

MICROSERVICE ARCHITECTURE SUITABILITY FOR

CONTEMPORARY SOFTWARE DEVELOPMENT

Tomy Salminen

Bachelor Thesis

May 2018

Business Information Systems

Software Production

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Business Information Systems

Software Production

SALMINEN, TOMY:

Microservice Architecture Viability for Contemporary Software Development

Bachelor's thesis 31 pages

May 2018

The objective of the thesis was to assess how well microservice architecture suits con-

temporary software development. Assessment is done through both technical and organ-

izational lens’. The purpose was to implement a microservice for a customer of Futurice.

The customer required a solution which would enable customer’s in-house service to in-

tegrate to a 3rd party service.

The bachelor thesis is primarily a case study. Conclusions are based on observations dur-

ing the project as well as literature sources.

Microservice architecture provides solutions issues commonly identified in large projects.

Incrementally adopting new technologies, maintaining, scaling and quick development

cycle is easier to achieve with microservice architecture, than with monolithic architec-

ture. Microservice architecture makes testing more complicated and introduces complex-

ity to system operations. To make full use of microservice architecture, organizations

must be able to answer the challenges it presents.

Despite added complexity, microservice architecture overall provides relief to issues

identified in web application development. It should be a default choice for medium to

large projects. For smaller projects, it is be advised to assess the benefits and trade-offs

of microservice case by case.

Key words: microservice, software architecture

3

TIIVISTELMÄ

Tampereen ammattikorkeakoulu

Tietojenkäsittely

Ohjelmistotuotanto

SALMINEN, TOMY:

Microservice Architecture Suitability for Contemporary Software Development

Opinnäytetyö 31 sivua

Toukokuu 2018

Opinnäytetyön tavoite oli selvittää mikropalveluarkkitehtuurin soveltuvuus nykyaikai-

seen sovellusten kehitykseen kehittäjäkokemus ja organisaatio huomioiden. Tarkoitus oli

toteuttaa Futurice Oy:n asiakkaalle mikropalvelu helpottamaan asiakkaan sisäisen ja kol-

mannen osapuolen palvelun välistä integraatiota. Opinnäytetyö on ensisijaisesti tapaus-

tutkimus. Päätelmät nojautuvat asiakastyössä tehtyihin havaintoihin sekä kirjallisuusläh-

teisiin.

Mikropalveluarkkitehtuuri helpottaa erityisesti suurten projektien tyypillisiä ongelmia.

Uusien teknologioiden asteittainen käyttöönotto, ohjelmiston ylläpidettävyys, skaalautu-

vuus ja nopea kehityssykli on helpompi saavuttaa mikropalveluarkkitehtuurilla, kuin mo-

noliittisella arkkitehtuurilla. Mikropalveluarkkitehtuuri hankaloittaa testausta ja luo mo-

nimutkaisuutta. Saadakseen kaiken hyödyn irti mikropalveluista organisaatioiden on pys-

tyttävä vastaamaan sen tuomiin haasteisiin.

Tuomistaan haasteista huolimatta mikropalveluarkkitehtuuri helpottaa verkkopalveluiden

kehittämisessä ilmeneviä ongelmia. Se on lähtökohtaisesti suositeltava arkkitehtuuri kes-

kikokoisille ja suurille verkkopalveluille. Pienempien palveluiden kohdalla on hyvä arvi-

oida tapauskohtaisesti, onko projekti tarpeeksi laaja, jotta se hyötyy mikropalveluarkki-

tehtuurin tuomista hyödyistä.

Asiasanat: mikropalvelu, ohjelmistoarkkitehtuuri

4

ABBREVIATIONS AND TERMS

Anti-pattern Commonly recurring counterproductive solution.

API Abbreviation for Application Programming Interface. Defines

how programs or parts of it intercommunicate.

CRM Customer relationship management.

DevOps Development and operations. A philosophy which advocates

high automation and monitoring to accelerate development

and operations.

End-to-end testing Testing of application flow from start to finish.

HTTP Hypertext transfer protocol. Widely used protocol for trans-

ferring data over networks.

Input/Output (I/O) Communication between systems capable of processing infor-

mation.

Integration testing Testing interactions between modules.

Lean Principle for managing a project, which aims to minimize

waste while maintaining productivity.

Library A collection of implementations.

Mental overhead A phenomenon in which an individual must use an excessive

amount of working memory.

Modularity The extent which an application is partitioned into modules.

Module An independent component, which performs one or more

tasks.

MVP Minimum viable product. The smallest set of features that

make the product usable.

PaaS Platform as a service. Service model in which platform is

rented from a service provider.

Process An instance of a computer program that is being executed.

Pull request Git feature. Is a request for the destination to pull a set of

changes into their tree.

REST Architecture which defines how an API over HTTP should be

like.

5

S3 A service provided by Amazon Web Services. Used for stor-

ing arbitrary data

SaaS Software as a service. A service model in which software is

rented from a service provider.

Scope A feature set which must be met before the product can be

considered complete.

Scope creep Uncontrolled growth of project or product scope.

System operations Act of running server(s).

Unit testing Testing of individual parts of the code.

6

Table of contents

1 INTRODUCTION TO MICROSERVICE ARCHITECTURE 7

2 MONOLITHIC ARCHITECTURE .. 8

2.1 Technology lock-in .. 9

2.2 Maintainability ... 9

2.3 Scaling ... 10

2.3.1 Vertical scaling.. 10

2.3.2 Horizontal scaling ... 12

3 MICROSERVICE ARCHITECTURE .. 14

3.1 Advantages ... 15

3.1.1 Maintainability .. 15

3.1.2 Technology lock-in ... 15

3.1.3 Scaling ... 16

3.1.4 Development and deployment... 17

3.2 Criticism ... 17

3.2.1 Nanoservice ... 17

3.2.2 Complexity .. 18

3.2.3 Latency .. 19

3.2.4 Testing ... 20

4 CUSTOMER PROJECT CASE STUDY .. 21

4.1 Project justification, expectations and restrictions................................... 21

4.2 Implementation .. 21

4.2.1 Architecture ... 22

4.2.2 Technologies ... 23

4.2.3 Infrastructure ... 23

4.2.4 Continuous integration and testing ... 24

4.3 Evaluating success and project retrospective ... 24

4.3.1 Developer experience .. 24

4.3.2 Performance and scaling ... 25

5 THOUGHTS ON CHOOSING AN ARCHITECTURE 26

5.1 Time constraint .. 26

5.2 Expected scaling needs .. 26

5.3 Resource overhead ... 27

5.4 Project size ... 27

5.5 Summary .. 28

Sources .. 29

7

1 INTRODUCTION TO MICROSERVICE ARCHITECTURE

Bachelor thesis was ordered by Futurice. The implemented project was for an anonymous

client of Futurice, henceforth simply referred to as the customer.

The objective of the thesis is to examine and compare microservice architecture to mon-

olithic architecture, both from a technical point of view, as well as from an organization’s

point of view, and assess how well it suits modern software development needs. Technical

point of view includes topics such as developer experience, scalability, testing and de-

ployment. Organizational point of view focuses on assessing the kind of restrictions and

value propositions each architecture imposes on organizations.

The purpose was to implement a microservice for a customer. The customer needed a

way to transfer data between services, with the possibility to enrich the data by extrapo-

lating values from incomplete data.

Bachelor thesis is structured so that monolithic architecture pattern is examined first. An-

swers to what it is, and what sort of issues are identified with it are provided. Then mi-

croservice architecture pattern is introduced and how it attempts to solve afore mentioned

issues is discussed. Some of microservice architecture’s issues are also highlighted.

Thirdly, a case study is presented. Lastly, based on previous chapters some conclusions

are drawn on when and how to choose a suitable architecture pattern depending on the

project.

8

2 MONOLITHIC ARCHITECTURE

An application may be considered monolithic, if it is a complete, self-contained module

run as a single unit (Rouse & Wigmore 2016, Amazon Web Services n.d.). The definition

often also includes the notion that the application is designed without modularity (Rich-

ardson 2016), also sometimes referred to as single tiered application (Microsoft n.d.). For

this thesis, it does not matter. So long as the application is deployable as a single unit, it

will be considered a monolith. FIGURE 1 depicts how a monolithic web store might look

like.

Monolith

Database

Client

- Users
- Inventory
- Shopping cart
- Transactions
...

- Users
- Inventory
- Shopping cart
- Transactions
...

FIGURE 1. A simplified monolithic web store. Notice how it is a single instance, con-

taining all the necessary components.

While still a viable pattern, projects that utilize monolithic architecture have several is-

sues, which tend become increasingly pronounced as the project grows (Richardson

2016).

9

2.1 Technology lock-in

Monolithic architecture pattern forces a set technology stack to be used throughout the

entire application (Richardson C n.d.). Different technologies can be viewed as tools,

which require a certain type of task to be the most effective. (Mulesoft n.d.).

After locking in a technology stack, the project may end up using suboptimal tools, if the

scope or requirements change, or the initial choice was a mistake. In case the chosen

technology is to be changed, the whole application may need to be rewritten because not

all technologies are compatible. (Richardson n.d.). The undertaking may be so laborious

and cost ineffective, that it is no longer justifiable to undergo.

2.2 Maintainability

Maintainability may be challenging in case any part of the project needs to be refactored.

As different components of the application are tightly coupled, changes to one part of the

application may require cascading changes to other parts as well. (Rouse 2016). This may

be somewhat controlled using a modular design within the monolith.

As a project grows, so does its complexity. A project may grow out to be so complex,

that nobody is able to understand it in its entirety. This anti-pattern is referred to as “big

ball of mud” (Mulesoft n.d.). In a scenario like this, new developers joining the project

later in the process have a particularly steep learning curve before becoming productive

members of the team.

A big ball of mud may lend itself to software entropy. In thermodynamics, entropy is a

measure of disorder, which can only stay unchanged or increase (Jones A. 2017). A sim-

ilar concept seems applicable to software. Unless a conscious effort is made, modifica-

tions to a software leads to greater disorder (Jacobson 1998).

10

If developers working on a big ball of mud cannot fully comprehend it, it is unlikely that

code entropy can be controlled effectively. The result is accelerated accumulation of code

entropy.

2.3 Scaling

Scaling means adjusting application’s resources to meet current demands. Scaling an ap-

plication can happen in one of two ways, vertically or horizontally, also known as scaling

up or -out respectively. (Inviqa 2014).

Scaling is usually desirable since it allows the service to quickly respond to changed re-

source demands, without having to make changes to the software itself. It is not to be

conflated with performance. Performance depicts how much work application can per-

form with given resources. Scaling means the degree which application can utilize re-

sources of varying levels. (Inviqa 2014).

2.3.1 Vertical scaling

Vertical scaling means upgrading the hardware the application is run on (Inviqa 2014).

By doing this, a single instance becomes more performant, as seen in FIGURE 2. For

example, vertically scaling a REST API may lead it to be able to serve responses more

quickly, thus it can deal with a larger number of clients before becoming overloaded.

11

Monolith
- Users
- Inventory
- Shopping cart
- Transactions
...

A

Monolith
- Users
- Inventory
- Shopping cart
- Transactions
...

B

FIGURE 2 Example of vertical scaling. Larger size indicates higher performance. A is

before-, B is after scaling up.

Vertical scaling is limited by the available hardware, effectively placing fixed limits on

how much performance gain is possible to achieve this way. Performance ceiling is raised

only as more powerful components become available. (Rouse 2014).

Another thing to consider is cost efficiency. Vertical scaling compared to horizontal scal-

ing, which is discussed in the next chapter, may not be as cost effective. (DNS Made Easy

2013). Businesses will have to consider case-by-case if the cost of vertical scaling can be

justified.

It is also worth keeping in mind that the machine is a single point of failure. Whenever

its hardware configuration is being changed, any application it was previously running

will be unavailable. Effectively this means that each time vertical scaling occurs, it will

result in application downtime.

12

2.3.2 Horizontal scaling

Horizontal scaling is increasing the number of application instances that are run in paral-

lel, as seen in FIGURE 3 (Inviqa 2014). Compared to vertical scaling, this is the more

sustainable way to scale an application.

Client Load balancer

Monolith

- Users
- Inventory
- Shopping cart
- Transactions
...

Monolith

- Users
- Inventory
- Shopping cart
- Transactions
...

Monolith

- Users
- Inventory
- Shopping cart
- Transactions
...

Database

- Users
- Inventory
- Shopping cart
- Transactions
...

FIGURE 3. Example of horizontal scaling. Notice how there are multiple instances of

monolith running concurrently.

Each instance can be run on a separate machine. This increases fault tolerance signifi-

cantly by introducing redundancy. The machine the application is run on is no longer a

single point of failure. In case it is taken down for maintenance, breaks, or is offline for

any other reason, the application is still available. All incoming requests for the offline

machine are redirected to any of the still operational machines (Rouse 2014). Distributing

incoming calls to available machines is done by a load balancer (Citrix n.d.).

Applications that scale horizontally the best are stateless applications. Each incoming re-

quest can be handled only based on given input. History of previous requests and actions

do not impact the handling of the current request. This way it doesn’t matter which in-

stance receives the request, or which instances may have handled any previous requests.

There is no need for a shared resource to track client state, which could become a bottle-

neck as the number of instances grow. (Bartels 2009).

13

Typically, applications need to read and or write to a database, and often databases cannot

be instance specific. Database connection may become a bottleneck for scaling an appli-

cation, as each instance needs to perform I/O operations to the same database. (Bartels

2009). For the monolithic application, this is particularly problematic, as it always needs

to have access to all data, as seen in FIGURE 3 on page 15.

While the monolithic application can potentially scale both horizontally and vertically, it

is always a blanket upgrade. Scaling cannot be targeted to specific portions of the appli-

cation. If a part of the application is identified as a bottleneck, it would have to be pro-

grammatically solved. Bottlenecks throughput cannot be increased in proportion to the

rest of the application by scaling.

14

3 MICROSERVICE ARCHITECTURE

The basic premise of microservice architecture is to break down a monolithic application

into smaller applications, each with a narrower scope, as seen in FIGURE 4. Microservice

architecture doesn’t have a universally agreed upon definition. However, for this thesis,

definition coined in Microservice Architecture (Nadareishvili, Mitra, McLarty & Amund-

sen 2016) will be used. “A microservice is an independently deployable component of

bounded scope that supports interoperability through message-based communication. Mi-

croservice architecture is a style of engineering highly automated, evolvable software

systems made up of capability-aligned microservices.” (Nadareishvili, Mitra, McLarty &

Amundsen 2016).

The prefix “micro” in microservice does not imply complexity, number of lines of written

code, or anything relating to the size of the service. A microservice can be a large appli-

cation, but it only handles a set of features serving a well scoped business goal. (Na-

dareishvili, Mitra, McLarty & Amundsen 2016).

Client API Gateway

DATABASE

- Transactions
Microservice

- Inventory

DATABASE

- Inventory
Microservice

- Transactions

DATABASE

- Users
- Shopping cart

Microservice
- Users
- Shopping cart

FIGURE 4. Example of how a monolith may be broken down into microservices.

A microservice architecture may leverage API gateway design pattern. Its purpose is to

be the point of contact for the client (Feitosa 2018). The benefit is that the client will not

have to know about how microservices are partitioned, at the cost of complexity.

15

3.1 Advantages

Microservice architecture attempts to provide solutions to problems identified in mono-

lithic architecture. However, these advantages do not benefit all project equally. It should

be evaluated if the pros outweigh cons for desired use case before choosing to proceed

with microservice architecture.

3.1.1 Maintainability

Each microservice should have well-defined interfaces, which form an information

boundary. A developer can work on a microservice without much knowledge beyond its

boundaries (Nadareishvili, Mitra, McLarty & Amundsen 2016). This is especially helpful

for developers joining the project later in the process by giving them a smaller scope to

learn, enabling them to become productive in a much shorter time span compared to a

monolithic project.

Strong interfaces also have the benefit of limiting cascading changes. Assuming the in-

terface is not to be changed, cascading changes stop at the interface the latest. This also

means is that each microservice can be rewritten or replaced entirely, without imposing

changes to other microservices. (Mulesoft. n.d.).

Smaller scope means less mental overhead, and thus developers have an easier time cre-

ating software entropy neutral solutions. This, in turn, means that microservices are less

likely to devolve into a big ball of mud. (Merson 2015).

3.1.2 Technology lock-in

One of the benefits of microservices, is that they intercommunicate via technology ag-

nostic means, such as HTTP. If desired, this enables each microservice to be written in

completely different technology, enabling every microservice to utilize the best tools for

the job. (Nadareishvili, Mitra, McLarty & Amundsen 2016).

16

Due to modularity, as discussed in the previous chapter, it is possible to adopt new tech-

nologies incrementally. If the application was a monolith, the entire software would likely

to be replaced in one go. However, with microservices changes can be rolled out a service

at a time. This makes it easier to migrate between different technologies, if desired.

3.1.3 Scaling

While each microservice faces the same obstacles for scaling as a monolithic application,

microservice architecture has some advantages. Each microservice can be scaled inde-

pendently, as seen in FIGURE 5. If a microservice is bottlenecking the rest of the system,

its throughput can be scaled in proportion to the rest of the services. (Merson 2015).

Microservice
- Inventory

Microservice
- Inventory

Client API Gateway

DATABASE

- Transactions
Microservice

- Inventory

DATABASE

- Inventory
Microservice

- Transactions

DATABASE

- Users
- Shopping cart

Microservice

- Users
- Shopping cart

FIGURE 5. Example of how each microservice can be scaled individually.

Microservices are independent modules, with each their own databases. While a monolith

requires access to all the data always, microservice architecture naturally breaks a single

database into multiple, smaller ones. The benefit of this is that database I/O operations

are distributed across multiple databases. (Feitosa 2018).

17

3.1.4 Development and deployment

Multiple microservices can be developed in parallel due to loose coupling. Work can be

distributed across multiple teams more easily and each team may develop, build, test and

deploy their work independently. This allows teams to release incremental changes in

accelerated cycle, compared to if they were working on a monolith instead. (Kharenko

2015).

Microservices also offer the benefit of reduced build times. Since each microservice is its

own module, only the module to which changes occur needs to be rebuilt. This reduces

the need to batch changes into a larger set before building. (Merson 2015).

3.2 Criticism

While microservice architecture pattern has gained popularity since its inception, it has

also garnered some criticism. Some are concerns are valid, while some stem from mis-

guided choices regarding when and how to use microservices.

3.2.1 Nanoservice

When designing a microservice, it is important not to reduce its scope too much. If a

microservice performs a very niche task, overhead from developing and upkeeping it may

outweigh its utility. Arnon Rotem-Gal-Oz (n.d.) referred to such anti-pattern as na-

noservice.

Nanoservice anti-pattern can be resolved by simply expanding microservice’s scope. Ei-

ther by assigning it more functionalities or by combining it with similar services. Alter-

natively, service may be repackaged into a library.

18

3.2.2 Complexity

Well-scoped microservices are simple, perform a clear task and usually are better opti-

mized than their monolithic counterparts. However, microservices are criticized for in-

troducing complexity due to inter-service calls happening over networks. Developers will

have to think about e.g. added asynchronicity, latency and exception handling (Wootton

2014).

Fred Brooks (1986) argues that software has innate complexity, that cannot be removed

without also removing functionality. Irakli Nadareishvili (2016) further elaborates that

what microservices do, is shifting complexity from code implementation to system oper-

ations. The benefit being that system operations can be automated, while code implemen-

tation cannot. The result is neutral net complexity while gaining increased automation.

(Nadareishvili 2016).

19

3.2.3 Latency

Decentralized applications typically suffer from higher response times compared to single

process applications. Microservices need to intercommunicate over networks, instead of

being able to rely on in-process calls, unlike monoliths. (Nolle n.d.). FIGURE 6 provides

an example of how a monolith web application can handle a client request.

Monolith

Client request

Client response

FIGURE 6. A monolith can process incoming the request without making additional net-

work requests.

Distributed applications inevitably have measurably longer response times than mono-

lithic applications. In FIGURE 7, each arrow from API Gateway to a microservice repre-

sents a network request. Each request introduces some amount of latency, which is higher

than if the same request was made using an in-process call.

20

API Gateway
Microservice

Inventory
Microservice
Transactions

Microservice
Users

20ms
20ms

20sm
20sm

20sm

20msClient request

Client response

FIGURE 7. A gateway receives a client request but will have to make requests over net-

works to microservices which hold the relevant data for the response.

However, it can be argued that if latency is an issue to a point where user experience is

affected, the problem is in how microservices were partitioned. Microservices may be too

fine grained and numerous, resulting in an excessive amount of network calls. See chapter

3.2.1 for how a situation like this may be remedied.

3.2.4 Testing

Testing microservices can be more difficult than testing monolithic applications. While

unit testing is largely unaffected, integration and end-to-end test suites can become more

complex. (Wootton 2014).

If microservices are built using varying technologies, the test suite may need to support

multiple runtime environments simultaneously (Merson 2015). Testing is not an insur-

mountable obstacle for microservices, but it will require work from DevOps engineers

(Wootton 2014).

21

4 CUSTOMER PROJECT CASE STUDY

Futurice was tasked to deliver a microservice to be used for mapping data from a format

to another. The customer needed to feed data from their system into a SaaS based CRM

system. Next chapters asses the project circumstances and success.

4.1 Project justification, expectations and restrictions

The customer wanted to utilize a CRM system to enhance their customer retention. How-

ever, source data needed to be heavily modified so that it would be usable by the CRM

system. The customer wanted to order a custom solution from a 3rd party provider, instead

of building one in-house. Futurice was chosen because of previous successful projects

and pre-existing domain knowledge.

The customer expected to have a fully automated solution, which would take input from

multiple sources and convert it into a format supported by the CRM system. The solution

would sometimes have to extrapolate values to populate fields to amend errors in source

data.

The biggest restriction was source data quality. Our primary data source was a large data

repository, which collected and standardized data from numerous and different subsys-

tems. Fragmented subsystems, and the fact that the central data repository was still partly

under construction, meant that the resulting data had, at times, significant gaps.

4.2 Implementation

This chapter is an overview of the tools and designs selected for the project, covering

rationale for why they were chosen. Lastly, commentary on project’s success is provided.

22

4.2.1 Architecture

A microservice architecture was chosen because customer’s pre-existing applications al-

ready follow this design pattern. It also allowed Futurice project team to develop the ap-

plication with independence. Architecture diagram can be seen in FIGURE 8.

CRM API2

4

5Data source

S3

1

DATABASE

Microservice

3

FIGURE 8. Simplified architecture depicting microservice dependencies to other ser-

vices.

Each batch of data is handled in the following manner:

1. Data source exports a batch of data into S3.

2. Microservice is notified that new data is available.

3. Microservice checks previous notifications and determines if it safe to begin

processing the newest batch.

4. If safe, data is fetched and processed.

5. Processed data is passed to CRM system API.

While it may seem so, the project is not actually a monolith. The goal was not to create a

complete application consisting of multiple microservices but implement a single node in

a web of microservices. Data source especially is a hub to which multiple other services

integrate to.

23

4.2.2 Technologies

Microservice was written in JavaScript with Node.js as runtime environment. Node.js

makes it possible to have JavaScript-based server-side applications (Node.js. n.d.).

Among the main reasons for why it was chosen is Node Package Manager, or NPM for

short. It is a tool for easily managing project dependencies (Node.js n.d.). Also, the project

team and customer have had previous experience working with Node.js and JavaScript.

Express.js was used as the main framework. It is a widely used framework for Node.js.

Express is a lightweight library which streamlines developing apps for Node.js by cutting

down on boilerplate code and adding some frequently used features absent in Node.js.

(Hahn 2016).

Microservice made use of some services provided by Amazon Web Services, or AWS for

short. S3 was used as a temporary data storage. It is a service provided by AWS for storing

arbitrary data. See FIGURE 8 how S3 is positioned in relation to Microservice.

Simple Queue Service, or SQS, was also used. SQS is a message queue, which handled

messages sent from Data source to Microservice. While not explicitly drawn into the ar-

chitecture diagram, SQS is responsible for handling messages generated in step 2 of FIG-

URE 8.

4.2.3 Infrastructure

Heroku is a PaaS built on top of AWS. The main strength of Heroku, and why it was

selected as the hosting platform, is that it allows running applications with minimal focus

on maintaining infrastructure.

Each application instance is run on a container, called dynos. Scaling an application hap-

pens by adjusting either resources reserved for each dyno or the number of dynos running

in parallel. Both options result in minimal downtime, but since the application is non-

critical, such down times are acceptable.

24

4.2.4 Continuous integration and testing

Travis CI is a continuous integration service and was used to run test suites on pushes and

pull requests. The customer already had an existing subscription, which was a major fac-

tor for why it was used. No continuous integration tool was not used to automate deploy-

ment, which was done manually instead.

While 100% coverage was not achieved, unit- and integration tests were written to ensure

that the system operated as designed. However end-to-end tests were lacking. Mostly be-

cause CRM system was not able to provide other environments apart from production.

4.3 Evaluating success and project retrospective

Ultimately, the success of the product cannot be evaluated at the time of writing, as the

microservice has not yet been moved to production. However, as stated by the customer,

the product met their expectations.

4.3.1 Developer experience

The project setting was challenging. Stakeholders consisted of multiple nationalities

spread across at least three different sites. Difficulties in communication lead to misun-

derstanding, and this meant that the technologies and architecture needed to be agile. Re-

quirements changed often after more clarifications were requested.

Microservice architecture complemented the setting well. Making changes and deploy-

ments could be made in a very short notice, without much coordination with other project

teams. Being able to work independently allowed the Futurice team to concentrate on

actual implementation with very little downtime from having to wait on other teams.

25

Continuous integration was convenient enough to setup and did not suffer from excessive

complexity associated with microservices. Having a test suite automatically run often

gave early warnings if breaking changes were being made.

4.3.2 Performance and scaling

The intention was that multiple instances of the microservice could temporarily be

launched, in case of data queue starting to fill up. Each instance would capable of handling

a data export independently. While this goal was achieved, it was realized that the CRM

system API would not be able to handle data which was not in chronological order.

However, scaling is not a concern. Source system exports a data batch daily. Thus, the

microservice needs to be able to process it in under 24 hours to keep the queue from

building up. Load testing showed that it the microservice can handle a typical daily batch

in a few minutes. Since queue max depth is only four days, a single instance is performant

enough to clear accumulated data in well within the required time frame.

26

5 THOUGHTS ON CHOOSING AN ARCHITECTURE

Factors which contribute to choosing an architecture can be divided into categories. Fol-

lowing chapters provide insight regarding which architecture is preferable under which

circumstances.

5.1 Time constraint

For-profit organizations require revenue to sustain themselves. The sooner the product is

deployed to production, the sooner it can generate revenue.

Microservice architecture compared to monolithic architecture requires more planning.

Defining APIs and partitioning software is a necessary step for a successful implementa-

tion. While monolith also requires planning, the extent is not quite as large. A team may

start working on actual implementation sooner, meaning an MVP may be production

ready sooner.

If the expected time delta is critical for the business’ viability, it probably is best to start

with a monolithic architecture and go in to production earlier. Doing this buys time and

gives an opportunity to reassess architecture choices later. Some of the most successful

online services, such as Amazon, have started their life as a monolith, but were later con-

verted to use microservice architecture.

5.2 Expected scaling needs

It can sometimes be difficult to estimate the exact required performance needs, and so it

is good to have the option to be able to seamlessly scale performance to meet the demand.

Making scalable software requires conscious effort, draining often limited resources such

as money and time. Teams will have to decide how much resources are spent on making

the software scalable.

27

Theoretically, the more scaling the better. For that, microservices are the better choice, as

is established in chapter 2.3. However, practically it does not make sense to create e.g. a

web store capable of serving two billion customers a day, if realistically customer volume

is in the thousands. Exercising healthy realism is advised.

Microservice architecture should be the default choice, if scaling is a concern. However,

if scaling is a nonissue, the monolith is still a viable option. It would still require some

other justification as well to be the more sensible choice.

5.3 Resource overhead

Organizations will have to asses, if they can deal with the kind of overhead developing

microservices will impose. Developing and maintaining all the services may require more

personnel, compared to if the project was implemented using a monolithic architecture.

Depending on the size of the project, some specialty skills may be required, such as ded-

icated DevOps team.

Microservices are the recommended choice, given that organization is confident that re-

sources at their disposal are sufficient. If there are doubts, the same advice holds true for

when microservice ramp up time is too slow; start with a monolith and reassess the situ-

ation later.

5.4 Project size

For smaller projects, opting to go with a monolith is advised. A small project may be

difficult to break down into microservices in a meaningful way. Microservice architecture

benefits larger projects more than it does small ones. Likewise, monolith begins to exhibit

negative aspects when the project is larger.

28

5.5 Summary

For making the most scalable software with up to date methods, microservice architecture

is the go-to option. However, there are valid cases for when a monolith is the better alter-

native. It is best to assess the situation, before committing to a solution. Keeping the focus

on the actual problem, rather than trying to solve things technology first, should be a

priority for any organization.

The answer to the question, is microservice architecture a viable pattern for solving con-

temporary software development needs, is yes. Surveys done on this subject seem to sup-

port this conclusion. In 2017, 80% of the surveyed companies used, or intended to use,

microservice architecture pattern (LeanIX 2017). This figure has gone up from 68% since

2015 (NGINX n.d.). While maybe not a perfect fit for every situation, microservice ar-

chitecture does seem to provide the kind of solutions to problems encountered by organ-

izations.

29

SOURCES

Amazon Web Services, n.d. What are Microservices? Documentation. Read 2.5.2018.

https://aws.amazon.com/microservices/

Bartels A., 17.7.2009. Coding in the Cloud – Rule 3 – Use a “Stateless” design when-

ever possible. https://blog.rackspace.com/coding-in-the-cloud-rule-3-use-a-stateless-de-

sign-whenever-possible

Brooks F., 1986. No Silver Bullet—Essence and Accident in Software Engineering

Citrix, n.d. What is load balancing? Read 4.5.2018.

https://www.citrix.fi/glossary/load-balancing.html

DNS Made Easy, 2013. Vertical And Horizontal Scaling. Read 8.5.2018. https://me-

dium.com/@DNSMadeEasyBlog/vertical-and-horizontal-scaling-fdb9df55d51

Feitosa V, 2018. Microservice Patterns and Best Practices. Packt Publishing.

Hahn E., 2016. Express in Action - Writing, building, and testing Node.js applications.

Inviqa. 11.9.2014 Horizontally scalable web applications. Read 2.5.2018.

https://inviqa.com/blog/horizontally-scalable-web-applications

Jacobson I. 1998. Object-oriented software engineering: a use case driven approach.

Harlow: Addison-Wesley.

Jones A., ThoughtCo. 10.7.2017. How to Calculate Entropy. Read 2.5.2018

https://www.thoughtco.com/entropy-definition-calculation-and-misconceptions-

2698977

Kharenko A., 9.10.2015. Monolithic vs. Microservices Architecture. Read 7.5.2018.

https://articles.microservices.com/monolithic-vs-microservices-architecture-

5c4848858f59

LeanIX, 2017. BEYOND AGILE: IS IT TIME TO ADOPT

MICROSERVICES? Read 4.5.2018

https://cdn2.hubspot.net/hubfs/2570476/Sales%20info/leanIX_Microservices-Study.pdf

Merson P., SATURN Blog 5.11.2015. Microservices Beyond the Hype: What You Gain

and What You Lose. Read 2.5.2018. https://insights.sei.cmu.edu/saturn/2015/11/micro-

services-beyond-the-hype-what-you-gain-and-what-you-lose.html

Microsoft, n.d. Three-tier Application Model. Read 2.5.2018.

https://msdn.microsoft.com/en-us/library/aa480455.aspx

Mulesoft. n.d. Microservices vs Monolithic Architecture. Read 2.5.2018.

https://www.mulesoft.com/resources/api/microservices-vs-monolithic

https://aws.amazon.com/microservices/
https://blog.rackspace.com/coding-in-the-cloud-rule-3-use-a-stateless-design-whenever-possible
https://blog.rackspace.com/coding-in-the-cloud-rule-3-use-a-stateless-design-whenever-possible
https://www.citrix.fi/glossary/load-balancing.html
https://medium.com/@DNSMadeEasyBlog/vertical-and-horizontal-scaling-fdb9df55d51
https://medium.com/@DNSMadeEasyBlog/vertical-and-horizontal-scaling-fdb9df55d51
https://inviqa.com/blog/horizontally-scalable-web-applications
https://www.thoughtco.com/entropy-definition-calculation-and-misconceptions-2698977
https://www.thoughtco.com/entropy-definition-calculation-and-misconceptions-2698977
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
https://articles.microservices.com/monolithic-vs-microservices-architecture-5c4848858f59
https://cdn2.hubspot.net/hubfs/2570476/Sales%20info/leanIX_Microservices-Study.pdf
https://insights.sei.cmu.edu/saturn/2015/11/microservices-beyond-the-hype-what-you-gain-and-what-you-lose.html
https://insights.sei.cmu.edu/saturn/2015/11/microservices-beyond-the-hype-what-you-gain-and-what-you-lose.html
https://msdn.microsoft.com/en-us/library/aa480455.aspx
https://www.mulesoft.com/resources/api/microservices-vs-monolithic

30

Nadareishvili I., 2016. Microservices shift complexity to where it belongs. Read

7.5.2018. https://www.oreilly.com/ideas/microservices-shift-complexity-to-where-it-be-

longs

Nadareishvili I., Mitra R., McLarty M. & Amundsen M., 2016. Microservice Architec-

ture. O'Reilly Media, Inc.

NGINX, n.d. The Future of Application Development and Delivery Is Now. Read

4.5.2018. https://www.nginx.com/resources/library/app-dev-survey/

Node.js, n.d. About Node.js. Read 7.5.2018. https://nodejs.org/en/about/

Nolle T., n.d- Microservices challenges include latency, but it can be beat. Read

7.5.2018. https://searchmicroservices.techtarget.com/tip/Microservices-challenges-in-

clude-latency-but-it-can-be-beat

Richardson C, Microservices.io, n.d. Pattern: Monolithic Architecture. Read 2.5.2018.

http://microservices.io/patterns/monolithic.html

Rouse M., TechTarget 2014. horizontal scalability (scaling out). Read 2.5.2018.

https://searchcio.techtarget.com/definition/horizontal-scalability

Rouse M., TechTarget 2016. monolithic architecture. Read 8.5.2018.

https://whatis.techtarget.com/definition/monolithic-architecture

Rouse M. & Wigmore I., TechTarget. 2016. monolithic architecture. Read 2.5.2018.

https://whatis.techtarget.com/definition/monolithic-architecture

Rotem-Gal-Oz A. n.d. Services, Microservices, Nanoservices – oh my! Read 7.5.2018.

http://arnon.me/2014/03/services-microservices-nanoservices/

Wootton B., 8.4.2014. Microservices - Not a free lunch! Read. 7.5.2018.

http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

https://www.oreilly.com/ideas/microservices-shift-complexity-to-where-it-belongs
https://www.oreilly.com/ideas/microservices-shift-complexity-to-where-it-belongs
https://www.nginx.com/resources/library/app-dev-survey/
https://nodejs.org/en/about/
https://searchmicroservices.techtarget.com/tip/Microservices-challenges-include-latency-but-it-can-be-beat
https://searchmicroservices.techtarget.com/tip/Microservices-challenges-include-latency-but-it-can-be-beat
http://microservices.io/patterns/monolithic.html
https://searchcio.techtarget.com/definition/horizontal-scalability
https://whatis.techtarget.com/definition/monolithic-architecture
https://whatis.techtarget.com/definition/monolithic-architecture
http://arnon.me/2014/03/services-microservices-nanoservices/
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

