PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/57051

Please be advised that this information was generated on 2017-12-06 and may be subject to change.

Proceedings of the conference on p-adic analysis, Hengelhoef 1986, p.41-44.

TWO ELEMENTARY PROOFS OF KATSARAS' THEOREM ON P-ADIC COMPACTOIDS by

٦

S. Caenepeel, W.H. Schikhof

The following 'convexification' of the notion of precompactness plays a central role in p-adic Functional Analysis. Let K be a nonarchimedean nontrivially valued field, and E a locally K-convex space. An absolutely convex subset A of E is called <u>compactoid</u> if for every (absolutely convex) neighbourhood U of O in E, there exists a finite subset $S = \{x_1, \ldots, x_n\}$ of E such that $A \subseteq co(S) + U$. Here co(S) denotes the absolute convex hull of S. Equivalently, we can say : for every absolutely convex neighbourhood U of O, $\pi_U(A)$ is contained in a finitely generated R-module ; here R is the unit ball in K, and π_U is the canonical map E + E/U in the category of R-modules. A natural question to ask is the following : can we choose S to

be subset of A ? Or, equivalently, is $\pi_U(A)$ finitely generated as an R-module ? The answer is affirmative if the valuation of K is discrete, because R is a noetherian ring in that case. If the valuation is dense, then we have an easy counterexample : take $A = \{\lambda \in K : |\lambda| < 1\}$. It is shown in [3] that, for E a Banach space, one may choose x_1, \ldots, x_n in λA , where $\lambda \in K$, $|\lambda| > 1$. For locally convex E it is shown in [1] that it is possible to choose x_1, \ldots, x_n in the K-vector space generated by A, and in [2], [4] that x_1, \ldots, x_n may be chosen in λA . Yet, all these proofs are somewhat involved. In this note, both authors present a straightforward and elementary proof. We considered it worth wile to publish our two proofs, since the statement is quite fundamental.

-42-

I. Proof by the Second Author

1.1. Lemma. Let A, B be absolutely convex subsets of a K-vector space E. Suppose A C B + $co\{x\}$ for some $x \in E$. Let $\lambda \in K$, $0 < |\lambda| < 1$ if the valuation of K is dense, $\lambda = 1$ otherwise. Then there exists an $a \in A$ such that $\lambda A \subset B + co\{a\}$.

<u>Proof.</u> The set C C K defined by C = { $\mu \in K : |\mu| \leq 1$, $\mu x \in A+B$ } is absolutely

convex. It is not hard to see that there exists a $c \in C$ for which $\lambda C \subset co\{c\} \subset C$. As $c \in C$ there exists an $a \in A$ such that $cx \in a + B$. We claim that $\lambda A \subset B + co\{a\}$. Indeed, if $z \in A$ then z = b + dx for some $b \in B$, $d \in C$ so we have $\lambda z = \lambda b + \lambda dx \in B + co\{cx\} \subset B + co(a + B) \subset B + co\{a\}$. \Box

1.2. Lemma. Let E, A, B, λ be as above. Suppose $A \subseteq B + co\{x_1, \dots, x_n\}$ for some $x_1, \dots, x_n \in E$. Then there exist $a_1, \dots, a_n \in A$ such that $\lambda A \subseteq B + co\{a_1, \dots, a_n\}$.

<u>Proof.</u> Choose $\lambda_1, \ldots, \lambda_n \in K$, $0 < |\lambda_i| < 1$ and $|\Pi_{i=1}^n \lambda_i| > |\lambda|$ if the valuation of K is dense, $\lambda_i = 1$ for each i otherwise. By applying Lemma 1.1 with λ_i in place of λ and $B + co\{x_2, \ldots, x_n\}$ in place of B we find an $a_i \in A$ such that $\lambda_1 A \subset B + co\{a_1, x_2, \ldots, x_n\}$.

A second application of Lemma 1.1 with $\lambda_1 A$, λ_2 , $B + co\{a_1, x_3, \dots, x_n\}$ in place of A, λ , B respectively yields an $a_2 \in \lambda_1 A \subset A$ for which $\lambda_1 \lambda_2 A \subset B + co\{a_1, a_2, x_3, \dots, x_n\}$. Inductively we arrive at points $a_1, \dots, a_n \in A$ such that $\lambda A \subset \lambda_1 \dots \lambda_n A \subset B + co\{a_1, \dots, a_n\}$.

In K there exist
$$x_1, \ldots, x_n \in \lambda A$$
 such that $A \subset U + co\{x_1, \ldots, x_n\}$.

<u>Proof.</u> $\lambda^{-1}U$ is a zero neighbourhood. By definition there exist y_1, \ldots, y_n $\in E$ such that $A \subset \lambda^{-1}U + co\{y_1, \ldots, y_n\}$. By Lemma 1.2 we can find a_1, \ldots, a_n $\in A$ such that $\lambda^{-1}A \subset \lambda^{-1}U + co\{a_1, \ldots, a_n\}$, i.e. $A \subset U + co\{x_1, \ldots, x_n\}$, where, for each i, $x_i = \lambda a_i \in \lambda A$. \Box

-43-

2. Proof by the First Author

In the introduction, we have seen that Theorem 1.3 is trivial if the valuation of K is discrete ; so let us assume from now on that [K] is dense.

2.1. Lemma. Let A be an R-submodule of a finitely generated free R-module, and let $\lambda \in \mathbb{R}$ be such that $|\lambda| < 1$. Then we can find $a_1, \ldots, a_n \in \mathbb{A}$ such that $\lambda \Lambda \subset \mathbb{R}a_1 + \ldots + \mathbb{R}a_n$.

<u>Proof.</u> $A \subseteq \mathbb{R}^n \subseteq \mathbb{K}^n$. We furnish \mathbb{K}^n with the usual supremum norm ; it is wellknown (cf. [3]) that every one dimensional subspace of \mathbb{K}^n has an orthocomplement. Let us proceed using induction on n. The case n = 1 is trivial. Let $m = \sup\{ \|x\| : x \in A\}$, and choose $a_1 \in A$ such that $\|a_1\| \ge \frac{1}{2}\lambda' \|m$, where $\lambda' \in \mathbb{K}$ is such that $\|\lambda'\|^2 \le \|\lambda\|$. Let $Q : \mathbb{K}^n + \mathbb{K}a_1$ be an orthoprojection, and take P = I - Q. Then every $x \in \mathbb{K}^n$ may be written under the form

$$x = \lambda(x)a_{1} + Px, \text{ where } \|x\| = \max(|\lambda(x)|\|a_{1}\|, \|Px\|). \text{ If } x \in A, \text{ then} \\ |\lambda(x)|\|a_{1}\| \leq \|x\| \leq m \leq |\lambda^{\dagger}|^{-1}\|a_{1}\|, \text{ so } |\lambda(x)| \leq |\lambda^{\dagger}|^{-1}. \\ \text{Using the induction hypothesis, we find } f_{2}, \dots, f_{n} \in PA \text{ such that } \lambda^{\dagger}PA \\ \subset Rf_{2}+\dots+Rf_{n}. \text{ Lift } f_{1} \text{ to an element } a_{1} \in A. \text{ Then, for } 1 \geq 2, \text{ we have that} \\ a_{1} = f_{1} + \lambda_{1}a_{1}, \text{ where } |\lambda_{1}| \leq |\lambda^{\dagger}|^{-1}. \text{ We now have, for } x \in A : \\ x = Qx + Px = \lambda(x)a_{1} + \sum_{i=2}^{n} \mu_{i}f_{1} = (\lambda(x) - \sum_{i=2}^{n} \lambda_{i}\mu_{i})a_{1} + \sum_{i=2}^{n} \mu_{i}a_{i}, \text{ where} \\ |\lambda(x)|, |\lambda_{1}|, |\mu_{1}| \leq |\lambda^{\dagger}|^{-1}. \text{ This implies the result.} \qquad \Box$$

<u>Proof of Theorem 1.3</u>. Write $\mu = \lambda^{-1}$, then $|\mu| < 1$. U is an absolutely convex neighbourhood of 0, so $\pi_{\mu\nu}(A)$ is a submodule of a finitely generated R-module N. So we have an epimorphism ϕ : $\mathbb{R}^n + \mathbb{N}$ in the category of

1

R-modules. By Lemma 2.1, we may find
$$a_1, \ldots, a_n \subset \phi^{-1}(\pi_{\mu U}(A))$$
 such that
 $\mu \phi^{-1}(\pi_{\mu U}(A)) \subset Ra_1 + \ldots + Ra_n$. Choose u_1, \ldots, u_n in A such that $\pi_{\mu U}(u_1) = \phi(a_1)$.
Then $\mu_{\mu U}(A) \subset R\phi(a_1) + \ldots + R\phi(a_n) = R\pi_{\mu U}(u_1) + \ldots + R\pi_{\mu U}(u_n)$, hence
 $\mu A \subset Ru_1 + \ldots + Ru_n + \mu U$, and, after multiplication by λ ,
 $A \subset R\lambda u_1 + \ldots + R\lambda u_n + U$, and this proves the theorem.

References

- De Grande-De Kimpe, N., The non-archimedean space C[∞](X), Compositio
 Math. 48 (1983), 297-309.
- [2] Katsaras, A.K., On compact operators between non-archimedean spaces, Ann. Soc. Scientifique Bruxelles Série I, 96 (1982), 129-137.
- [3] van Rooij, A.C.M., Non-archimedean functional analysis, Marcel Dekker, New York, 1978.
- [4] Schikhof, W.H., Locally convex spaces over nonspherically complete valued fields I, II, Bull. Soc. Math. Belgique série B, 38 (1986), 187-224.

4