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SOME PROPERTIES OF C-COMPACT SETS
i

IN p-ADIC SPACES

by

W.H. Schikhof

In this note we shall prove  some properties of c-compact sets that 
may or may not be part of the 'folklore1. The concept of c-compactness, 

introduced by Springer [7], takes over the role played by convex-compact 

sets in Functional Analysis over 3R or <£< (or, any locally compact valued 

field)*

Throughout, let K be a nonarchimedean nontrivially valued field 

with valuation | |. We assume K to be maximally (= spherically) complete. 

A subset A of a K-linear space E is absolutely convex if it is a submodule 

of E, considered as a module over the valuation ring {X £ K : |x | 5 1}.

A set C c e is convex if it is either empty or an additive coset of an 

absolutely convex set. For a set X c e we denote by co X its absolutely 

convex hull, by [ x ]  its K-*linear span.

From now on in this paper E is a locally convex space over K ([8]) .

We assume E to be Hausdorff.



§ 1. DEFINITION AND FIRST PROPERTIES

DEFINITION 1.1. (C7]) Let C c E be a nonempty convex set. A convex 

filter on C is a filter of subsets of C that has a basis consisting 

of convex sets. C is c-compact if each convex filter on C has a 

cluster point in C.

In other words/ C is c-compact if and only if the following is true. 

Let C be a family of nonempty relatively closed convex subsets of C 

such that C^,C2 e C implies n e C. Then n C * 0.

We quote the following properties, proved in [7],

PROPOSITION 1.2.

(i) K is c-

(ii) A c-compact set is complete.

(iii) A nonempty closed convex subset of <a c-compact set is c-compact.

(iv) Let (Ei)^ j be a family of Hausdorff locally convex spaces 

over K. Suppose, for each i, C. is c-compact in E,. Then II C1 X « M X1 € I
is c-compact in H E ..— ---------- . _ a.i  e I

(v) The image of a c-compact set under a continuous linear map is 

c-compact.

In C13 we find the following.

PROPOSITION 1.3.

^  K 3-ocaH y  compact then a bounded nonempty convex set C c E 
is c-compact if and only if it is convex and compact.

(ii) E isi c-compact if and only if E is_ linearly homeoniorphic to a.



In § 3 (Theorem 3.3) we shall characterize arbitrary c-corapact sets in

the spirit of Proposition 1.3 (ii) * But we conclude this first section

with two statements that have nothing to do with the sequel, i just 

want to get rid of them.

closed subspace of some power of k .

PROPOSITION 1.4.

A c-compact set is £i Baire space

Proof.

Let he (relatively) open dense subsets of a c-compact set

C e E. We prove that n U * 0 . There exists a nonempty open convex
n

subset B^ c u As is dense we can find a nonempty open convex set
P

B2 C B1 n U2' Cont;‘'nu^n9 this way we find nonempty open convex sets
n

B, B_ => .. with B c D U, for each n. The open sets B are cosets1 2  n i n1—1
of an additive group, hence closed. By c-corapactness, n * 0., It

follows that n U i 0.nn

PROPOSITION 1.5.

Let X c e be closed, let C c E be c-compact. Then X+C i£ closed

Proof.

Let z e X+C (the closure of X+C), let U be the collection of all 

absolutely convex neighbourhoods of 0. For each U e U the set z+U 
intersects X+C so

. Cy :*» {c e C : z-c e X+U>

is not empty. X+U is a union of cosets of U, so is its complement



Therefore, X+U is closed and is closed in C. Further we have

cu " cv = cu n v (u'v 6 U)

By c-compactness there exists a c e C such that

z-c e n (X+U) = X = X 
U e U

i.e., z g X+c c x+C.

Remark.

If the base field is not spherically complete there exist a complete 

absolutely convex ccrapactoid C c and an element a e such that 

C+co(a} is not closed ([3], 6.25).
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§ 2. LOCAL COMPACTOIDITY

DEFINITION 2.1. {[3], (6.7)) A subset X of E is a local compactoid if 

for each neighbourhood U of 0 in E there exists a finite dimensional 

K-linear subspace D of E such that X c u+D.

PROPOSITION 2.2.

Let A be an absolutely convex subset of E . A ijs c-compact if and only 

if A is complete local compactoid.

Proof.

For E a Banach space this is proved in C3], 6.15. Now let E be a locally 

convex.

(i) Assume A is c-compact. By Proposition 1.2 (ii) , A is complete. To prove 

local compactoidity let U be an absolutely convex neighbourhood of 0 in 

E. There is a continuous seminorm p such that {x e E ; p(x) S 1} c u.

Let it : E -+ E be the quotient map where E is the canonically normed P P P
space E/Kerp. Now it (A) is c-compact (Proposition 1.2 (v)) so by theP
above it is a local compactoid in the completion E^ of E . By CorollaryP P
6.15 of [3] we have ir̂ (A) = R+T where R is a compactoid and T a finite

dimensional subspace of E^. Then T c E . Now ir (U) is open in E and byP P P P
Katsaras' Theorem ([5], Lemma 8.1) there exist x4 ,x e [r] such thatl n
R c tt (U) +co{x. ,... ,x }. Combining our knowledge on R and T we find a p i n
finite dimensional space F c [f (A)] such that tt (A) c ^ (u)+F. ChooseP P P
a finite dimensional space D c [a 3 such that tt (D) - F. ThenP

A c u + D + Ker tt c u + D.P

(ii) Let A be a< complete local compactoid. Let T be the collection of all
continuous seminorms on E. For each p e Y we have that tt (A) , and alsoP
Tip (A) , is a local compactoid in E^.



As E~ is a Banach space we know that tt (a ) is c-compact. Then also p P
A- II tt (A) is a c-compact subset of II E" (Proposition 1.1 (iv) ) .0 p £ r p p e r p
The canonical map E -* II E~ sends A hoineomophically and linearly

p e r P
into Aq . Its image is closed in A^ because A is complete. Then A is 

c-compact (Proposition 1.2 (iii)).

The following Proposition may look innocent.

PROPOSITION 2.3.

Let a c e  be absolutely convex and c-compact. For each neighbourhood U

0 there exists ci finite dimensional absolutely cony ex set F c a such 

that A = U+F.

(The crucial part is the phrase ’F c A 1.) For the proof we use a lemma.

LEMMA 2.4.

Let A,U be absolutely convex subsets of E, where tJ is closed, A is

c-compact. Let X e E be such that A c u+Kx. Then there exists an y e E

and an absolutely convex C c k such that Cy c A and A c u+Cy.

Proof.

Let C := {c e K : (U+cx) D A * 0}. We have A c U+Cx, C = {c 6 K : cx e A+U}, 

so C is absolutely convex. If C = (0) then A c u and we choose y 0.

So assume C * (0). For each c e C, c * 0 define

H : = c * ( A n  (cx+U)). c

Each H is a convex, closed, nonempty subset of c hence c-compact. c
Further, if c,dec, 0 <  |c| £ 1 d I then H, c h . (Proof. Let z e H _. Thena c d
dz e A n (dx+U). By absolute convexity of A and U,
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C2 =* rr . d z 6 A d

cz  C ^  (dx+U) C cx+ —  U c cx+U* d d

It follows that cz £ A n (cx+U) i.e. z £ H .) By c-compactness there existsc
4

an y € n H . Let c € C, c * 0. Then„ cc £ C
c * 0

cy e cH c a n (cx+U) c a ,c

Also, cy e cx+U so that cx-cy £ U. Let a £ A. Then a = u+cx for some 

u e U, c e C. We see that a = u+cy+cx-cy £ cy+U. It follows that 

A c u+Cy.

Proof of Proposition 2.3.

We may assume that U is absolutely convex. By Proposition 2.2 A is a
f

local compactoid so there exist x^,-..,x^ £ E such that 

A c u+Kx^+..,+Kx^. By the Lemma, applied to U+Ki^**•,+Kxn P^aCe 
U, there exist a y^ £ E and an absolutely convex £ K such that

Clyl C A an<̂

A c U + C.y. + Kx_ +...+ Kxl^l 2 n
= (U + C.y. + Kx. +..., Kx ) + Kx„1 l o n 2

and we can continue. After n of these procedures we arrive at

y^'*•■,yn e E ' absolutely convex ,...,C^ c k such that C^y^ c a
for each i and A <= u+C,y„+...+C y1 1  n n

Warning.

The property of Proposition 2.3 is not shared by all absolutely convex 

local compactoids even when we require them to be closed 1 In fact we 

have:
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(ii)

EXAMPLE 2.5.
Let the valuation of K be dense. Set

V
\

A « {x € cQ : ||x|| £ 1}.

([4], p.47).

(i) A is a closed (local) compactoid for the weak topology of c

(ii) There exists weak neighbourhood U ck£ 0 such that for any finite 

dimensional set F c aN*"

A t  U+F.

Proof.

(i) Let U be a weak neighbourhood of 0. There exists a weakly continuous

seminorm p such that {x e * p(x) £ 1} c u, Then Kerp has finite

codimension. Choose a finite dimensional space D  ̂ cn with tt (D) = E0 P P
{where as previously, c^/Kerp and : cq -* e^ is the quotient
map) . We have A c Kerp+D c u+D {in fact, we have shown that each 

subset of cQ is a local compactoid for the weak topology), To prove 

weak closedness of A, let (x.) be a net in A converging weaklyX X € X
to x e Cq. By [4l, Lemma 4.35 (i) there exists an f e c 1 f * 0 for 

which |f (sc) | - ||£ || ||x|| . We have

||f|| ||x|| = |f (x) I = lim|f (x ) | < lira sup ||f|| ||x.|| £ ||f||
À. x

so that ||x|| 5 1,

Choose e K, 0 < ) | < ¡t Î < . lim|x^| « 1. The formula
rr*»OO

f (a. ,a«k,...) — ii &,t ,
1 2  j i i  1i « 1

defines an element f e c '. Observe that sup|f| = 1 but |f(x)| < 1 for
A

each x e A. Set U : = {x : }f (x) j < *s}, let F be any finite dimensional

\
\
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set in A. We shall arrive at A 4- U+F by showing that supjfj < 1. To this
U+F

end it suffices to prove supjfj < 1. [f ] is a finite dimensional subspace
F

of and therefore ([4], Theorem 5.9) has an orthonormal base x,,...,x .0 I n
It is easily seen that

F' := co {x,/...,x } ^ F1 n

and sup|f| £ sup j f| = max(|f(x )|,...,|f(x )|) < 1.
F F'  i n

Remark.

The above construction works also for the case where the base field is 

not spherically complete. Then A is even weakly complete 1 ([5], Theorem 

9.6 and [4], Theorem 4.17J

1



5 3. A REPRESENTATION THEOREM FOR OCOMPACT SETS

LEMMA 3,1-
Let X e K, ) X| > 1. Let G c e be closed, absolutely convex, and let 

F c [g] be a finite dimensional set. If (x_.)_. _ T is a net in G+F——* —- —*— ■ 111 -'-u r • X X £ J- — - ■ ■ 1
converging to  0 then x_. £ A G for large i.

Proof.

[6], Lemma 1.3.

PROPOSITION 3.2.

(See also [2], Proposition 4, p. 93.) Let A c E be absolutely convex, 

c-compact. Let t 1 be_ â Hausdorff locally convex topology on E , weaker 
than the initial topology r. Then t - t 1 on A.

Proof.

Let (x^)^ be a net in A converging to 0 for t1. Let X e K, |x| > 1,

let u be an absolutely convex neighbourhood of 0 for x. Then (X Û) n A

is c-compact in (E,x) hence in (E,t !), so that (X Û) n A is x'-closed.

There is (Proposition 2.3) a finite dimensional F c A with A <= X U+F.

Then A * (X U) 0 A + F. Lemma 3.1 applies. It follows that x^ €
-1X(X U) n A c U for large i, so lim x^ = 0 in the sense of t .

THEOREM 3.3.

Let A c e be absolutely convex. The following are equivalent.

(a) A is c-compact.

(3) A is isomorphic (as a topological module over {X e K : |x| £ 1}) to 

B. cl°S6d submodule of some power of K.
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Proof.

(3) B> (a). This follows from Proposition 1.2, (i) , (iv) , (iii). Now 

suppose (a). The map

x l~ (f(x))f e B ,

E 1is a continuous linear injection E -» K (Hahn-Banach Theorem). 

According to Proposition 3.2 it is a homeomorphism, if restricted 

to A, and (3) follows.
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