

Bachelor’s thesis

Information and Communications Technology

2018

Ilari Léman

CREATING A BUILDING
HEALTH IOT APPLICATION

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/161432483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2018 | 21, 4

Ilari Léman

CREATING A BUILDING HEALTH IOT
APPLICATION

The purpose of this project was to create an IoT application used for monitoring the health of a
small hempcrete building. The application was created using ThingWorx and receives data
wirelessly from the building via sensors measuring the temperature, humidity, and pressure. This
thesis attempts to demonstrate the process used to connect sensors and display the data from
them using ThingWorx.

A working application displaying the sensor data and meeting all the requirements was created
successfully. Sensor data was displayed in a table, graph and as plain values within the
application. A floor plan map was also created in the application for displaying the locations of the
sensors within the building. The information found in this thesis may be used as a guide for others
wanting to develop applications using ThingWorx.

KEYWORDS:

IoT, Internet of Things, ThingWorx

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 TECHNICAL ASPECTS 7

2.1 Hardware 7

2.2 REST API 8

2.3 JSON 9

3 THINGWORX 11

3.1 Resources & Documentation 11

3.2 ThingWorx Composer 11

4 CREATING THE APPLICATION 13

4.1 Requirements 13

4.2 Creating Mockup Mashup 13

4.3 Connecting Cloud Data to ThingWorx 16

4.4 Connecting Data to Mashup 16

4.5 Styling Mashup 18

4.6 Results 18

5 CONCLUSION 20

REFERENCES 21

APPENDICES

Appendix 1. Script used to get JSON file from Humia cloud for sensor 2044D9
Appendix 2. Script used to get JSON file from Humia cloud for sensor 2044D1
Appendix 3. Script used to parse JSON file and create infotable for sensor 2044D9
Appendix 4. Script used to parse JSON file and create infotable for sensor 2044D1

FIGURES

Figure 1. Image of Humia sensor model A. 7
Figure 2. Image of Humia sensor model B. 8
Figure 3. Example JSON response from Humia's cloud. 9
Figure 4. Homage of ThingWorx composer. 12
Figure 5. Create a new mashup in ThingWorx. 14
Figure 6. Mashup editor in ThingWorx. 14
Figure 7. Mockup mashup for the application. 15
Figure 8. Button for adding service data, top right of mashup builder. 17
Figure 9. Adding data to a widget in mashup editor. 17
Figure 10. Widgets properties tab in mashup editor. 18
Figure 11. Final layout of the application created. 19

LIST OF ABBREVIATIONS (OR) SYMBOLS

Abbreviation Explanation of abbreviation (Source)

IoT Internet of Things

REST Representational state transfer

API Application programming interface

HTTP Hypertext transfer protocol

JSON JavaScript object notation

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

1 INTRODUCTION

In recent years, there has been rapid growth in embedded systems and with it, an

increased need to connect embedded systems to the internet. Embedded systems can

already be found in many everyday devices, such as, home appliances, cars, airplanes

and toys. The current growth in the embedded systems field is in large due to the

increased interest of connecting these devices to the internet, known as the Internet of

Things (IoT). By connecting these devices to the internet, end users can control and

monitor these devices remotely.

Although, the introduction of IoT brings with it functionality which may be useful for many

applications, much of the data sent by these devices may be difficult to interpret, analyze

and be made use of by laymen. Because of this, a system must be created to manage

and display the data so that it can be used. These systems are often applications which

analyze data, then display the information in a user-friendly manner. Graphs and tables

are examples of common methods to display information to users.

Currently there are many companies offering software which makes it easy to connect

device data to a system and create IoT applications to then manage the data. Software

of this kind is often known as an IoT platform. The software products available often offer

support for many different platforms and technologies used in IoT development, therefore

making them a solid option for IoT application development.

The aim of this work is to demonstrate the process of creating an IoT application using

ThingWorx, a software published by the PTC company. The application being created

will be used to manage the data from sensors in a way that the health of buildings can

be monitored for harmful issues such as mold. The problems wanting to be solved by

creating this application are displaying the time series nature of the data and displaying

the spatial positioning of the sensors.

Chapter 1 of this paper introduces the work by providing background information about

the work and presenting the aim of the work. The following chapter displays the

technology used in the creation of the application and discusses the technologies in

detail. Chapter 3 introduces the ThingWorx software and Chapter 4 demonstrates the

process of creating the application using ThingWorx. Chapter 5 is the closing chapter

where the project will be evaluated and the authors final thoughts will be given.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

2 TECHNICAL ASPECTS

There are many tools and technologies used in the creation of this work which may not

be familiar to laymen. In this work both hardware and software tools have been used. In

this chapter of the paper, these tools and technologies will be discussed, as well as, their

importance to the work.

2.1 Hardware

All the hardware used for this project are commercial devices received from a company

located in Finland known as Humia. The Humia devices use many different sensors to

measure temperature, humidity and pressure. These sensor readings are then sent to a

cloud using a radio transmitter which is built into every device. At the time of writing this

paper, the Humia company has two different device models, a model A and a model B.

The model A devices have 3 temperature sensors and 3 humidity sensors which are in

different locations throughout the device. These devices are used by drilling a hole in the

wall, floor or ceiling of a building and then placing the sensor into the hole. The A model

come in a variety of different sizes to fit different thicknesses of walls and floors. Figure

1 is an example of a model A sensor which was used in this project.

Figure 1. Image of Humia sensor model A.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

The model B devices have 3 sensors for measuring temperature, humidity and pressure.

The B model can be used as is, and placed anywhere within the building. Figure 2 is the

model B sensor used in this project.

Figure 2. Image of Humia sensor model B.

The only requirement for the hardware in this project is that the hardware has the

capability for IoT connectivity and its data can be accessed. All Humia sensors come

equipped with a radio transmitter sending data to the cloud about every hour and are

connected to the company’s cloud out of the box. Therefore, the IoT connection already

exists and the data from the device is ready to be used in the application. For this work,

one of each device model was available and used in the creation of the application.

2.2 REST API

REST API is an API based on the REST architecture which enables systems to operate

with one another over the internet using the HTTP protocols. API stands for application

programming interface and is a set of rules that allow programs to talk to each other.

REST API often works by sending a request using a specified URL and receiving a

response with the data for the sent request. The response can be in a number of different

formats including HTML, XML or JSON.

The data from the Humia cloud used in this work is accessed using REST API.

ThingWorx has direct support for REST API connection with built in code snippets

making it simple to connect the Humia devices to the ThingWorx platform. In the case of

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Humia’s REST API, the response elicited by the request is in a JSON format. The

response sent by Humia can be altered by changing parameters in the URL of the

request. For example, you can get the JSON output for the latest 10 data points from a

sensor by adding “?count=10” to the end of the device ID.

2.3 JSON

JSON is a simple and readable file format which uses text for exchanging data in

attribute-value pairs. Because JSON is written in text, it can be easily read and written

by humans. JSON is commonly used in communication between browsers and a server.

While JSON is based on JavaScript it can also be used by almost any other programming

language as a data format. Figure 3 below is an example of a response sent from

Humia’s REST API in JSON format.

Figure 3. Example JSON response from Humia's cloud.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

As mentioned previously, the Humia REST API uses JSON as its output format.

ThingWorx can parse and manage JSON without any extra code if it is in the correct

format, but may require some code if not. In the case of this work, extra code needed to

be added to parse the JSON, but this will be discussed in the “creating application”

chapter.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

3 THINGWORX

For the software aspect of this application, a software known as ThingWorx was used.

ThingWorx is a software which is used to run and rapidly develop IoT applications for

many different technologies and platforms. Currently there are several different versions

of the software released with the most recent being ThingWorx 8. This chapter of the

paper will introduce the features of the ThingWorx platform to the reader.

3.1 Resources & Documentation

Once an account has been created, the user will have access to the ThingWorx

developer portal and all of the documentation for ThingWorx. ThingWorx’s developer

portal and documentation are very useful resources for learning about the basics of the

ThingWorx platform as well as more complex tasks. In the developer portal the user has

access to resources such as, walk-through guides, webinars, documentation and much

more. Along with the developer portal, the ThingWorx community forum is a great

resource for finding information and solutions to issues related to ThingWorx. The author

used the developer portal and community forum to learn the software, as well as,

problem solve issues.

3.2 ThingWorx Composer

The ThingWorx composer is the main screen of the software where the project and all

aspects related to the project is managed. From the composer’s home page, the user

has access to all the features of ThingWorx. The features are divided into several

categories which can be seen on the left side of the composer home page. The composer

home page can be seen in Figure 4.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Figure 4. Homage of ThingWorx composer.

The modeling and visualization categories were used the most during the creation of the

application. Creating objects and giving them functionality is done within the modeling

page. For example, in this work, each sensor was created here and assigned functions

which they perform when required. Therefore, modeling is important for creating the

structure of the application and its entities.

On the other hand, visualization focuses on the look of the application and displaying

information through mashups. A mashup is needed to display information, mashups are

a ThingWorx web page. ThingWorx uses a mashup builder which can be used to design

the look and functionality of a mashup. The mashup builder has many built-in widgets

which give the developer multiple different display methods. A large portion of the

mashup builder’s tools are drag and drop making it quick and easy to create these

mashups.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

4 CREATING THE APPLICATION

This chapter demonstrates the process of creating the ThingWorx application for this

work. The ThingWorx software was already running on a server provided by the

commissioner of the project. The version of ThingWorx running on the server was

ThingWorx 8. The Humia sensors used were also setup and working, therefore no set

up was required.

4.1 Requirements

A few requirements for the application were given by the commissioner at the beginning

of the project. The requirements or problems to be solved by the application were

mentioned in the introduction, but they will now be discussed in more detail.

One of the requirements was to display the time series nature of the data. Simply put,

this means the changes in data over time wanted to be seen. This is useful for finding

patterns or trends in the data. To meet this requirement the data was to be displayed in

a time series graph where the x-axis is the date. As a result, the data over time can be

seen and trends can easily be seen directly from the graph.

Another requirement was to show the spatial positioning of the sensors within the

building. This requirement was to be met by adding a floor plan image to the application

and then adding the sensor positions on top of the image. The positions of the sensors

could then be seen by looking at the floor plan.

4.2 Creating Mockup Mashup

First, a mockup mashup was created to get a rough idea for the layout of the application.

The mockup layout was created in ThingWorx using the mashup builder tool. The

mockup did not have any bound data at this stage and was created for design purposes

only. The mashup was created by clicking the button for a new mashup at the top left of

the mashup page in ThingWorx, as can be seen in figure 5.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Figure 5. Create a new mashup in ThingWorx.

Figure 6. Mashup editor in ThingWorx.

In figure 6, the mashup editor can be seen. The middle of the editor is the preview of the

mashup. Widgets can be added to the mashup by dragging and dropping them from the

left sidebar onto the mashup in the center of the editor. This is the method which was

used to create the mockup mashup in figure 7.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Figure 7. Mockup mashup for the application.

The table in the top left of the application was designed to display the direct data from

the Humia cloud. A floor plan was added to display the location of the sensors and the

gauges show the current/most recent data from the cloud. For this project, there was a

small hempcrete building where the sensors were placed. No floor plan for this building

was given, therefore a model floor plan was used.

The mockup mashup was later changed to improve on the design and make the

application more user-friendly. A graph was added at the bottom left under the table of

values to show the history of the values and trend. The gauges were changed to led

displays showing the values as numbers due to it being more a more convenient way to

display them. A menu was also added to the top of the application. From the menu the

sensor could be selected based on the ID of the sensor. A different mashup was created

for both of the sensors due to the different values each sensor measured.

Creating a floor plan with clickable buttons as the sensors was done by creating a

separate mashup. The mashup background image covered the whole mashup and was

an image of the floor plan. The sensors were navigation buttons which floated on top of

the background images. When the navigation button for a sensor was pressed, the

mashup for that sensor would open.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

4.3 Connecting Cloud Data to ThingWorx

ThingWorx by default, has support for REST API connections, therefore connecting the

Humia data via REST API was straightforward. A Thing object was created for both

sensors used in the project. This was done by navigating to the modeling tab in the

composer and selecting the Things page from the menu. Once on the Things page, the

new button at the top left was pressed, similar to creating a mashup. The sensor ID of

each sensor was used as a name for the Things created.

After the Thing objects were created, services were added to those Things by using the

services tab within the Things page. The services were created by slightly modifying the

built-in code snippets to send a REST API request for the 500 most recent data points

from the Humia cloud (Appendix 1 & 2). The output of this service was a JSON file with

all of the data.

The JSON output received from the service mentioned in the paragraph above was then

used to create a table holding the values. This was done by creating another service

which accepted JSON files as an input. The service then parsed the JSON file and

created the table column attributes and added a new row for each of the data points in

the JSON file (Appendix 3 & 4). The output of this service was then used to display on

the application.

Finally, services were created to query the table to remove values which were not

needed. There were services created for querying only the temperature, humidity and

pressure separately. These services were for creating data which could be used for

displaying the graphs of each property (Temperature, humidity and pressure).

4.4 Connecting Data to Mashup

Connecting the data received from the services created to the mashup was quick and

easy. In the mashup editor, the services were added to the mashup from the top right of

the editor by pressing the button with the green plus sign, as seen in figure 8. Once the

button was pressed, the wanted Services were selected and added to the mashup’s data.

The Service’s data could then be accessed from the right-hand side of the editor under

the data tab.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Figure 8. Button for adding service data, top right of the mashup builder.

To add the data to the mashup itself, the data was simply dragged from the data tab onto

the desired widget on the mashup. Figure 9 shows how the data is dragged into a widget.

Figure 9. Adding data to a widget in the mashup editor.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

4.5 Styling Mashup

The styling of the mashup was done within the mashup editor. The desired widget or

mashup was clicked on within the editor, this opened a tab on the bottom left of the editor

with aspects of the widget which could be customized as seen in figure 10. The properties

such as colors and text were customized here.

Figure 10. Widget properties tab in the mashup editor.

4.6 Results

The final version of the application looked pleasant and was easy to use. The application

had a large table for displaying the data points from the Humia cloud in the top right.

Below it there was a graph selector where the user can select the graph they wanted to

see, temperature, humidity or pressure. The right side of the application had the floor

plan image and the sensor locations on top of the image. As well as, the date for the

latest data point received from the Humia cloud and the values for that data point. The

final application can be seen in the figure below.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Figure 11. Final layout of the application created.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

5 CONCLUSION

The goal of this work was to create a user-friendly IoT application which would be used

to monitor the health of buildings. To achieve this goal, an application was to be created

using ThingWorx, showing the data sent from sensors located in the building. The

sensors measured the temperature, humidity, pressure and then sent these values to a

cloud using a radio transmitter. Data from the cloud would then be connected to the

ThingWorx application via REST API and displayed in useful form for monitoring the

health.

As for the process of creating the application, much was learned about the ThingWorx

software. ThingWorx was a new software, which had never been used by the author and

was quite challenging to start working with. The development of the application went as

expected no large issues were faced. The final application was solid and fulfilled the

goals of the author.

The result of the project was an application which is easy to use and understand. The

application shows the location of the sensors linked to the application on a floor plan, as

well as, the data from those sensors. The data is displayed in 3 different ways, a table

showing the values, a graph showing the trend of the values and led displays showing

the most recent data.

To further improve the application, storing the sensor data on the ThingWorx platform

could be done. Because of storing the data on the ThingWorx platform, loading times of

the application could be significantly reduced. Currently, the application sends a REST

API request every time it launches for 500 data points. Whereas, if the data was on the

ThingWorx platform, it could be used instantly by the system. Furthermore, if the data

was stored on the ThingWorx platform, data over a greater period of time could be used.

As a result, long term trends for periods of over a year could be seen.

Another improvement would be to send a warning message to the user of the application

if there is a change for mold or other issues. Adding this functionality could help reduce

further damage to the building, due to the user being alerted. The Humia REST API

currently sends a value for mold risk, which was not taken advantage of in this work.

Additionally, ThingWorx has the capability to send email alerts to a user’s email.

Therefore, this feature could be implemented if the application was developed further.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

REFERENCES

Auriga.com. (2016). Embedded Systems as Part of the Internet of Things Ecosystem | Auriga.

[online] Available at: https://auriga.com/blog/2016/embedded-systems-as-part-of-the-internet-of-

things-ecosystem/ [Accessed 10 May 2018].

Liew, Z. (2018). Understanding And Using REST APIs. [online] Smashing Magazine. Available

at: https://www.smashingmagazine.com/2018/01/understanding-using-rest-api/ [Accessed 18

May 2018].

Ptc.com. (2018). Industrial IoT | PTC. [online] Available at: https://www.ptc.com/en/products/iot

[Accessed 1 May 2018].

Standard ECMA-404 The JSON Data Interchange Syntax. (2017). 2nd ed. [ebook] ecma

INTERNATIONAL. Available at: https://www.ecma-international.org/publications/files/ECMA-

ST/ECMA-404.pdf [Accessed 12 May 2018].

Statista. (2018). IoT: number of connected devices worldwide 2012-2025 | Statista. [online]

Available at: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ [Accessed 22 Apr. 2018].

https://auriga.com/blog/2016/embedded-systems-as-part-of-the-internet-of-things-ecosystem/
https://auriga.com/blog/2016/embedded-systems-as-part-of-the-internet-of-things-ecosystem/
https://www.smashingmagazine.com/2018/01/understanding-using-rest-api/
https://www.ptc.com/en/products/iot
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Heading of appendix

Appendix 1. Script used to get JSON file from Humia cloud for sensor 2044D9

var params = {
 proxyScheme: false /* STRING */,
 headers: undefined /* JSON */,
 ignoreSSLErrors: undefined /* BOOLEAN */,
 useNTLM: undefined /* BOOLEAN */,
 workstation: undefined /* STRING */,
 useProxy: false /* BOOLEAN */,
 withCookies: undefined /* BOOLEAN */,
 proxyHost: undefined /* STRING */,
 url: "http://cloud.humia.fi/api/v0/a71cf11c-4920-5239-a6e9-
7ab57796d9a9/devices/2044D9?count=500" /* STRING */,
 timeout: 500 /* NUMBER */,
 proxyPort: undefined /* INTEGER */,
 password: undefined /* STRING */,
 domain: undefined /* STRING */,
 username: undefined /* STRING */
};

// result: JSON
var result = Resources["ContentLoaderFunctions"].GetJSON(params);

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Appendix 2. Script used to get JSON file from Humia cloud for sensor 2044D1

var params = {
 proxyScheme: false /* STRING */,
 headers: undefined /* JSON */,
 ignoreSSLErrors: undefined /* BOOLEAN */,
 useNTLM: undefined /* BOOLEAN */,
 workstation: undefined /* STRING */,
 useProxy: false /* BOOLEAN */,
 withCookies: undefined /* BOOLEAN */,
 proxyHost: undefined /* STRING */,
 url: "http://cloud.humia.fi/api/v0/a71cf11c-4920-5239-a6e9-
7ab57796d9a9/devices/2044D1?count=500" /* STRING */,
 timeout: 500 /* NUMBER */,
 proxyPort: undefined /* INTEGER */,
 password: undefined /* STRING */,
 domain: undefined /* STRING */,
 username: undefined /* STRING */
};

// result: JSON
var result = Resources["ContentLoaderFunctions"].GetJSON(params);

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Appendix 3. Script used to parse JSON file and create infotable for sensor 2044D9

//set input to Humia JSON file
json = me.GetHumiaJSON();

var params = {
 infoTableName: "InfoTable",
 dataShapeName : "sensor_2044D9"
};

var result =
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);

////go through JSON and create/add row on infotable for each data point
for(var i=0; i<json.data.length; i++) {
 result.AddRow({deviceID:json.data[i].device,
 timestamp:json.data[i].timestamp,
 unixTime:json.data[i].unixTime*1000, //multiplied by 1000 to get
correct date (issue with the DATETIME basetype in TW)
 outerTemp:json.data[i].temperature.sensor_1,
 middleTemp:json.data[i].temperature.sensor_2,
 innerTemp:json.data[i].temperature.sensor_3,
 outerHumidity:json.data[i].humidity.sensor_1,
 middleHumidity:json.data[i].humidity.sensor_2,
 innerHumidity:json.data[i].humidity.sensor_3});
}

//unixTime is 3 hours ahead - takes 3 hours off the unixTime values
var params2 = {
 t: result /* INFOTABLE */,
 shift: -10800 /* NUMBER */,
 timestampField: "unixTime" /* STRING */
};

// result: INFOTABLE
var result = Resources["InfoTableFunctions"].TimeShift(params2);

Appendix 1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilari Leman

Appendix 4. Script used to parse JSON file and create infotable for sensor 2044D1

//set input to Humia JSON file
json = me.GetHumiaJSON();

var params = {
 infoTableName: "InfoTable",
 dataShapeName : "sensor_2044D1"
};

var result =
Resources["InfoTableFunctions"].CreateInfoTableFromDataShape(params);

//go through JSON and create/add row on infotable for each data point

for(var i=0; i<json.data.length; i++) {
 result.AddRow({deviceID:json.data[i].device,
 timestamp:json.data[i].timestamp,
 unixTime:json.data[i].unixTime*1000, //multiplied by 1000 to get
correct date (issue with the DATETIME basetype in TW)
 temperature:json.data[i].temperature.sensor_1,
 humidity:json.data[i].humidity.sensor_1,
 pressure:json.data[i].pressure.sensor_1});
}

//unixTime is 3 hours ahead - takes 3 hours off the unixTime values

var params2 = {
 t: result /* INFOTABLE */,
 shift: -10800 /* NUMBER */,
 timestampField: "unixTime" /* STRING */
};

// result: INFOTABLE
var result = Resources["InfoTableFunctions"].TimeShift(params2);

