have tried to emphasize, understanding
the heterogeneity of vector behavior is extremely important in understanding global differences in malariatransmission.
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improve their health-seeking behavior, including limiting their exposure to mosqguitoes and seeking drug treatment
(“radical” treatment schemes are those which have the goal of not only eliminating clinical symptoms but also
clearing all parasites from the patient’ s blood, are an important part of many malaria control strategies). Similarly,
increased national wealth allowed for the establishment of an extensive health infrastructure, making primary
clinical care easily accessible throughout the region. Finally, the establishment of large cities created environments
hostile to the spread of malaria® Of coursg, it isimpossible to know (and trivial to speculate) whether this
spontaneous decline would have led inevitably to malaria eradication in Europe, if not for the direct intervention
efforts of the 1930s, 1940s, and 1950s, but the observation of spontaneous decline of the disease seems to lend
credence to the conception of malaria as a“social disease,” borne of poverty and poor sanitation. Europe's

experience, however, is not necessarily universally applicable. Hackett offers an important caveat:

Agricultural progress, land reclamation, animal deviation, quinine, screening—these changes may have been ablein
various ways to tip the scales against malaria in temperate climates because they have worked where climatic conditions
arerelatively marginal for transmission. The same changes have failed in the tropics in large part because Anopheles and
Plasmodium, flourishing through the long, wet, warm seasons, can overwhelm any relatively minor improvementsin

human defenses.

In terms of Macdonal d’ s equation, above, the two variables which played an extremely important rolein
Europe’ s success in controlling malariawere a and p. (Examination of the equation shows that these are its most
quantitatively powerful variables). The primary malaria vectorsin southern Europe included An. maculipennis, An.
superpictus, An. sacharovi, and An. labranchiae (11; 24). An. maculipennis, in particular, is a complex of sub-
species, each of which has a varying degree of anthropophilicity. (At the end of the 19" century and until 1930, a
lack of understanding of this variation was the basis for the conundrum of “anophelism without malaria,” about
which much has been written® 1°). In comparison to European vectors, some tropical malaria vectors, including for

example An. gambiae in Africa, are more anthropophilic (30). In Europe throughout the early part of the 20™

8 Some of the complex effects of urbanization on malaria transmission are summarized in Oaks et . Malaria: Obstacles and Opportunities
(2991). Urban areas can be divided into two zones: the central zone, where the lack of suitable standing water renders vector reproduction
extremely rare and where malaria transmission is significantly reduced compared to more rural areas, and the periurban areas, where increased
population density and poor sanitation provide a more hospitable environment for vector reproduction. Malaria transmission in periurban areasis
particularly problematic where the resident populations are migrants displaced from more malaria endemic rural areas (see also NgeraJA, BH
Liese, and JHammer (1992) “Malaria: New Patterns and Perspectives’ World Bank Technical Paper no. 183).

9 see Litsios, Harrison, Bruce-Chwatt and Zulueta, and Hackett

10 After this principle was understood, according to Litsios, R. Senior White “ speculated that [in England] it had been the introduction of turnip
culture in the middle of the [19"] century to provide winter food for cattle, which by saving the herds from annual slaughter had initiated the
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century, improvements in animal husbandry effectively reduced a by distracting vector mosquitoes and thereby
dampened the transmission of the disease. In addition, these vectors are generally much shorter lived than other
tropical vectors (most notably An. gambiae and An. funestus, another African malaria vector). This reduced value of
p had always rendered malaria transmission less stable in temperate Europe than in the tropics. Residual application

of DDT in the late 1940s further reduced p, dealing the final blow to European malaria.

There may have been other factors which made malaria transmission relatively unstable in Europe. For
example, in temperate regions, mosguitoes spend the winter in a state of hibernation or non-reproductive semi-
hibernation. In order to maintain transmission, therefore, temperate strains of Plasmodium species required a variety
of biological mechanisms, including delayed patency (whereby the parasite spends the winter in the human liver) or
prolonged incubation (spending the winter in the mosquito gut). These adaptations leave the pathogens particularly
vulnerable to direct intervention, whereby well timed and widely concerted regimes of drug therapy and insecticide
applications could target al the re-emerging parasites at arrested pointsin their life-cycle. The Dutch Malaria
Commission, for example, introduced the idea of “autumnal quininization” in 1939. From mid-August until early
November, during the height of the relapse and transmission season, they proposed an intense regimen of
community wide quinine distribution and insecticide spraying. The program was hindered by the onset of World
War I1, by communal non-compliance in the drug regimen, and by other factors, but nonethel ess managed to

suppress an epidemic in one region.**

Another non-entomological advantage of temperate regions is the relative absence of asymptomatic
parasite carriers. Unlike many diseases (for example, measles), infection by malaria does not lead to the
development of protective, sterilizing immunity. Instead, after repeated bouts of illnessin arelatively short period
of time, an individual develops a non-sterilizing immunity which does not prevent parasites from developing and
circulating in the blood after a new inoculation, but does suppress the development of clinical symptoms (31). Asa
result, a population of apparently healthy individuals provides a parasite reservoir from which subsequent infections

are transmitted. This non-sterilizing immunity only lasts a short time in the absence of reinfection. In highly

decline of malaria.”

11 As discussed below, the use of quinine therapy to contain P.vivax transmission faces a number of obstacles. Later, when the drug Quiniplex
was introduced, it played an important role the ultimate elimination of malaria from the Netherlands. (Verhave, Jan Peter (1995) “ The use of
quinine for treatment and control of malariain The Netherlands,” Trop. Geog. Med. 47:252-8)
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endemic areas, therefore, avery large proportion of the indigenous adult population are parasite carriers, albeit
apparently healthy. Astransmission declines due to successful intervention it becomes increasingly important to
identify and manage this potentially deadly parasite reservoir. Disease surveillance is much less costly in less
endemic regions, where clinical symptoms conspicuously identify alarger proportion of parasitemic individuals.*? **
Malaria case detection in highly endemic areas is further confounded by the presence of other diseases whose
symptoms resembl e those of malaria. Thus, even when clinical symptoms do present themselves, malariais only

one of several possible diagnoses; in contrast, these symptoms (e.g., intermittent fevers, anemia, “paroxysms’) in the

temperate zones pointed more directly to malaria.

In addition, due to both climatic and species-specific factors, European malaria vectors tend to rely on
swamps for breeding. This rendered them more susceptible to the “bonifying” changes in land use trends
throughout the early portion of the 20" century. Macdonald’s variable m, therefore, was more vulnerable to
manipulation in Europe than elsewhere. For example, whereas agricultural development and land reclamation was
hostile to the vector population on the Roman Campagna, it may have proven beneficial to the vector population in
the Ethiopian highlands, where An. gambiae larvae have been observed feeding on corn pollen in puddles on newly
developed farmland (20). Similar land reclamation schemes in the United States (most notably, the Tennessee
Valley Authority project of the 1930s) greatly reduced vector populations and helped to bring malaria transmission

under control.

Malaria, however, did not spontaneously disappear from Europe.** Throughout the interwar period, direct
interventions continued with great success, mainly in the form of radical drug therapy, environmental engineering,
and application of larvicides and insecticides. Interrupted (and rolled back) by the widespread displacement of
refugees and economic devastation of World War 11, this success resumed in the late 1940s, and by the end of the
next decade malaria had disappeared entirely from most of Europe. Today, malariais endemic in only one

European country—Turkey (32). Interestingly, in severa places (e.g., Greece, Cyprus, and Italy), some maaria

12 50 Litsios, Pp. 94-96

13 For adiscussion of the debilitating cost of malaria surveillance in the tropics, see Ngjeraet al.

14 Although it did disappear accidentally from Greece. Facing budget constraints, the Greek government in 1951 was forced to cut back its
consumption of insecticides by spraying them only in particularly malarious areas. They were surprised to note that, in the formerly malarious
areas where spraying had been interrupted, transmission did not resume. This experience was formative and, according to Pamapana, played an
important role in the establishment of the WHO's Global Malaria Eradication Program (see below) (Bruce-Chwatt and Zulueta, Hackett,
Harrison)
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vectors remain, suggesting that the danger of resurgence persists—if afew imported cases go undetected, the
reasoning goes, a series of rapid and devastating epidemics could result, followed by the return of seasonal endemic
malaria (11). However, aslong as a sophisticated primary health care infrastructure exists and human-mosquito
contact remains relatively controlled, imported cases of malaria can easily be eliminated in atimely manner with
few or no secondary infections.”® The experience of these countries (and others, including Mauritius, where An.
gambiae remains indigenous, but malaria transmission is extremely rare) helpsto illustrate the difference between
the challenges of preventing the re-establishment of malariaonce it has disappeared and those of controlling its

spread where it remains endemic.

It is possible to overestimate the role of drug therapy in the effort to control malariain Europe. By far the
most widely used drug for malaria therapy at the time was quinine; choloroquine, the most popular contemporary
anti-malarial drug, was still inits experimental stages by 1947, when Europe was witnessing the final decline of
malaria. In addition, most European malaria was caused by P. vivax, which, unlike P. falciparum, is particularly
well-adapted to seasonal transmission, existing in two schizont forms in the human liver—one of which emergesto
cause blood infections and clinical symptoms, and the other of which remains latent in the liver. It isthis second
schizont form which is responsible for vivax’s characteristic relapses, up to a year after inoculation (12). While
quinine has rapid effectiveness in controlling clinical symptoms like fever, its concentration in the blood is
extremely short-lived, and it has no appreciable effect on parasitesin the liver. Therefore, doses of the distasteful
drug must be administered extremely frequently in order to have even limited prophylactic effect; furthermore, it is
well-established among clinicians that it is very difficult to convince an individual who does not suffer from clinical
symptoms to maintain adrug regimen. All of these factors combined to make quinine relatively ineffective as an
epidemiological tool. Widespread drug therapy in Europe, therefore, mitigated mal aria-associated morbidity and
mortality, but may have had less effectiveness than environmental changes and vector control measuresin

controlling the spread of the disease.’® Tropical falciparum malaria, however, does not relapse; once parasites are

%% 1n terms of Macdonald's basic reproduction equation, a sophisticated primary health care infrastructure and controlled human-mosguito contact
respectively increase r—the rate of recovery, and decrease ma—the human biting rate.

1A long debate among malariologists during this period focused on the effectiveness of quinine as atool for malaria control. There are those,
like Celli and Robert Koch, who suggested that quinine’s effectiveness as a killer of P.vivax gametocytes could help suppress transmission by
drastically reducing the size of the parasite reservoir during the transmission season, while others, like Hackett, suggested that quinine use wasin
fact counterproductive, aleviating clinical symptoms without controlling transmission, thereby diverting resources and providing a community
with afalse sense of security. Therefore, whileradical drug therapy was an extremely important component in the malaria control and
eradication strategies of countries across Europe, it is difficult to rank its historical importance against that of vector control techniques and
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eliminated, only reinoculation with new sporozoites can cause another blood infection in the same individual.
Therefore, this type of challenge is not among the many daunting challenges faced by the use of radical drug

treatment to control the transmission of tropical falciparum malaria.

Throughout the interwar period and afterward, malaria control efforts continued in Panama (still, however,
restricted to the areas of the Canal Zone with large U.S. staff communities). According to Simmons, Gorgas
previous success, as well as the completion of the canal and subsequent urbanization of the zone, made malaria
control considerably easier by the late 1930s. Previous resurgences, however, like that observed in Malaya, had
amply illustrated the cost of abandoning control programs at a point of disequilibrium. Therefore, Gorgas' intensely
centralized organizational design for malaria control remained in place long after the completion of the cana in the
form of the “Division of Sanitation.” The prevention of reintroduction of malaria (which most likely would have
occurred from the Republic of Panama, just outside the Canal Zone) was maintained by an enormously intricate
system of screening to reduce human mosquito contact, environmental engineering to reduce anopheline
populations,” intensive surveillance of mosquito breeding and behavior,®® larviciding, and the introduction of natural
predators like larvivorous fish. Particular emphasis was placed on the drainage and filling of swamps, and
subsequent destruction of mosquito breeding places. Six decades later, Panama remains aregional success story,
with one of the lowest rates of malariaincidence per 1000 population at risk among Central American countries
(second to El Salvador). In addition, malaria transmission occurs only in a comparatively small proportion of its

area.

The Global Malaria Eradication Program, 1958-1969

From Macdonald's basic reproduction eguation, it follows that for each disease generation (the inverse of
the human recovery period) during which z,<1, the total incidence of malariain the community decreases.
Therefore, it is theoretically possible, by manipulating one or more of the determinants of the basic reproduction

rate, to eradicate the disease entirely. In thiscontext, DDT emerged as a potential panacea, which, efficiently

“bonification.” (see Litsios and Harrison for summaries of this debate)

17a [Alided gresatly,” according to Simmons, “by the fact that excellent, large scale, topographical maps of the whole Canal and much of its
vicinity are available to the Health Department.”

18 nspectors were sent into the field to search for and identify mosquito larvae with portable compound microscopes, and |aborers were
employed in dwellings to use flashlights and catching tubes to trap mosquitoes overnight for later identification and dissection.
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employed in any ecological context, could sufficiently reduce the variable p to hold z<1 for several years (until
micro-evolutionary pressure caused insecticide resistance to emerge) and eliminate the disease. Thiswasthe basis
of the Global Malaria Eradication Program, launched by the World Health Organization in the late 1950s.° The
four-phase strategy of the program (preparation, attack, consolidation, and maintenance) was designed to make
maximum use of the continually shrinking time-horizon of DDT effectiveness (agricultural use of the insecticide had
already begun to select for resistance before the eradication program had even begun). Whileitis clear that the
designers of the program understood the ways in which topography, geography, climate, evolutionary history, and a
host of other local factors influenced the dynamics of malaria transmission, these factors seemed to have been
rendered effectively irrelevant by the enormous power of DDT to reduce mosquito longevity. During the first few
years of the Global Eradication Program, Europe had finally succeeded in eliminating the disease using this strategy.
At its apogee, the program had enlisted the participation of countries across Europe, Asia, and Latin America.
Although Africawas considered to lack the necessary infrastructure to maintain an efficient spray campaign and was
“excluded” from the program, both Mauritius and South Africa ultimately joined, among the last countries in the
world to do so. Outside of Europe, after optimism had waned and the goal of eradication had been abandoned in
19609, the strategy of residual spraying of DDT had succeeded in eliminating malaria from 2 countries; Taiwan and
Jamaica. In afew other countries, malariaincidence had been dramatically reduced, and the countries were able to
complete the eradication effort on their own—among these were Mauritius, Cuba, and several Caribbean islands.
Many appraisals have been offered of the failures of the Global Malaria Eradication Program in accomplishing its
primary goal, and these are reviewed exhaustively elsewhere® The goal of the attack phase of the program was to
use residual application of DDT on the walls of houses to reduce Macdonald’ s variable p. Emilio Pampana, who

codified the programmatic design, points out that the extrinsic incubation period of the parasite

needs quite afew days. . . During this period, most anophelines would feed every 48 hours, so that they would come back
[several times] and risk being killed by the sprayed walls. Clearly the chances that the mosquito will be killed are high. . .
The consequence isthat, if al houses have their inner walls appropriately sprayed with insecticide, transmission of malaria

will be stopped, and no new infections will occur.” (33)

1 For adetailed history of the history behind the launching of this campaign, see Litsios and Harrison.
2 see Litsios, Harrison, and Bruce-Chwatt and Zulueta.
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However, as many appraisals of the program have pointed out, it failed to take into account vital
differences in anopheline behavior. Domiciliary spraying of insecticides failed in many environments to control the
spread of malaria appreciably, because some mosquito species never rest indoors after feeding, thus avoiding any
contact with the insecticides. This“refractory behavior” appearsto be determined genetically, and differed between
species even before micro-evolutionary pressure began to select for refractory mutants within species. But initial
dramatic reductions in malariaincidence in many countries around the world, including for example, Afghanistan,
India, Sri Lanka, and Nicaragua, seemed to suggest that this approach had a generally sound theoretical basis. The
consolidation and maintenance phases of the program required extensive drug distribution (for both prophylactic and
therapeutic purposes), and the progression from one phase to the other was not often smooth. In terms of
Macdonald’ s equation, the attack phase was focused on p, the consolidation phase was focused on r and b, and the
maintenance phase was simply intended to confirm that the parasite reservoir had been completely eliminated.
However, the organizational design of national eradication programs had been extremely centralized. For example,
countries were encouraged to establish malaria eradication offices outside established health ministries, in order to
facilitate efficient spraying programs during the attack phase. However, the transition to the consolidation phase
then proved difficult in many cases, where the primary health care infrastructure had been inadequately prepared
during the course of the attack phase. This“verticality” of design was only sustainable for a short period of time,
while execution of the program involved rote behavior by well-trained staff and morale remained high, and very
little cooperation was required from outside the central offices of the national malaria eradication programs. In
addition, this transition was often poorly timed; the parameters of the four phases were defined in principle by
epidemiological goals, but in practice by specific time constraints; budgets, for example, had to be submitted several
yearsin advance. Therefore, some countries proceeded into the maintenance phase with substantial parasitemia
remaining in the community, while others continued spraying long after insecticide resistance had become
widespread.?? The program was theoretically designed to manipulate local conditions for a short period of time, and
thereby to eradicate the parasite reservoir permanently. Aslong as even asmall parasite reservoir remained, the

program could not be stopped without z, returning to itsinitial value and causing dramatic disease resurgence. As

2 For arei nterpretation of this debate, see Bradley, DJ (1998) “The particular and the general: Issues of specificity and verticality in malaria
control” Parassitologia 40:5-10.

2 For various vi ewpoints on the theme of time limitation, see Gramiccia and Beales, and Spielman et a. (1993) “Time limitation and the role of
research in the worldwide attempt to eradicate malaria’ J.Med.Ent. 30:6-19.
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hope of eradication and international commitment waned, this conundrum became more and more pronounced, and
the pressure to rocket countries from one phase to the next became acute. Nonetheless, Gramiccia and Beales,
among others, endorse the view that the where the program had involved a country’s primary health care

infrastructure, it was often successful in bringing health services to historically neglected rural settings.

Pampana warned early in the eradication program of the danger of disease recrudescence if interventions
are abandoned at a point of disequilibrium, where local conditions favor increased transmission. But as Gramiccia
and Bedles indicate, the re-evaluation of the goal of eradication did not substantially change the program. “In fact,”
they argue, “for a control programme, residual insecticides, wherever they had some effect, remained the cheapest
and most effective means for the control of rural malaria.” As insecticide resistance became more intense, however,
community participation became more grudging, and international financial support dried up,? many communities
abandoned or neglected their antimalaria efforts. In certain regions, most notably in southern Asia, where
prevalence remained low and the community had been rendered immunologically naive by years of interrupted

transmission, devastating and dramatic resurgences occurred throughout the 1970s.

Resurgence usually occurs after a period of dampened transmission, and therefore in a community that is
relatively immunologically naive. Therefore the “ruling reproduction number” is much closer to the basic
reproduction number than it would be in an endemic environment in an equilibrium state. It follows, therefore, that
if conditions are sufficient to maintain endemic transmission and a very small parasite population is introduced into
the environment, then the disease will spread more and more rapidly until equilibrium is achieved. The observed
recrudescence is rendered more dramatic by the synchronous nature of malaria etiology; Harrison describes how
entire communities fell ill at almost the same time in ever-increasing waves, until communal immunity is established

and the disease settles to its relatively silent endemic equilibrium.

Control Effortsof the Past 30 Years

Since the end of the global eradication program, malaria has only disappeared from afew countries.

Mauritius maintained its existing eradication program, well into the maintenance phase when the global program

2 Theformal end of the Global Malaria Eradication drastically reduced the amount of multilateral funding available to support local malaria
control programs. For time-series data on funding allocation, see Gramiccia and Beales.
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was abandoned, and reported its last locally transmitted casesin 1965. Mauritius control programswere as old as
the endemicity of the disease; while still under British rule, Mauritius received advice on vector control strategies
from Ronald Ross himself (25). Although there is some dispute about the initial success of malaria control efforts,
by 1951 DDT spraying had eradicated An. funestus, one of the main vectors, from theisland. Owing to its frequent
cyclones, the density of anophelines on Mauritius is extremely variable, and a population explosion in the late 1970s
led to a brief but costly recrudescence. Today, however, the primary potential vector on theisland is An. arabiensis,
and surveillance and control measures remain in place to keep the population as low as possible. Mauritiusis
fortunate that An. arabiensis isless anthropophilic than many other vectors, and most of the population remains
sensitive to insecticides. At the same time, it is unfortunate that the vector prefers to rest outdoors, making it more
refractory to insecticide spraying (34). Therisk of resurgence in the absence of efficient surveillance, vector
control, and prompt treatment of casesis very real—as demonstrated by the experience of the late 1970s. The state
of malaria eradication, whether certified by the WHO or not, is rarely ever permanent, and requires more extensive

maintenance in the tropics than in temperate zones.

The establishment of malaria control effortsin Africalagged far behind the rest of the world. Although
consolidated control efforts had been recommended WHO in Africaas early as 1950, the problem of African
malaria was deemed sufficiently intractable to justify the exclusion of the continent from the eradication program.

In the post-eradication years, many countriesin sub-saharan Africajoined the successor Global Malaria Control
Program. However, there were afew notable efforts to control the disease in Africa during this period, even outside
of Mauritius and South Africa. For example, Nigeria had employed a spray program in its western region between
1954 and 1958, with very limited success. A few other effortsin Africa met with similar results, and experiencesin
Africa seemed to call into question the validity of the basic epidemiological models. Among the first careful
international efforts conducted during this period was the “Garki project,” sponsored by the WHO in the Nigerian
savanna between 1970 and 1976. The project was extensive and time-limited, designed not only to control malaria
transmission in this region but also to characterize the epidemiologic dynamics of malariain this historically under-
examined context. After six years of operations costing over $6.1 million, the study concluded that the use of indoor
residual spraying and mass drug administration—precisely the prescription of the eradication program—should not

be recommended as malaria control strategiesin Africa. More than its conclusions, however, the historical
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importance of the Garki project may stem from itsillustration of the degree to which the problems of malariain

Africa had been neglected.

Latin America and the Caribbean islands have arelatively long history of malaria control efforts, dating
back to the early part of the 20" century (including, for example, Gorgas' success in Havana, the Panama Canal
Zone, and Panama?*). By 1952, virtually every country in the Americas had an organized malaria control program
in place. Over forty years later, however, malaria remained endemic throughout the Americas, except in the United
States, Canada, Chile, Uruguay, and the Carribean islands with the exception of Hispaniola (Bahamas, Barbados,
Bermuda, Cayman Islands, Cuba, Guadel oupe, Jamaica, Puerto Rico, St. Vincent/Grenadines, Trindidad and
Tobago, and the Virgin Islands) (35) (32). Where eradication (or, more correctly, extremely efficient control) has
been achieved, it has occurred through vector control and radical drug treatment techniques. These cases are
informative, because the Caribbean islands are situated extremely close to malaria endemic neighbors (the highest
malariarisk in the Americas exists in Guyana and French Guiana, both countries on the Caribbean coast). However,
imported cases are relatively rare (in 1991, the highest number of imported casesin the region occurred in Cuba,
where 215 cases were detected; this was followed by Guadel oupe, where 24 cases were detected), and have
historically been controlled.® The Dominican Republic, in contrast, which has historically demonstrated sustained
success in malaria control (and where malariaincidence in the early 1990s was rare by regional standards), remains
subject to outbreaks from imported cases from Haiti (36), where the topgraphy differs significantly and vector
populations are extremely difficult to control.?® These cases, and those of other islands (e.g., Singapore and Hong
Kong—where urbanization has played an important role in malaria control), suggest that control is more sustainable
on small islands. There arelikely to be at |east three reasons for this phenomenon. First, once controlled, the

population of avector speciesislesslikely to grow quickly in arelatively isolated island context. When new

2 Other examples may be found in Litsios and Harrison.

2 Trinidad's experience in the control of imported malariais particularly illustrative. There are three foci of transmission of imported malariain
the country. Thelargest isthe capital city and main trade point, Port of Spain, where the vast majority of imported cases are falciparum malaria
originating from Africaand introduced by returning laborers. The second is asmaller port along the western coast, and the third isatiny rural
region in the southwest corner of the country, less than 50 miles from the coast of Venezuela. The Trinidad government reacts to every reported
case of imported malaria with a combination of radical treatment of the infected individual, blood testing and prophylactic treatment of the nearby
population, intradomiciliary insecticide spraying, and extensive disease surveillance. Thetotal cost of this strategy has been estimated at
US$10,000/case; an investment the Trinidad government sees as essential to the protection of its privileged health status and its vital tourism
industry. (Kitron, Uriel “GIS and vector-borne disease surveillance and control,” presentation at the Harvard School of Public Health, December
4,1998.)

% According to Gramiccia and Beales, in the 1950s and 1960s, Haiti had initially had some success in controlling malaria, primarily through
radical drug treatment, but this success was quickly rolled back when drug resistant malaria was observed and the local vector An.albimanus
developed insecticide resistance.
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vectors are imported, for example through international travel on airplanes or ships, it is generally in small numbers.
In the presence of an intact infrastructure, efficient entomological surveillance can identify and eliminate foci before
avector population grows unwieldy (as, for example, with Mauritius' successin keeping An.gambiae and An.
funestus populations very small). Second, importation of casesisless likely to occur as a result of mass migration.
Mass migration, either in the presence or absence of infrastructural collapse, has accounted for malaria outbreaks
throughout history, including for example those of Mauritiusin the 19" century, or more recently, the re-
establishment of endemic transmission in Tgjikistan in 1990, or epidemics in the Dominican Republic in 1994 (32).
Thirdly, they are less susceptible to infrastructural collapse in neighboring countries. Malaria outbreaks often result
from civil strife or economic crisis (as, for example, in central Asia), and these outbreaks inevitably have
repercussions in the border regions of neighboring countries, particularly when these regions do not provide a

natural barrier against vector migration.

In Asia, where some of the most devastating resurgences occurred immediately after the end of the WHO's
global eradication program, malaria continues to pose a threat to much of the population. According to the WHO,
malaria transmission occurs in regions accounting for 85% of the population of southeast Asiaand 4% of China
(exclusively initstropical southern states). Much of the malariain southeast Asiais transmitted by forest-dwelling
vectors, making vector control extremely difficult and also leaving large infected populations beyond the reach of
the basic health infrastructure. In addition, multi-drug resistant malaria has been observed in the region. In Asia, as
in Latin America, the small island countries (including Malaysia, Singapore, Hong Kong, and parts of Indonesia)
have generally fared better in controlling malaria than their continental neighbors (including Thailand, Myanmar,
Bangladesh, and India), although Sri Lankais an important exception, reporting the second highest risk of malariain

the region.

Today, the WHO reports that of the approximately 100 countries in which malaria remains endemic, “over
90% have designed control measuresin line with the Global Malaria Control Strategy (which replaced the
eradication program).” Each of these countries have met with varying degrees of success, but all strategiesinvolve
some combination of vector control, reduction of human-mosquito contact and drug treatment. Any contemporary
control strategy faces avariety of challenges. Vector control strategies are hindered by the rapid development of

insecticide resistant vector populations. In addition, anthropogenic changes in the environment have sometimes had
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unintended effects on vector populations (37-40). Drug treatment strategies are daunted by inadequate health care
infrastructure, poor distribution of drugs, the explosion of drug resistant parasite populations, and inadequate self-
treatment education of the community (41-44). Reduction of human mosquito contact is hindered by the presence of
poorly constructed dwellings, exophagic vectors (that is, vectors which feed outdoors) and community non-

compliance in bednet strategies (45; 46).

Analysis of historical changes in malaria prevalence suggests a number of factors which help to determine
the likelihood and sustainability of successin malariacontrol. A few among these are geography, evolutionary
history of flora and fauna, infrastructure, land use, and economic activity. Each of these factors operates
independently and in concert with the others to produce an enormous heterogeneity of challenges. A few, including
Ngjeraet a., have begun to try to design strategies which take these factors into account (see for example table 2,
reproduced from Ngjera (47)). Thisapproach is extremely important for the success of future malaria control
efforts, and ought to be discussed more widely and refined further. More generally, anumber of broad |essons may

be drawn from history; for example:

Geography favors malaria control effortsin island and temperate contexts. Asshownintable1,in
addition to the fact that historical success in malaria eradication has been almost exclusive to these contexts,

effective control is also more sustainable in these contexts.

Different geographical and biological contexts require differing degrees of surveillance and
control to maintain past success. For example, in highland regions where malaria transmission is seasonal,
vigilance is necessary to detect and dampen epidemics when they occur. Similarly, where vector breeding is
difficult to interrupt, as for example in forest contexts, environmental management is unlikely to have positive
effects (observe, for example, in table 2 the very limited number of contexts in which environmental

management and epidemic surveillance have been observed to achieve success).

Different epidemiological contexts make different demands on local and national infrastructure.
Where resistance to the most commonly distributed drugs is widespread, for example, self-treatment is less
likely to be effective in mitigating disease morbidity and mortality, and access to primary care clinicians and

second-line drugs is more important. In addition, in parts of tropical Africa, where malariais highly endemic
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and other diseases with similar symptoms are also widespread, it is very difficult to determine with precision the
number and distribution of malariainfected persons. Therefore, it is especially difficult in these contexts to
determine the success of ongoing control programs, to isolate specific foci of transmission, and to use drug

treatment techniques to control disease morbidity and mortality.

Anthropogenic changes to the environment, both globally and locally, are likely to have varying
and often unpredictable effects on local malaria situations. Often, these changes will demand creative social,

economic, and public health policy responses.

These lessons have important policy implications for malaria control. More than simply demanding a more
localized or “horizontal” approach to control programs, they suggest the identity of some of the variables behind
those of Macdonald’s seminal equations. In the absence of breakthrough technologies, well designed strategies will
take into account how factors including those listed above interact globally and locally. In addition, similar
historical analysis, placed in its proper context, can help to illustrate the ways in which malaria transmission
maintains both itself at the level of the patient and at that of the country. A longer view, for example, isrequired to
understand micro- and macroevolutionary dynamics, while awider oneis required to understand the micro- and

macroeconomic burden of malaria
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Figure 1.
Malaria risk - 1946, 1966, 1994
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Table 1. Broad Classifications of the malaria situation, 1950s-present

Countries and regions where appreciable
endemic transmission of malaria no longer
occurs?

Countries or regions where “malaria
declined and the situation has remained
favorable’®

Countries or regions where “the incidence
of malaria has oscillated. . . with a
quasihorizontal general trend”®

Countries or regions where “malaria has
increased markedly in certain areas’®

Carribbean islands (excluding Hispaniola);
United States; Chile

Italy; Balkan region (excluding Turkey);
France; Germany; Scandanavia; UK

Cyprus, Isradl; Jordan; Kuwait; Lebanon
Mauritius; Lesotho; Seychelles

Former Soviet Union (excluding
Azerbaijan and Tgjikistan)

Australia; New Zealand; Brunei; Japan;
Mongolia; Singapore; Hong Kong; Taiwan

Cuba; Costa Rica; Panama; Paraguay
Egypt; Morocco; Tunisia

Korea; Malaysia (excluding Sabah); China

Argentina; El Salvador; Honduras;
Nicaragua; Surinam

Y emen; lran

Indonesia; Malaysia (Sabah)

Belize; Bhutan; Bolivia; Brazil; Colombia,
French Guiana, Guatemala, Guyana;
Mexico; Peru

Turkey®

Afghanistan; Saudi Arabia

M adagascar

Tajikistan

Myanmar; Nepal; Papua New Guinea;

Solomon Idands; Thailand; Vanuatu;
Vietham

Note: Dueto lack of data, it is difficult to place most African countries on thistable. However, according to the WHO report World Malaria Stuation 1990, tropical Africa accounts for most of the “areas where endemic malaria
remains basically unchanged, and no national anitmalaria program was. . . implemented [by 1990].”

& Sources: Bruce Chwatt and Zulueta; WHO (1997)
P Source: Ngjeraet al. (1993)
® Source: WHO (1997)
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Table 2. Contexts in which control strategies have (+) or have not (-) proven effective.

Reproduced from Najera et al. (46)

Table 3.2 Patterns assoclated with ecological and soclal conditions

Spedific occupations/
Major ecological conditions social conditions
Plains and Forest  Highland
valleys and and Seashore Agricultural Migrant
African outside forest desert and colonization  Gold agriculture Displaced

Control intervention savannah  Africa fringe fringe coastal Urban  of forest mining labor  populations
Management of ciinical malaria

Diagnosis and treatment + + + + + + + + + +

Care of treatiment failures + + + + + + + + + +
Protection of pregnant women

Chemoprophylaxis + - + - - - + - - -

Bednets and personal

protection + + + + + + + + + +

Vector control

Residual spraying - Selective Selective Epidemic Selective Limited Selective - Limited Epidemic

control control

Fogging ULV - - - - + Limited - Limited +

impregnated bednets or curtains  + + + - + - + + - -
Environmental control

Drainage and source reduction - - - - + + - - + -

Larviciding - - - - + + - . + -

Biological control - - - - Limited + - - + -
Surveillance

Epidemiological survelllance + + + + + + + + + +

Monitoring epldemic risk - + + + - - + + +
Health education + + + + + + + - - -
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