Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. <http://hdl.handle.net/2066/59414>

Please be advised that this information was generated on 2018-07-08 and may be subject to change.

SOME PROPERTIES OF C-COMPACT SETS

1

In this note we shall *prove some* **properties of c-compact sets that may or may not be part of the 'folklore1. The concept of c-compactness, introduced by Springer [7], takes over the role played by convex-compact** sets in Functional Analysis over \mathbb{R} or \mathbb{C}^p (or, any locally compact valued field).

IN p-ADIC SPACES

by

W.H. Schikhof

Throughout, let K be a nonarchimedean nontrivially valued field with valuation | |. We assume K to be maximally (= spherically) complete. A subset A of a K-linear space E is absolutely convex if it is a submodule of E, considered as a module over the valuation ring $\{\lambda \in K : |\lambda| \leq 1\}$. **A set C c e is convex if it is either empty or an additive coset of an** absolutely convex set. For a set $X \subset E$ we denote by $co X$ its absolutely convex hull, by [X] its K-linear span.

From now on in this paper E is a locally convex space over K ([8]) .

We assume E to be Hausdorff.

§ 1. DEFINITION AND FIRST PROPERTIES

 \mathcal{L}

DEFINITION 1.1. ([7]) Let $C \subset E$ be a nonempty convex set. A convex **filter on C is a filter of subsets of C that has a basis consisting of convex sets. C is c-compact if each convex filter on C has a cluster point in C.**

In other words, C is c-compact if and only if the following is true. **Let C be a family of nonempty relatively closed convex subsets of C** such that $C_1, C_2 \in \mathbb{C}$ implies $C_1 \cap C_2 \in \mathbb{C}$. Then $n \in \mathbb{Z} \neq \emptyset$.

We quote the following properties, proved in [7],

PROPOSITION 1.2.

(i) K is c-

 A (i) If K is locally compact then a bounded nonempty convex set $C \subset E$ **is c-compact if and only if it is convex and compact.**

- **(ii) A c-compact set is complete.**
- (iii) <u>A nonempty closed convex subset of a</u> c-compact set is c-compact.
- **(iv) Let (Ei)^ j be a family of Hausdorff locally convex spaces over K. Suppose, for each i, C. is c-compact in E,. Then II C** $i \equiv \frac{1}{i}$ $\frac{1}{i}$ $\frac{1}{i}$ $\frac{1}{i}$ **is c-compact in H E .. — ---------- . _ a.** i e I
- **(v) The image of a c-compact set under a continuous linear map is c-compact.**

In C13 we find the following.

PROPOSITION 1.3.

(ii) E isi c-compact if and only if E is_ linearly homeoniorphic to a.

In § 3 (Theorem 3.3) we shall characterize arbitrary c-compact sets in **the spirit of Proposition 1.3 (ii) * But we conclude this first section with two statements that have nothing to do with the sequel, i just want to get rid of them.**

closed subspace of some power of k .

PROPOSITION 1.4.

A c-compact set is a Baire space.

 \star .

Let U_1 , U_2 ,... be (relatively) open dense subsets of a c-compact set **C** = E. We prove that $n \cup n \neq \emptyset$. There exists a nonempty open convex **n** subset $B^1 \subset A^2$. As D^2 is dense we can find a nonempty open convex set *P* $B_2 \subset B_1 \cap U_2$. Continuing this way we find nonempty open convex sets **n** $B_1 = B_2 = ...$ with $B_n \subset n$ U, for each n. The open sets B_n are cosets i=1 of an additive group, hence closed. By c-compactness, $n B_n \neq \emptyset$. It follows that $n \mathbf{U}_n \neq \emptyset$. **n n**

PROPOSITION 1.5.

Let $X \subseteq E$ be closed, let $C \subseteq E$ be c-compact. Then X+C is closed.

Proof.

Let *z* **e X+C (the closure of X+C), let U be the collection of all**

absolutely convex neighbourhoods of 0 . For each $U \in U$ the set z+U

intersects X+C so

$$
C_{\bigcup} := \{c \in C : z \text{--} c \in X + U\}
$$

is not empty. X+U is a union of cosets of U, so is its complement

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

Therefore, X+U is closed and C_U is closed in C. Further we have

$$
C_{\mathbf{U}} \cap C_{\mathbf{V}} \supset C_{\mathbf{U} \cap \mathbf{V}} \qquad (U, V \in U)
$$

By c-compactness there exists a c e C such that

$$
z-c \in \bigcap_{U \in U} (X+U) = \overline{X} = X
$$

i.e., z g X+c c x+C.

absolutely convex compactoid $c \circ c_0$ and an element $a \in c_0$ such that **C+co(a} is not closed ([3], 6.25).**

 $\mathcal{L}(\mathcal{L}(\mathcal{L}))$ and $\mathcal{L}(\mathcal{L}(\mathcal{L}))$. The contribution of the contribution of $\mathcal{L}(\mathcal{L})$ and $\mathcal{L}(\mathcal{L})$ are the set of the set

Remark.

If the base field is not spherically complete there exist a complete

DEFINITION 2.1. {[3], (6.7)) A subset X of E is a local compactoid if for each neighbourhood U of 0 in E there exists a finite dimensional $K-1$ inear subspace D of E such that $X \subset U+D$.

§ 2. LOCAL COMPACTOIDITY

Let A be an absolutely convex subset of E. A is c-compact if and only **if A is complete local compactoid.**

PROPOSITION 2.2.

For E a Banach space this is proved in C3], 6.15. Now let E be a locally convex.

- **(i) Assume A is c-compact. By Proposition 1.2 (ii) , A is complete. To prove local compactoidity let U be an absolutely convex neighbourhood of 0 in** E. There is a continuous seminorm p such that $\{x \in E : p(x) \leq 1\} \subset U$. **Let it : E -+ E be the quotient map where E is the canonically normed P P P space E/Kerp. Now it (A) is c-compact (Proposition 1.2 (v)) so by the P above it is a local compactoid in the completion E^ of E . By Corollary P P** 6.15 of [3] we have $\pi_{\text{D}}(A)$ = R+T where R is a compactoid and T a finite dimensional subspace of E . Then T \subseteq E . Now π_{\sim} (U) is open in E and by **P P P P** Katsaras' Theorem ([5], Lemma 8.1) there exist x_1 ,..., $x_j \in [R]$ such that **l n**
	-

R c tt (U) +co{x. ,... ,x }. Combining our knowledge on R and T we find a p i n f inite dimensional space $F \subseteq L$ π (A) J such that π (A) \subseteq π (U) $+F$. Choose **P P P a** finite dimensional space $D \subset [A]$ such that $\pi_-(D) = F$. Then **P**

$$
A \subset U + D + Ker \pi_{p} \subset U + D.
$$

(ii) Let A be a< complete local compactoid. Let *T* **be the collection of all**

continuous seminorms on E. For each p *e Y* **we have that tt (A) , and also P**

 $\overline{\pi_{\mathbf{p}}(\mathbf{A})}$, is a local compactoid in $\mathbf{E}^{\uparrow}_{\mathbf{p}}$.

As E^o is a Banach space we know that
$$
\pi_p(A)
$$
 is c-compact. Then also
\n
$$
A_0 := \prod_{p \in \Gamma} \pi_p(A)
$$
 is a c-compact subset of $\prod_{p \in \Gamma} E^{\dagger}$ (Proposition 1.1 (iv)).
\n
$$
\Pr_{p \in \Gamma} F
$$
\nThe canonical map $E \to \prod_{p \in \Gamma} E^{\dagger}$ sends A homeomophically and linearly
\n
$$
\Pr_{p \in \Gamma} F
$$

\ninto A_0 . Its image is closed in A_0 because A is complete. Then A is
\nc-compact (Proposition 1.2 (iii)).

Let a c e be absolutely convex and c-compact. For each neighbourhood U 0 0 there exists a finite dimensional absolutely convex set $F \subset A$ such that $A \subseteq U+F$.

(The crucial part is the phrase ' $F \subset A'$.) For the proof we use a lemma.

The following Proposition may look innocent.

PROPOSITION 2.3.

LEMMA 2.4.

Let A, U be absolutely convex subsets of E, where U is closed, A is **c-compact.** Let $X \in E$ be such that $A \subseteq U+Kx$. Then there exists an $y \in E$ and an absolutely convex $C \subset K$ such that $Cy \subset A$ and $A \subset U+Cy$.

Proof.

Let C := {c ϵ K : (U+cx) \cap A \neq Ø}. We have A \subset U+Cx, C = {c ϵ K : cx ϵ A+U},

so C is absolutely convex. If $C = (0)$ then $A \subset U$ and we choose $y := 0$.

So assume $C \neq (0)$. For each $c \in C$, $c \neq 0$ define

$$
H_C := c^{-1}(A \cap (cx + U)).
$$

Each H is a convex, closed, nonempty subset of c hence c-compact. c Further, if c,dec, $0 < |c| \le |d|$ then $H_d \subset H_c$. (Proof. Let $z \in H_d$. Then **dz e A n (dx+U). By absolute convexity of A and U,**

7

4

 $u \in U$, $c \in C$. We see that $a = u+c$ y+cx-cy ϵ cy+U. It follows that

 $A \subset U + Cy$.

$$
cz = \frac{c}{d} \cdot dz \in A
$$
\n
$$
cz = \frac{c}{d} (dx+U) \cdot c \cdot cx + \frac{c}{d} U \cdot cx + U.
$$
\nIt follows that $cz \in A \cap (cx+U) \text{ i.e. } z \in H_c$.) By c-compactness there exists\n
$$
a \cdot x \in C \quad c \in C
$$
\n
$$
c \in C
$$
\n
$$
c \neq 0
$$
\n
$$
c \neq cH_c \in A \cap (cx+U) \in A.
$$
\nAlso, $cy \in cx+U$ so that $cx-cy \in U$. Let $a \in A$. Then $a = u+cx$ for some

We may assume that U is absolutely convex. By Proposition 2.2 A is a *f* **local compactoid so there exist x^,-..,x^ £ E such that** $A \subseteq U+Kx^*_1+\ldots+Kx^*_n$. By the Lemma, applied to U+K $x^*_2+\ldots+Kx^*_n$ in place of U, there exist a $y_1 \in E$ and an absolutely convex $C_1 \in K$ such that $C_1 Y_1 \subset A$ and

Proof of Proposition 2.3.

for each i and A *<=* **u+C,y"+...+C y** $1^2 1$ \cdots $n^2 n$

$$
A \subseteq U + C_1Y_1 + Kx_2 + \dots + Kx_n
$$

= (U + C_1Y_1 + Kx_3 + \dots, Kx_n) + Kx_2

and we can continue. After n of these procedures we arrive at

 $y_1 \cdots y_n \in E$, absolutely convex $C_1 \cdots, C_n \subset K$ such that $C_i y_i \subset A$

Warning.

The property of Proposition 2.3 is not shared by all absolutely convex local compactoids even when we require them to be closed 1 In fact we

have:

Let the valuation of K be dense. Set $A = \{x \in c_0 : ||x|| \le 1\}.$

EXAMPLE 2.5.

- **(i) A is a closed (local) compactoid for the weak topology of c**
- **(ii) There exists weak neighbourhood U ck£ 0 such that for any finite** dimensional set $F \subset A$

V \

 \mathbf{v}

\
\

([4], p.47).

(i) Let U be a weak neighbourhood of 0. There exists a weakly continuous seminorm p such that $\{x \in C_0 : p(x) \leq 1\} \subset U$. Then Kerp has finite $codimension.$ Choose a finite dimensional space $D \subseteq c$ with $\pi_n(D) = E$ **0 P P {where as previously,** E $:=$ $\frac{c}{0}$ /Kerp and π $:=$ $\frac{c}{0}$ \rightarrow E is the quotient **map) . We have A c Kerp+D c u+D {in fact, we have shown that each subset of cQ is a local compactoid for the weak topology), To prove** weak closedness of A, let $(x_{_{\star}})$, $_{_{\star}}$ be a net in A converging weakly **X X € X** to x ϵ C₀. By [4], Lemma 4.35 (i) there exists an $f \epsilon$ C₀' $f \neq 0$ for which $|f(x)| = ||f|| ||x||$. We have

 $||f|| \, ||x|| = |f(x)| = \lim |f(x_1)| \leq \limsup ||f|| \, ||x_1|| \leq ||f||$ *À.* x so that $||x|| \leq 1$.

Proof.

(ii) Choose
$$
\tau_1, \tau_2, ..., \in \mathbb{R}, 0 < |\tau_1| < |\tau_2| < ...
$$
, $\lim_{n \to \infty} |\tau_n| = 1$. The formula

$$
f(a_1, a_2, ...) = \sum_{i=1}^{\infty} a_i \tau_i
$$

defines an element
$$
f \in c_0
$$
. Observe that $\sup |f| = 1$ but $|f(x)| < 1$ for
\n $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x}$.

set in A. We shall arrive at A \notin U+F by showing that $\sup |f| < 1$. To this **U+F end it suffices to prove supjfj < 1. [f] is a finite dimensional subspace F of and therefore ([4], Theorem 5.9) has an orthonormal base x,,...,x . 0 I n It is easily seen that**

$$
F' := \operatorname{co} \{x_1, \ldots, x_n\} \supset F
$$

and
$$
\sup_{F} |f| \leq \sup_{F'} |f| = \max(|f(x_1)|, \ldots, |f(x_n)|) < 1.
$$

 $\sim 10^{11}$ km $^{-1}$

 Δ

The above construction works also for the case where the base field is

not spherically complete. Then A is even weakly complete 1 ([5], Theorem

 $\langle \Phi \rangle$

9.6 and [4], Theorem 4.17J

 $\mathcal{O}(\mathbb{R}^d)$. We can consider the $\mathcal{O}(\mathbb{R}^d)$

1

5 3. A REPRESENTATION THEOREM FOR OCOMPACT SETS

LEMMA 3,1-

Let $\lambda \in K$, $|\lambda| > 1$. Let $G \subset E$ be closed, absolutely convex, and let $F \subset [G]$ be a finite dimensional set. If $(x_i)_{i \in I}$ is a net in G+F **converging** *to* **0 then x_. £ A G for large i.**

(See also [2], Proposition 4, p. 93.) Let A c E be absolutely convex, c-compact. Let t 1 *be_* **a^ Hausdorff locally convex topology on E , weaker** than the initial topology τ . Then $\tau = \tau'$ on A.

Proof.

[6], Lemma 1.3.

PROPOSITION 3.2.

Proof.

Let (x^1) , F be a net in A converging to 0 for T' . Let $\lambda \in K$, $|\lambda| > 1$, let U be an absolutely convex neighbourhood of 0 for τ . Then $(\lambda^{-1}U)$ \cap A is c-compact in (E, τ) hence in (E, τ^+) , so that $(\lambda^{-1}U)$ n A is τ^+ -closed. There is (Proposition 2.3) a finite dimensional $F \subset A$ with $A \subset \lambda^{-1}$ U+F. Then $A = (\lambda^{-1}U)$ \cap $A + F$. Lemma 3.1 applies. It follows that $x^i =$ -1 λ (λ \bar{U}) \bar{M} λ \bar{C} U for large i, so lim \bar{x} , \bar{C} 0 in the sense of \bar{T} .

THEOREM 3.3.

Let A c e be absolutely convex. The following are equivalent.

(a) A is c-compact.

(3) A is isomorphic (as a topological module over {X *e* **K : |x| £ 1}) to**

a closed submodule of some power of K.

 $\mathcal{L}_{\rm{c}}$

 \mathbf{F}

 $\mathbf{P}_{\mathrm{eff}}$

 $(\beta) \Rightarrow (\alpha)$. This follows from Proposition 1.2, (i), (iv), (iii). Now $suppose (\alpha)$. The map

 $x \mapsto (f(x))_f \in E'$

is a continuous linear injection $E \rightarrow K^E$ (Hahn-Banach Theorem). **According to Proposition 3.2 it is a homeomorphism, if restricted to A, and (3) follows.**

REFERENCES

- **Cl] N. de Grande de Kimpe: C-compactness in locally K-convex spaces. Indag. Math. 33 (1971), 176-180.**
- **C2] L. Gruson: Théorie de Fredholm p-adique. Bull. Soc. Math. France 94 (1966)/ 67-95.**
- **[3] A.C.M. van Rooij: Notes on p-adic Banach Spaces. Report 7725. Matheraatisch Instituut, Katholieke Universiteit Nijmegen, the Netherlands (1977), 1-52.**
- **C4] A.C.M. van Rooij: Non-Archimedean Fuctional Analysis. Marcel Dekker, New York (1978).**

- **[5] W.H. Schikhof: Locally convex spaces over nonspherically complete valued fields. Groupe d'étude d'Analyse ultramétrique 12 (1984/85), no 24, 1-33.**
- C6] **W.H. Schikhof: Topological stability of p-adic compactoids under continuous injections. To appear.**
- **C7] T.A. Springer: Une notion de compacité dans la théorie des espaces** vectoriels topologiques. Indag. Math. 27 (1965), 182-189.
- **C8] J. van Tiel: Espaces localement K-convexes. Indag. Math. 27 (1965), 249-289.**

 $\mathcal{L}^{\text{max}}_{\text{max}}$