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SOME PROPERTIES OF C-COMPACT SETS

IN p-ADIC SPACES
by

W.H. Schikhof

In this note we shall prove scme properties of c-compact sets that
may or may not be part of the 'folklore'. The concept of c-compactness,
introduced by Springer [7], takes over the role played by convex-compact
sets in Functional Analysis over IR or € (or, any locally compact valued
field).

Throughout, let K be a nonarchimedean nontrivially valued field
with valuation | l. We assume K to be maximally (= spherically) complete.

A subset A of a K~linear space E is absolutely convex 1f it is a suhmodule

of E, considered as a medule over the valuation ring {1 € K : IAI < i}

A set C < E is convex if it is either empty or an additive coset of an

absolutely convex set. For a set X ¢ E we denote by co X its absolutely

convex hull, by [X] its K-~linear span.

From now on in this paper E is a locally convex space over K ([8]).

We assume E to be Hausdorff.



§ 1. DEFINITION AND FIRST PROPERTIES

DEFINITION 1.1. (L7]) Let ¢ € E be a nonempty convex set. A convex

filter on C is a filter of subsets of C that bhas a basis consisting

. of convex sets. C is c-compact if each convex filter on C has a

cluster point in C.

In other words, C is c¢~compact if and only if the following is true.
Let C be a family of nonempty relatively closed convex subsets of C

¢ C implies C, n C, € C. Then n C= &.

such that CI,C ) 5

2

We quote the following properties, proved in [71].

PROPOSITION 1.2.

(i) K is c-compact.,
(ii) A c-compact set is complete.

(iii) é;nonemgtx closed convex SUbSEt'EE.E‘C“CDmPaCt set ig.c-comgact.

(iv) Let (Ei)i be a family of Hausdorff locally convex spaces

] —— o=

over K. Suppose, for each i, Ci }E_c~comgact‘£§'Ei. Then I C
1 ¢ I

i

is c-compact in I Ei'
1 e X

(v) The image of a c-compact set under a continuous linear map is

o-comEact.

In [1] we find the following.

PROPOSITION 1.3.

(i) If K is locally compact then a bounded nonempty convex set C € E

is c-compact 1f and only if it is convex amid compact.

(i1) E is c~compact if and only if E is linearly hemeonorphic to a




closed subspace of some power of K.

In § 3 (Theorem 3.3) we shall characterize arbitrary c-compact sets in
the spirit of Proposition 1.3 (ii). But we conclude this first section
with two statements that have nothing to do with the sequel., I just

want to get rid of themn.

PROPOSITION 1.4.

A c-compact set is a Baire space.

be (relatively) open dense subsets of a c-compact set

C ¢ E. We prove that n u_ @#. There exists a nonempty open convex

n
subset B1 C Ul' As U2 is dense we can find a nonempty open convex set

32 - 81 N 02

. Continuing this way we find nonempty open convex sets
n
B, DB, > .. with B € n U, for each n. The open sets B are cosets
1 2 n i=y n
of an additive group, hence closed. By c-compactness, n Bn 2 g, It

follows that n Un 2z 0.
n

PROPOSITION 1.5.

Let X ¢ E be closed, let C ¢« E be c~compact. Then X+C is closed.

Proof.

Let z € X+C (the closure of X+C), let U be the collection of all
absolutely convex neighbourhoods of 0. For each U € U the set z+U

intersects X+C sO

.CU = {ce C : 2~C ¢ X+ }

is not empty. X+U is a union of cosets of U, so is its complement.



Therefore, X+U is closed and CU is closed in C. Further we have

CU 1 Cv = CU N v (U,v ¢ U)

By c-compactness there exists a ¢ € C such that
Z-C € N (X+U) = X = X
U e U

i.e., z ¢ Xtc < X+C.

Remark.

If the base field is not spherically complete there exist a complete

absolutely convex campactoid C < %y and an element a ¢ 4 such that

Ct+cofa}l is not closed ([3], 6.25).



(i)

(ii)

§ 2. LOCAL COMPACTOIDITY

DEFINITION 2.1. ([3], (6.7)) A subset X of E is a local compactoid if

for each neighbourhood U of 0 in E there exists a finite dimensional

K~linear subspace D of E such that X < U+D.

PROPOSITICN 2.2.

Let A be an absolutely convex subset of E. A is c-compact if and only

e ELMessh e

if A is a complete local compactoid.

Proof.

For E a Banach space this is proved in [3], 6.15. Now let E be a locally
convex.

Assume A is c-compact. By Proposition 1.2 (ii), A is complete. To prove
local compactoidity let U be an absoclutely convex neighbourhood of 0 in
E. There is a continuous seminorm p such that {x € E : p(x) € 1} c U.
Let wp : E ﬂ'EP be the quotient map where EP is the canonically normed
space E/Kerp. Now ﬂP(A) is c—-compact (Proposition 1.2 (v)) so by the
above it is a local compactoid in the completion E;' of Ep. By Corollary
6.15 of [3] we have WP(A) = R+T where R is a compactoid and T a finite
dimensional subspace of E;. Then T © Ep. Now ﬂp(U) is open in E_ and by

1%

Katsaras' Theorem ([5], Lemma 8.1) there exist x S [R] such that

1777
R C ﬂp(U)+co{x1,...,xn}. Combining our knowledge on R and T we find a
finite dimensional space F < [WP(A)] such that NP(A) - HP(U)+F. Choose

a finite dimensicnal space D < [A] such that WP(D) = F. Then

AU+ D + Ker ﬂp < U + D,

Let A be a'complete local compactoid. Let I be the collection of all

continuous seminorms on E. For each p € T we have that wp(A), and also

jp(A), is a local compactoid in g;.



As E- is a Banach space we Know that np(A) is c-compact. Then also
P

AO = i T (A) is a c-compact subset of I E- (Proposition 1.1 (iv)).
peT P p el

The canonical map E » I E; sends A homeomé%hically and linearly
peTr

into A.. Its image is closed in A

0 because A is complete. Then A is

0

c-compact (Proposition 1.2 (iii)).
The following Proposition may look innocent.

PROPOSITION Z2.3.

L.Let A C E‘Qg.absolutelx'ggnvex and c-~compact. For eacg‘neighbourhood U

of 0 there exists a finite dimensional absclutely convex set F © A such

that A © U+F.

(The crucial part is the phrase 'F € A'.) For the proof we use a lemma.

LEMMA 2.4.

Let A,U be absolutely convex subsets of E, where U is closed, A is

c-compact. Let X ¢ E be such that A ¢ U+Kx. Then there exists an y € E

i e ey— - —

and an absolutely convex C © K such that Cy < A and A ¢ U+Cy.

Ry Eteil.  peewedeplt Wi ——

Proof.

Let C := {c € X : (U+cx) n A = @}. We have A € U+Cx, C = {c € K : cx ¢ A+U},
so C is absolutely convex. If C = (0) then A ¢ U and we choose y := 0.

So assume C # (0). Foxr each ¢ € C, ¢ # 0 define

HC 1= chl(A N (cx + U)).

Each HC is a convex, closed, nonempty subset of cwlA hence c-compact.

Further, if c¢,d ¢ C, 0O < ]cl < [d] then H, © HC. (Proof. Let z € H_,. Then

d
dz € A n (dx+U). By absolute convexity of A and U,

d‘



e
Cz2 == , dz € A
d

CczZ e'g-(dx+U) C cx+1§-U c ¢cx+U.

It follows that ¢z € 2 n (cx+U) i.e. zZ € HC.)By c-compactness there exists

an y € Hc' Let ¢ € C, ¢ # 0. Then

N
c € C
c =z 0

Cy € cHC cAn (cx+0) < A,

Also, cy € ¢x+U s0 that cx-cy € U. Let a € A. Then a = u+cx for some

u € U, ¢c € C. We see that a = ut+ecyt+ex—cy € cy+U. It follows that

A C U+Cy.

Proof of Proposition 2.3.

We may assume that U is absolutely convex. By Proposition 2.2 A is a
local compactoid so there exist xl,...,x; € E such that

A C U+Kx1+...+Kxn. By the Lemma, applied to U+Kx2+...+Kxn in place of

U, there exist a y, € B and an absolutely Convex C1 € K such that

C ¢ A and

1¥1

A CUS+ C + Kx . +...+ Kxn

171 2

= + .o
(U + C Kx3 + ; Kxn) +- sz

171

and we can continue. After n of these procedures we arrive at
Yyre--o¥Y € E; absclutely convex Cyre..sC < K such that C,y, <A

for each 1 and A © U+C +°"+Chyn .

1Y1

Warniggs

The property of Proposition 2.3 is not shared by all absolutely convex

local compactoids even when we require them to be closed ! In fact we

have:



(1)

(1i)

EXAMPLE 2.5.

Let the valuation of K be dense. Set

B={xec,: x| s 1}.

(L4], p.47).

(1) A is a closed (local) compactaid for the weak topology of <.

(ii} There exists a weak neighbourhood U of O such that for any finite

dimensional set F ¢ A

A ¢ U+F,

Proof.

Let U be a weak neighbourhood of 0. There exists a weakly continuous

seminorm p such that {x € €. : p(x) £ 1} < U. Then Kerp has finite

Q

codimension. Choose a f£inite dimensional space D c CO with ﬂp(D) = Ep

{where as previously, Ep‘:= CD/Kerp and #p : CO-+ Ep is the quotient

map) . We have A € Kexp+D « U+D {in fact, we have shown that each

subset of ¢  is a local compactoid for the weak topology). To prove

0

weak closedness of A, let (xi) be a net in A converging weakly

iel

to x € c,. By L4], Lemma 4.35 (i) there exists an f ¢ cy' £ 7 0 for
which |f(x)| = Hf” ||x|| We have

HEll Hixll = Jeo] = 1iml£x )| < 1im sup [[£]] |Ix (| < {|€]]
so that |}x]] s 1.
Choose TyeToreeer € K, 0 < lTll < IT2| < ooy limlrn( = 1. The formula

Yo
Fla, j@8m7es0) = X a,T,
1772 { =1 11

defines an element f ¢ c.'. Observe that sup|f| = 1 but | £(x)] < 1 for

0
A
each x € A, Set U := {x : 'f(x)l < %}, let F be any finite dimensional



set in A. We shall arrive at A ¢ U+F by showing that suplfl < 1. To this
U+F

end it suffices to prove sup|f| < 1. [F] is a finite dimensional subspace
F

of €, and therefore ([4], Theorem 5.9) has an orthonormal base Kypeoor¥ s

It is easily seen that

F' :=colx ---.Xn} > F

1'

and suPWf‘ < sup]f‘ = max(lf(xl)l,...,|f(xn)‘) < 1.
F F

Remark.
The above construction works also for the case where the base field is

not spherically complete. Then A is even weakly complete ! ([5], Theorem

9.6 and {4], Theorem 4.17)



§ 3. A REPRESENTATION THEOREM FOR C-COMPACT SETS

LEMMA 3.1-

Let A € X, ]kl > 1, Let G © E be closed, absolutely convex, and let

P ¢ [G] be a finite dimensional set. EE-(xi)i is a net in G+F

€ I

converging to 0 then X, € A G for large 1.

Proof.

[6], Lemma 1.3.

PROPOSITION 3.2,

(See also [2], Proposition 4, p. 93.) Let A ¢ E be absolutely convex,

c~compact. Let 7' be a Hausdorff locally convexX topology on E, weaker

than the initial topology t. Then T = T' on A.

o

Proof.

Let (x be a net in A converging to 0 for T1', Let A ¢ K, |A| > 1,

i)i € I
let U be an absolutely convex neighbourhood of 0O for 1. Then (A_lu) n a

. » : v - 1
is c~compact in (E,T) hence in (E,T'), so that (A "U) n A is T'-closed.

There is (Proposition 2.3) a finite dimensional F ¢ A with A < l-1U+F.

Then A = (Amlu) n a+ F. Lemma 3.1 applies. It follows that X, F
1

A(A "U) n A cU for large i, so lim X, = 0 in the sense of T.

THEOREM 3.3.

Let A < E be absolutely convex. The following are equivalent.

(a) A is c-compact.

(B) A is isomorphic (as a topological module over {i ¢ X : |A] < 1}) to

a closed submodule of some power of K.

-l

10



Proof.

(B) = (o). This follows from Proposition 1.2, (i), (iv), (iii). Now

suppose (¢). The map

X |- (Ex)) e | g

. E'
is a continuous linear injection E -+ K (Hahn-Banach Theorem).

According to Proposition 3.2 it is a homeomorphism, if restricted

to A, and (B) follows.

11
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