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Abstract

We explore the use of proper priors for vari-
ance parameters of certain sparse Bayesian
regression models. This leads to a connec-
tion between sparse Bayesian learning (SBL)
models (Tipping, 2001) and the recently pro-
posed Bayesian Lasso (Park and Casella,
2008). We outline simple modifications of
existing algorithms to solve this new variant
which essentially uses type-II maximum like-
lihood to fit the Bayesian Lasso model. We
also propose an Elastic-net (Zou and Hastie,
2005) heuristic to help with modeling corre-
lated inputs. Experimental results show the
proposals to compare favorably to both the
Lasso and traditional and more recent sparse
Bayesian algorithms.

1 Introduction and Motivation

Sparse Bayesian Learning (SBL) using automatic rel-
evance determination as typified by the Relevance
Vector machine (Tipping, 2001), has proven to be a
very effective and accurate method for a wide va-
riety of regression and classification problems. The
SBL paradigm performs parameter learning via type-
II maximum likelihood where a marginal data likeli-
hood maximization provides the parameter estimates.
Two related tracks, the Lasso (Tibshirani, 1996) and
the Bayesian Lasso (Park and Casella, 2008), approach
the estimation task in rather different ways. The Lasso
considers regression and classification in the loss plus
ℓ1-regularization framework. The resulting optimiza-
tion problem can also be viewed in the Bayesian set-
ting as a maximum-a-posteriori (MAP) solution to
a regression problem with parameters having indi-
vidual Laplace (or double exponential) priors. The
Bayesian Lasso instead makes use of the equivalence
of a hierarchical Gaussian-Exponential prior to the

Laplace prior, and conducts fully Bayesian inference
(via Markov chain Monte Carlo or MCMC sampling
algorithms) for parameter inference.

A number of recent papers have explored connections
between these three approaches and our work is in
that vein. For example Wipf and Nagarajan (2008)
clearly delineates the connection between SBLs type-II
maximum likelihood and MAP estimation, by showing
that SBL’s type-II maximum likelihood is equivalent
to MAP estimation where the prior on the parameters
is ’non-factorial’ (in other words, the prior depends
on the input basis functions, and cannot be decom-
posed into independent terms involving each parame-
ter). A natural question that arises is whether type-II
maximum likelihood is an effective way to train the
Bayesian Lasso model as well. This would have two
advantages over the Bayesian Lasso. First, parameter
estimates would be sparse, and second, the parameter
estimates would be obtained by optimization and not
by computationally more demanding MCMC.

2 Background and Notation

We consider SBL, the Lasso and the Bayesian Lasso
in the context of the classical Gaussian linear regres-
sion modeling. Specifically, given a regressor ma-
trix/feature dictionary Φ, an observation/response
vector y and i.i.d. Gaussian noise/errors ǫ, we con-
sider linear models of the form

y = Φβ + ǫ. (1)

These assumptions lead to a likelihood of the form:

p(y|β, σ2) = 2πσ2−N/2
exp

{

−‖y − Φβ‖
2σ2

}

where the dataset, D comprises N responses y =
(y1, . . . , yN)T and the N x p design matrix Φ =
[φ(x1), . . . , φ(xN )]T. The Gaussian noise distribution
is mean zero and variance σ2, p(ǫ) = N (ǫ|0, σ2I) and
the parameter vector β is p dimensional. We assume
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that the intercept parameter, if any, is estimated out-
side the estimation schemes discussed here (for exam-
ple, by centering the response). Loosely speaking, the
Lasso is the least “Bayesian” of three approaches while
the Bayesian Lasso is the most Bayesian. SBL along
with the “demi-Bayesian” approach we describe below
are somewhere in between.

2.1 The Lasso

The Lasso formulation estimates β by solving the fol-
lowing convex optimization problem:

min
β

(y − Φβ)T(y − Φβ) + ρ‖β‖1

(ρ is a non-negative scalar regularization parameter).
The Lasso optimization problem has a MAP-Bayesian
interpretation as follows (Tibshirani, 1996). Assign
each component βj of β an independent Laplacian or
double-exponential prior distribution with mean 0:

p(βj |ρj) =
ρj

2
e−ρj |βj|, ρj > 0, j = 1, . . . , p

with p(β) =
∏

j p(βj) and all ρj = ρ. A prior
of this form places high probability mass near zero
and along individual component axes thereby promot-
ing sparsity. It also has heavier tails than a Gaus-
sian distribution leading to some theoretical difficul-
ties with regard to variable selection1 Now, in this set-
ting, the Lasso optimization problem results in β esti-
mates that correspond to the posterior mode estimates
(argmaxβp(β|D, ρ)). Predictions are then made using

this point posterior mode. By contrast, fully Bayesian
inference would typically integrate over the entire pos-
terior distribution rather than conditioning on a spe-
cific value. In fact, while the posterior mode is an
optimal point estimate under zero-one loss, there is
no particular reason to expect such a loss function to
be reasonable in any particular application. Nonethe-
less, the Lasso has provided excellent predictive per-
formance in many applications (Genkin et al., 2007).

2.2 Sparse Bayesian Learning

An alternative sparse linear modeling approach was
proposed by Tipping (2001) in his work on the rele-
vance vector machine (referred to as SBL here). In
this line of work, a zero-mean Gaussian prior is as-
sumed for each of the regression parameters:

p(β|γ) =

p
∏

j=1

N (βj |0, γj), γj > 0, j = 1, . . . , p, (2)

1It is now well-known that the Lasso does not possess
an “Oracle Property,” typically failing to set enough com-
ponents of β to zero. See, for example, Zou (2006).

where crucially, each unknown weight has a separate
non-negative hyperparameter γj controlling it’s vari-
ance (with γ being the p vector of these hyperparam-
eters). In the learning procedure, sparsity is achieved
if certain γj are set to zero. A further hierarchi-
cal specification of the hyperparameters (for both the
variance of the weights and the noise) completes the
prior specification, with p(γ) =

∏

j Gamma(γj |a, b)

and p(σ2) =
∏

j Gamma(σ2|c, d). In the RVM and
further works however, these priors are specified as flat
and hence improper priors (a, b, c, d=0), an important
point of difference with what we propose.

Learning in the SBL paradigm involves exact poste-
rior inference for the predictions, where the hyperpa-
rameters are chosen to maximize the marginal data
likelihood. The literature refers to this procedure as
type-II maximum likelihood or evidence maximization
(Mackay, 1992; Berger, 1980). Equivalently, SBL min-
imizes:

− log

∫

p(y|β)p(β, γ)dβ = log |Σy| + βTΣ−1
y β (3)

where Σy = σ2I+ΦΓΦT and Γ = diag[γ] (see Tipping
2001 or Wipf and Nagarajan 2008). This optimization
leads to some γ∗, which then leads to the posterior dis-
tribution of the weights p(β|D, γ∗, σ

2) = N (β|µ, Σ).
Here, µ = Γ∗Φ

TΣ−1
y∗ y and Σ = Γ − ΓΦTΣ−1

y∗ ΦΓ 2.
The expression for the posterior mean µ, further em-
phasizes how if γ∗,j = 0, the corresponding βj is also
zero and removed from the model. Finally, the pre-
dictive density for a new/test point φ(xt) integrates
over the posterior density of β leading to a closed-form
Gaussian expression:

p(yt|D, γ∗, σ
2, φ(xt)) = N (yt|myt

, σt). (4)

myt
= µTφ(xt),

σ2
t = σ2 + φ(xt)

TΣφ(xt).

We note that SBL can be shown to be equivalent to
Gaussian process regression under particular restric-
tions - see for example Tipping (2001).

The objective function in the SBL optimization prob-
lem (in Equation 2) is multi-modal, non-convex, and
has fixed points at sparse solutions. Various algo-
rithms have been proposed in the literature for obtain-
ing local minima (Tipping, 2001; Wipf and Nagarajan,
2008; Tipping and Faul, 2003; Mackay, 1992).

2.3 The Bayesian Lasso

The Bayesian Lasso (Park and Casella, 2008) starts
with the data model of Equation 1 and the same Gaus-

2The expressions are modeled on the Wipf and Nagara-
jan (2008) paper, and are equivalent to the ones in the
RVM paper where the notation is slightly different.



sian prior for the weights as in SBL (Equation 2). The
hierarchical prior model differs slightly from that of
SBL insofar as the variance parameters are assumed to
be drawn from an exponential distribution with rate
hyperparameter p-vector λ, instead of a gamma dis-
tribution,i.e.:

p(γ|λ) =

p
∏

j=1

λj

2
exp−λjγj

2
, λj > 0, j = 1, . . . , p.

The reason why this relates to the Lasso and sparse
learning, is because this particular form of hierarchical
prior results in a Laplace prior on β after marginalizing
out γ (p(β) =

∫

p(β|γ)p(γ|λ)dγ). This result derives
from the representation of the Laplace distribution as a
scaled mixture of Gaussians with an exponential mix-
ing density(Park and Casella, 2008):

√
a

2
e−

√
a|z| =

∫ ∞

0

1√
2πs

e−z2/(2s) a

2
e−as/2ds, a > 0.

Inference in the Bayesian Lasso is carried out in a fully
Bayesian manner via posterior simulation. Exploiting
closed form marginal distribution calculations, Park
and Casella (2008) outline a Gibbs sampler that can
be used to draw samples from the posterior distribu-
tion p(β|D) (they also propose various techniques to
estimate/set/sample from the hyperparameter distri-
bution). While this represents a satisfying Bayesian
solution, MCMC sampling poses a significant obstacle
in terms of the size of the applications this technique
can reasonably be expected to handle. In addition,
the Bayesian Lasso does not yield a sparse solution
unless ad-hoc rules are used to threshold components
of β that are small a posteriori. Other minor sam-
pling related drawbacks include difficulty in assessing
convergence of the MCMC sampler, and tuning of the
sampling algorithm itself.

3 The demi-Bayesian Lasso

With the above background in place we turn to our
proposals. To circumvent the computational complex-
ities associated with the MCMC sampling required for
the Bayesian Lasso, we propose fitting the Bayesian
Lasso model through a type-II maximum likelihood
procedure (i.e., by maximizing the marginal data like-
lihood). Conceptually, this inherits the benefits of the
SBL framework and alleviates the corresponding sam-
pling associated problems. We now find hyperparam-
eters via optimization and not sampling (thus greatly
expanding the dimensionality of models that can be
learnt efficiently), the resultant posterior distribution
is analytically tractable (Gaussian), and sparse mod-
els for prediction are obtained without thresholding
the posterior distribution. Of course, the flip side is

that first, this proposal, like SBL, is less than fully
Bayesian, and second, also like SBL, it results in a
non-convex optimization problem.

Specifically, we propose to learn the Bayesian Lasso
linear model y = Φβ + ǫ, with p(ǫ) = N (ǫ|0, σ2I) (we
assume σ2 given in this work, and pick it’s value from
among a set of candidates based on predictive accuracy
estimates such as cross validation/validation error).
Further, p(β|γ) = N (β|0, Γ) (recall that Γ = diag[γ])
and we place an exponential prior on the variance com-
ponents, p(γ|λ) =

∏p
j=1

λj

2 exp−λjγj

2 . However, as in
SBL, we choose to estimate the non-negative hyperpa-
rameters γ by type-II maximum likelihood. In other
words, we maximize the marginal data likelihood in
order to learn the hyperparameters:

p(γ|D, λ) ∝ p(y|γ)p(γ|λ)

=

(
∫

p(y|β)p(β, γ)dβ

)

p(γ|λ).

Taking the negative logarithm, using the result from
Equation 3, and removing quantities irrelevant to the
optimization problem results in the following objective
function to be minimized:

L(γ) = log |Σy| + βTΣ−1
y β + λ

p
∑

j=1

γj (5)

Note that for parsimony and convenience in further
estimation, we set all the λj = 2λ, which we assume
to be given (again picked from candidates using cross
validation). Also note that the key difference com-
pared to SBL is the presence of the proper variance
prior, which results in the extra term in Equation 5 as
compared to Equation 3, and provides extra shrinkage.
After obtaining (local) maximum values for the hyper-
parameters γ∗ (the next section outlines algorithms for
this purpose), we then make posterior predictions also
according to the SBL machinery, via the expressions
for p(yt|D, γ∗, σ

2, φ(xt)) and the related expressions
for the mean and variance, Equations 4. We call this
approach the demi-Bayesian Lasso (dBL).

It is worth mentioning that the above formulation can
be obtained by considering the original SBL formula-
tion with a particular form of the Gamma prior on the
variance components γj. This links the Bayesian Lasso
model to the SBL model and provides the motivation
for our proper prior on the variances.

3.1 Algorithms

The key learning task with the model is finding optimal
prior variance, γ values. This then allows us to com-
pute the posterior distribution over the weights and
compute the posterior predictive distribution (Equa-



tions 4). Due to the similarity with the SBL ob-
jective function, many of the SBL algorithms apply
with minor modifications. Here we discuss two vari-
ants. The first is a modification of the EM algo-
rithm that was proposed in Tipping (2001). Start-
ing with some γ, we iteratively apply the E step:
Σ = Γ − ΓΦTΣ−1

y∗ ΦΓ, µ = Γ∗Φ
TΣ−1

y∗ y and the M

step: γj =
2(µ2

j+Σjj)

1+
√

1+4λ(µ2

j
+Σjj)

for all j = 1, . . . , p, until

convergence. We will refer to this algorithm as EM
dBL.

The second variant modifies a recent algorithm by
Wipf and Nagarajan (2008) that possesses several nice
properties, such as a global convergence analysis (to a
local minimum) and sparsity along the solution path.
We state the algorithm next, and refer the reader to
Appendix A and (Wipf and Nagarajan, 2008) for de-
tails.

Data: D, λ, γ.
Result: Sparse β, γ, at each iteration.
Initialize β = 0, z = [1, . . . , 1]T.
while Convergence criteria not met do

β∗ = argminβ‖y−Φβ‖2
2 + 2σ2

∑

j(zj + λ)1/2|βj |
γj = (zj + λ)−1/2|β∗,j|
z∗ = ∇γ log|Σy| = diag[ΦTΣ−1

y Φ]
β = β∗
z = z∗

end

β = E[β|y, γ∗] = Γ∗Φ
TΣ−1

y∗ y

Algorithm 1: The ℓ1 dBL algorithm.

The algorithm outlined above is guaranteed to con-
verge monotonically to a local minimum (or saddle
point) of Equation 5. This follows trivially from The-
orem 1 and analysis in Wipf and Nagarajan (2008).
The algorithm notably uses iterated re-weighted ℓ1

regression (step 1 in the while loop) to estimate the
weights β, also known as an adaptive Lasso problem
(Zou, 2006). The ℓ1 penalty results in sparse β, which
correspondingly results in sparse estimates of variance
components γ—we will refer to this algorithm as ℓ1

dBL. The auxiliary variables z (a p-vector) arise from
the upper bound of the log-determinant term (see Ap-
pendix, Wipf and Nagarajan 2008). The choice of an
Exponential prior results in very small computational
differences between the SBL algorithm in Wipf and
Nagarajan (2008) and the one presented here. In par-
ticular, replacing zj + λ with zj is the only difference.
Similarly, the prior results in a small difference in the
M step in the corresponding update in Tipping (2001)
algorithm, where it is: γj = µ2

j + Σjj . As expected,
the proper prior results in additional regularization of
the variance parameters towards zero. We expect that
this additional regularization will come with a bias-

variance trade-off, the additional flexibility created by
the single extra parameter λ potentially allowing us to
generalize better.

3.2 An EN heuristic

While the use of of iterated re-weighted ℓ1 regular-
ized regression results in sparsity which is desirable, it
also inherits some of the drawbacks of ℓ1 regression.
In particular, an issue of concern is the instability of
ℓ1 regression solutions with respect to highly corre-
lated regressors (Zou and Hastie, 2005). Essentially,
with highly correlated regressors/basis functions, the
weights β computed based on the ℓ1 solution are
unstable—small differences in the dataset can result
in the selection of very different subsets of a set of cor-
related regressors3. Zou and Hastie (2005)’s “elastic
net” seeks to address this issue. The elastic net im-
poses an αℓ1 + (1 − α)ℓ2 penalty, 0 ≤ α < 1, on the
weights. This has the attractive property of impos-
ing a simple additional convex loss and encourages a
“grouping effect” which helps keep weights on corre-
lated regressors similar (ref Thm. 1 in Zou and Hastie
2005). Zou and Hastie (2005) show good results when
applying this mixed penalty.

We attempt to capture the same effect in the dBL.
This is done by solving an elastic net problem in Algo-
rithm 1 instead of the re-weighted ℓ1 regression prob-
lem. Unfortunately, the heuristic doesn’t correspond
to an intuitive prior on the variance components and
further is strongly tied to the iterated re-weighted ℓ1

regression algorithm (an equivalent is hard to define
for the EM style algorithms). Nonetheless, we explore
this heuristic in the experiments that follow—we will
refer to this as dBL+EN below.

4 Experiments and Results

We now turn to evaluation of the dBL via experimental
studies. We consider both simulation studies and three
real data examples from the literature and evaluate the
strengths and weaknesses of the proposal.

4.1 Simulation studies

Our simulation study models are based on the studies
in Zou and Hastie (2005) (examples 2 and 4 corre-
spond exactly, examples 1 and 3 are minor modifica-
tions of examples in their work). The aim is to high-
light the differences between the techniques in terms

3For perfectly correlated relevant regressors, one
amongst them is chosen to have a non-zero weight either
at random or due to the particulars of the the algorithm
implementation.



of predictive performance, but also in terms of vari-
able selection accuracy. We present four simulation
study examples, each of which consist of a training
set, a validation set and a test set (all independent).
Models are fit using the training data only, and param-
eters/hyperparameters selected from appropriate grids
on reasonable values using the validation set. For the
EN heuristic, in all experiments we set the ℓ1/ℓ2 blend-
ing parameter α = 0.7. Borrowing notation from Zou
and Hastie (2005), we use x/y/z to denote x training
observations (size of the training data), y validation
and z independent test samples. The four examples
attempt to gauge the performance of the methods in
various scenarios:

• Example 1: we simulate 200 data sets consist-
ing of 20/20/200 observations with 8 predictors. The
data generating mechanism is a linear model with
y = Φβ + κǫ where p(ǫ) = N (ǫ|0, I) and κ = 3. We
set β = [3, 1.5, 0, 0, 2, 0, 0, 0]T. The pairwise correla-
tion between Φi and Φj is set as cov(i, j) = ρ|i−j|. In
example 1, the covariance matrix is an identity matrix,
cov(i, j) = 0 for all i 6= j and cov(i, i) = 1. Finally, Φ

is drawn from a multivariate Gaussian with zero mean
and the above covariance matrix.

• Example 2: Is entirely analogous to example 1 ex-
cept with non-identity covariance (introducing mild
correlation between the regressors). Here, ρ = 0.5.

• Example 3: Is the same as examples 1 and 2, except
with higher correlation between the regressors. Here,
ρ = 0.85.

• Example 4: Also an example where the data
generating mechanism is a linear model. We
simulate 200 data sets with 100/100/400 obser-
vations and 40 predictors. This time β =
[0, . . . , 0, 2, . . . , 2, 0, . . . , 0, 2, . . . , 2]T, with alternating
blocks of 10 indices of zeros and 2s. Here, κ = 15
and cov(i, j) = 0.5 for all i 6= j, and cov(i, i) = 1.

• Example 5: An example where the data generat-
ing mechanism is not a linear model. Here we will
not be able to gauge variable selection accuracy, but
only predictive performance. In this case we include
some interaction terms and powers of the regressors
in computing the response. We simulate 40/40/400
observations following polynomial model (for a single
observation): y = 1.5φ2

1 +2φ1φ2−φ5φ1 +φ3
5 +2φ7 +3ǫ

where ǫ is a zero mean, unit variance Gaussian error.
The learning algorithms only get access to Φ and the
responses.

For examples 1 through 4, we compute the follow-
ing quantities: i) the mean squared error (MSE),
computed on test data, ii) mean “parametric” er-
ror (MPE), that is, the mean of the quantity (β −

βtrue)
TΣ(β − βtrue), where Σ is the covariance of Φ.

This attempts to quantify closeness to the parameters
that actually generated the data. iii) Quantities re-
lated to structural errors: mean C (C̄) and mean IC
( ¯IC). C is defined as the number of true weights that
were zero which are correctly estimated as zero by the
model (thus higher values are better). Similarly, IC
is defined as the number of non-zero true weights in-
correctly estimated as zero by the model (and thus
lower IC values are preferred). Models that are exces-
sively sparse would tend to have high C values (good)
and high IC values (not good). A model that is com-
pletely non-sparse would have the lowest possible C
value (bad) but the lowest IC values (good) as well.
For example 5, since the data generating mechanism
is outside the model hypothesis class we only report
the test mean squared error.

We evaluate the optimization based approaches,
namely the Lasso (Lasso in the results), the original
SBL algorithm (Tipping 2001, SBL), the Wipf and
Nagarajan (2008) SBL algorithm (ℓ1 SBL), the dBL
model with parameters found using the EM algorithm
(EM dBL) and the ℓ1 variation (Algorithm 1, ℓ1 dBL)
and finally, the ℓ1 based proposal with the EN heuris-
tic (dBL + EN).

Table 1 and Figure 1 show the results. In all cases
(modest to large) improvements are made over the
flat-prior variants and over the Lasso. In the tables
we show standard errors of the estimates, and in the
Figure, we show boxplots of the squared error showing
the median, lower and upper quartiles, whiskers and
outliers. We next turn to some real data examples.

Lasso SBL l1 SBL dBL l1 dBL dBL+EN
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Figure 1: Boxplots for simulation studies 3 and 4. The
horizontal dashed line is a visual guide and marks the
location of the minimum median from amongst the
prior art, namely the Lasso, SBL and ℓ1 SBL.



Table 1: Simulation study results

Lasso SBL ℓ1 SBL EM dBL ℓ1 dBL dBL + EN

Example 1
MSE 14.40 (0.28) 14.39 (0.31) 14.66 (0.34) 14.23 (0.29) 14.04 (0.30) 14.11 (0.28)
MPE 3.99 (0.21) 4.02 (0.24) 4.25 (0.27) 3.83 (0.22) 3.64 (0.23) 3.70 (0.21)
C̄ 2.23 (0.12) 2.59 (0.12) 3.51 (0.10) 2.21 (0.11) 3.61 (0.10) 3.29 (0.09)
¯IC 0.24 (0.04) 0.26 (0.04) 0.38 (0.05) 0.22 (0.04) 0.30 (0.04) 0.26 (0.04)

Example 2
MSE 14.63 (0.36) 14.84 (0.37) 15.12 (0.42) 14.44 (0.36) 14.42 (0.36) 14.22 (0.37)
MPE 3.91 (0.22) 4.12 (0.23) 4.44 (0.30) 3.72 (0.21) 3.72 (0.21) 3.53 (0.22)
C̄ 2.24 (0.11) 2.77 (0.11) 3.56 (0.11) 2.23 (0.10) 3.58 (0.10) 3.25 (0.10)
¯IC 0.22 (0.03) 0.39 (0.04) 0.48 (0.05) 0.22 (0.03) 0.36 (0.04) 0.23 (0.03)

Example 3
MSE 14.20 (0.32) 14.42 (0.31) 15.20 (0.42) 13.83 (0.30) 13.99 (0.30) 13.44 (0.28)
MPE 3.33 (0.17) 3.56 (0.17) 4.21 (0.29) 2.96 (0.15) 3.09 (0.15) 2.53 (0.13)
C̄ 2.42 (0.09) 2.85 (0.10) 3.23 (0.09) 2.52 (0.09) 3.48 (0.09) 2.77 (0.08)
¯IC 0.65 (0.05) 0.78 (0.05) 0.91 (0.05) 0.58 (0.05) 0.92 (0.05) 0.38 (0.04)

Example 4
MSE 316.92 (2.41) 311.37 (2.32) 327.13 (2.78) 283.72 (1.95) 286.50 (2.03) 261.14 (1.67)
MPE 83.74 (1.64) 77.37 (1.39) 93.55 (2.02) 49.28 (0.90) 52.19 (1.03) 26.22 (0.49)
C̄ 9.72 (0.34) 14.61 (0.24) 8.39 (0.16) 11.99 (0.19) 14.66 (0.18) 8.03 (0.21)
¯IC 5.92 (0.19) 9.87 (0.19) 5.79 (0.13) 6.58 (0.14) 8.77 (0.15) 2.52 (0.12)

Example 5
MSE 30.78 (0.40) 30.56 (0.42) 31.64 (0.47) 30.32 (0.40) 30.07 (0.40) 30.37 (0.40)

4.2 Prostate cancer data

The data in this example comes from a prostate can-
cer study done by Stamey et al. (1989). Eight clinical
measurements serve as the regressors, which are, in
order: log(cancer volume) lcavol, log(prostate weight)
lweight, age, log(amount of benign prostatic hyper-
plasia) lbph, seminal vesicle invasion svi, log(capsular
penetration lcp, Gleason score gleason and percentage
Gleason score 4 or 5 pgg45. The predictive quantity
of interest is the log(prostate specific antigen) lpsa.

Following Zou and Hastie (2005), we divide the data
into two parts, a training set with roughly two thirds
the number of observations, 64 observations and a test
set with 33 observations. Hyperparameters were se-
lected from a grid of values via 10-fold cross validation
using only the training data4. Note that for the Lasso,
the σ2 is a proxy label for the regularization param-
eter. The methods are compared via the prediction
mean-squared error on the test data.

Our results (Table 2) show improved performance of
the proposals over the Lasso and SBL, with the ℓ1 dBL
providing the best performance. There is broad con-
sensus on the selected variables, with lcp being rejected
by all models in our experiments.

4For all the real data examples, we select the hyper-
parameters following the slight modification to 10-fold CV
suggested in Hastie et al. (2001), namely we pick the small-
est amount of regularization that is within 1 standard error
of the minimum CV error.

4.3 Diabetes data

The data in this study come from Efron et al. (2004).
The response is a quantitative measure of diabetes pro-
gression in 398 patients one year after baseline. The
predictors include age, sex, body mass index, average
blood pressure, and six blood serum measurements, for
a total of 10 regressors. As Efron et al. (2004) point
out, linear models are especially useful in this diag-
nostic application, because in addition to predictive
accuracy for future patients, the models would ideally
provide disease progression guidance by being inter-
pretable. We standardized the regressors to have zero
mean 0 and unit variance.

We partition the data into a 266 patient training sam-
ple and a 132 patient test sample. Hyperparameters
were selected from a grid of values via 10-fold cross
validation using only the training data. We show test
mean squared error, variables selected and parameters
(and hyperparameters used).

Our results agree with many reported findings on this
dataset, and in our experiments, the dBL + EN vari-
ant proved predictively best by a slight margin (Table
3). In terms of variable selection, the least impor-
tant regressors appear to be 1, 6 and 8, which is also
evident from the findings in Park and Casella (2008)
(Note that in our experiments, the SBL model seems
to deselect regressor 7, which is an anomaly).



Table 2: Prostate data results

Lasso SBL ℓ1 SBL EM dBL ℓ1 dBL dBL + EN

MSE 0.4505 0.5539 0.5765 0.5367 0.3781 0.5216
Vars all all but 6 all but 6 all but 6 (1,3,4,5) (1,5,7)
σ2 (λ) 0.5 0.2 0.01 0.25 (1) 0.005 (500) 0.25 (1)

Table 3: Diabetes data results

Lasso SBL ℓ1 SBL EM dBL ℓ1 dBL dBL + EN

MSE 3031.2 3045.1 3032.4 3034.2 3031.2 3029.3

Vars all but 1,6,8 all but 1,7 all all but 1,8 all but 1,6,8 all
σ2 (λ) 1 500 500 500 (0.001) 100 (0.1) 500 (0.001)

4.4 Biscuit NIR data

In this application, we examine the biscuit dough data
from (Brown et al., 1999). The response we look at is
fat content of the dough, and the regressors are spec-
tral characteristics of the dough, measured using near
infrared (NIR) spectroscopy. The spectral characteris-
tics are described using a grid of wavelengths, in par-
ticular reflectance measured at every 4nm from the
range of wavelengths: 1202—2400 nm. The data is
split into 39 training samples and 31 test samples, and
we standardize the regressors.

Hyperparameters were selected from a grid of values
via 5-fold cross validation using only the training data.
The methods are compared via the prediction mean-
squared error on the test data.

Our results (Table 4, Figure 2) are consistent with pre-
vious studies that use this data (West, 2003) and we
find ℓ1 dBL gives the best performance. In particular,
the non-zero β found by ℓ1 dBL around 1710 nm are
significant because fat is known to have a character-
istic absorbance in this range. Also note that for this
example, the dBL + EN heuristic appears to perform
worse than the others.

5 Discussion

In this paper we examined the use of proper priors in
sparse Bayesian learning and showed some promising
experimental results. We show that with a single addi-
tional hyperparameter (set through cross-validation),
the model is augmented substantially enough to make
better predictions. Further, the choice of an exponen-
tial distribution as a prior connects SBL to the recently
proposed Bayesian Lasso, with our proposal amount-
ing to an attractive alternative way of estimating
Bayesian Lasso model hyperparameters by maximiz-

ing marginal likelihood rather than Monte Carlo sim-
ulation. We also explored the use of an EN-heuristic
that, in our experiments, leads to better performance
in the presence of correlated regressors. In future work
we would like to extend the proposals to classification
problems. We would also like to examine the efficient
SBL algorithm of Tipping and Faul (2003) to see if
an analogous procedure can be applied in this case as
well. Finally, other forms of prior distribution on the
variance are the topic of our further exploration - in-
cluding additionally sparsifying priors like the Laplace
distribution etc.
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Appendix A

Here we briefly outline the algorithm derivation. Due
to the small difference the prior variance makes com-
putationally, the details are almost exactly as those
presented in Wipf and Nagarajan (2008). The log-
determinant term in L(γ) (Eq. 5) is concave in γ, and
so can be expressed via log |Σy| = minz zTγ − g∗(z).
In that expression, g∗(z) is the concave conjugate of
log |Σy| (g∗(z) = minγ zTγ − log |Σy|). This then
leads to the upper bounding cost function: L(γ, z) =
zTγ − g∗(z) + βTΣ−1

y β + λ
∑p

j=1 γj ≥ L. Following
Wipf and Nagarajan (2008), the optimal z occurs when
z∗ = ∇γ log|Σy| = diag[ΦTΣ−1

y Φ]. Re-expressing the

term βTΣ−1
y β = minβ

1
σ2 ‖y − Φβ‖2

2 +
∑

j

β2

j

γj
, we get

an upper bounding term Lz(γ, β) = 1
σ2 ‖y − Φβ‖2

2 +
∑p

j=1

(

(zj + λ)γj +
β2

j

γj

)

≥ L which is jointly convex

in β and γ, which can be globally minimized solving
for γ and then β (Wipf and Nagarajan, 2008). Now,
for any β, γj = (zj + λ)−1/2|βj | minimizes Lz(γ, β).
This then results in the algorithm which is an itera-
tive application of the steps of finding the optimal γ

(minimizing the upper bounding cost), and then find-
ing the optimal z (which then leads to recomputing
the optimal upper bounding cost).


