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The posterior parietal cortex (PPC) is known to be involved in the control of automatic movements that are spatially guided, such as
grasping an apple. We considered whether the PPC might also contribute to the performance of visuomotor associations in which stimuli
and responses are linked arbitrarily, such as producing a certain sound for a typographical character when reading aloud or pressing
pedals according to the color of a traffic light when driving a motor vehicle. The PPC does not appear to be necessary for learning new
arbitrary visuomotor associations, but with extensive training, the PPC can encode nonspatial sensory features of task-relevant cues.
Accordingly, we have tested whether the contributions of the PPC might become apparent once arbitrary sensorimotor mappings are
overlearned.

We have used functional magnetic resonance imaging to measure cerebral activity while subjects were learning novel arbitrary
visuomotor associations, overlearning known mappings, or attempting to learn frequently changing novel mappings. To capture the
dynamic features of cerebral activity related to the learning process, we have compared time-varying modulations of activity between
conditions rather than average (steady-state) responses.

Frontal, striatal, and intraparietal regions showed decreasing or stable activity when subjects learned or attempted to learn novel
associations, respectively. Importantly, the same frontal, striatal, and intraparietal regions showed time-dependent increases in activity
over time as the mappings become overlearned, i.e., despite time-invariant behavioral responses. The automaticity of these mappings
predicted the degree of intraparietal changes, indicating that the contribution of the PPC might be related to a particular stage of the
overlearning process. We suggest that, as the visuomotor mappings become robust to interference, the PPC may convey relevant sensory
information toward the motor cortex. More generally, our findings illustrate how rich cerebral dynamics can underlie stable behavior.
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Introduction

Distinctions have been drawn between spatially guided responses
and arbitrarily instructed movements. Spatially guided move-
ments rely on information available online for immediate perfor-
mance (Goodale et al., 1994), possibly through the automatic
implementation of the motor plan afforded by an object or loca-
tion (Grezes et al., 2003); they are controlled by a dedicated pa-
rietofrontal circuit (Milner and Goodale, 1995). In contrast,
movements instructed by visual cues according to arbitrary rules
are learned voluntary actions, selected among alternatives ac-
cording to an expected outcome (Passingham, 1993), and they
are indifferent to the temporal relationship between stimuli and
responses (Brasted and Wise, 2005); they are controlled by a dis-
tributed frontostriatal circuit (Wise and Murray, 2000).
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Humans, however, have a lifetime of experience with spatially
guided movements but limited practice with the arbitrary visuo-
motor associations that have been used in previous imaging stud-
ies (Deiber etal., 1997; Grafton et al., 1998; Toni and Passingham,
1999; Toni et al, 2001b; Weeks et al., 2001; Boettiger and
D’Esposito, 2005). This raises the issue of whether the distinc-
tions detailed above reflect intrinsic neurocomputational differ-
ences or training effects. Do spatially guided and arbitrarily in-
structed movements remain neurally distinct categories of
sensorimotor transformations even when the latter class of
movements has become automatic?

Here we address this issue by testing whether and where
changes in cerebral activity are generated during overlearning of
arbitrary visuomotor mappings as compared with initial learning
of novel mappings. It has been shown that premotor—striatal cir-
cuits are necessary for the retention and retrieval of learned
visuomotor mappings (Passingham, 1985; Nixon et al., 2004b),
whereas other portions of the striatum, the hippocampal system,
and the ventral prefrontal cortex appear to be concerned mainly
with the rapid acquisition of novel mappings (Bussey et al., 2001;
Brasted et al., 2005; Pasupathy and Miller, 2005). In contrast,
evidence of the contributions of the posterior parietal cortex
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Experimental setup. A, Task setup. Subjects were asked to associate visual stimuli (white line patterns on black background) with motor responses (flexion of one of four fingers of the

right hand to press a button on a four-button keypad). After presentation of a visual stimulus, the subjects had to flex one of four fingers of the right hand. After the motor response, visual feedback
stimuliindicated whether the movement was incorrect (red square; example 1), correct (green square; example 2), or too late (blue square; example 3). B, Experimental setup. During fMRI scanning,
trials from three different conditions were intermixed pseudorandomly. In the visuomotor overlearned condition (overlearning), subjects retrieved a set of visuomotor associations learned before
scanning (set 1; 2630 trials over 3 d). In the visuomotor learning condition (learning; set 4), subjects learned novel visuomotor associations between four new visual patterns and the four finger
movements. In the continuous learning task (continuous), subjects attempted to learn novel visuomotor associations. In this latter condition, novel visual patterns (unseen during the training) were
introduced constantly and removed from the stimulus set. To assess the degree of automaticity achieved during overlearning, we compared performance during a dual-task procedure involving

overlearning trials (set 1) and a set of learned trials (set 3) (Fig. 3). ISI, Interstimulus interval.

(PPC) to the automatic performance of arbitrary visuomotor
mappings remains inconclusive. Partial lesions of the PPC in
macaques do not influence visuomotor conditional learning
(Rushworth et al., 1997). On the other hand, large PPC lesions in
humans can impair movement selection on the basis of arbitrary
cues, such as the verbal commands or the “token” objects used to
instruct pantomimes during neuropsychological tests of ideomo-
tor apraxia (Haaland et al., 2000; Buxbaum et al., 2003). Token
here refers to the fact that, in these tests, objects are used to
instruct movements rather than being the target of the action.
Furthermore, although the PPC is known for controlling visually
guided hand movements (Sakata et al., 1995), intraparietal cells
can be trained to encode both the identity of task-relevant cues
(Sereno and Maunsell, 1998; Toth and Assad, 2002) and the mo-
tor relevance of visual stimuli specifying arbitrary movements
(Thoenissen et al., 2002).

To test the hypothesis detailed above, we used functional mag-
netic resonance imaging (fMRI) to measure cerebral activity
while subjects were performing arbitrary visuomotor mappings
at three different levels of task proficiency: namely, learning novel
mappings, overlearning known mappings, or attempting to learn
frequently changing mappings between visual patterns and finger
movements. Given the intrinsically dynamic nature of learning,
these three conditions were compared in terms of differential
time-varying modulation of cerebral activity rather than in terms
of average (time-invariant) responses. Our rationale was that
overlearned performance, although behaviorally invariant,
might still display a rich neural dynamic (Hasselmo and McClel-
land, 1999).

Materials and Methods

Subjects. We studied 24 right-handed [Edinburgh Handedness Inventory
(Oldfield, 1971); 85 = 13%; mean = SD] male volunteers (22 * 3 years)
with normal or corrected-to-normal vision. Participants gave informed
consent according to institutional guidelines of the local ethics commit-
tee (Commissie Mensgebonden Onderzoek Region Arnhem-Nijmegen,
The Netherlands), and they were paid €35 for their participation. Data
from six subjects were discarded for the following reasons: failure to

overlearn visuomotor associations (one subject), anatomical distortions
(two subjects), head-movement artifacts (one subject), and scanner ar-
tifacts (two subjects).

Task. Subjects were asked to learn (by trial and error) arbitrary asso-
ciations between visual stimuli (line patterns derived from Asian charac-
ters, which were unfamiliar to the subjects) (Fig. 1A) and motor re-
sponses (finger presses). After presentation of the visual stimulus (0.15 s;
stimulus onset asynchrony, 4.6 s; range, 3.4 —5.8 s; uniform distribution),
the subjects had to flex one of four fingers of the right hand to press a
button on a four-button keypad. After the motor response, visual feed-
back stimuli (green—red—blue squares) indicated whether the movement
was correct, incorrect, or exceeded a reaction time (RT) cutoff (Fig. 1A).
Subjects were instructed to try to avoid exceeding the RT cutoff. The RT
cutoff was 1.5 s during both the training and scanning sessions.

Procedure. The experiment consisted of a series of training sessions
that took place on 3 consecutive days, followed by a scanning session. On
day 1, the subjects had to learn, by trial and error, the correct associations
between a set of four visual patterns and four different movements; they
performed a total of 1200 trials (Fig. 1B, set 1). On days 2 and 3, the
subjects practiced the same set of associations learned on day 1 and
performed a total of 1350 additional training trials. During the training
sessions on days 2 and 3, overlearned trials were pseudorandomly inter-
mixed with trials requiring novel visuomotor associations (Fig. 1 B, set
2); i.e., on these trials, novel visual patterns were presented that needed to
be associated with one of the four fingers of the right hand. This proce-
dure allowed the subject to become accustomed to learning more than
one set of mappings at a time. During the training sessions, the visual
stimuli (visual angle, ~6°) were presented on a computer screen in front
of the subject. Motor responses were recorded via a four-button keypad
that was positioned on the right armrest of the subjects’ chair. Subjects
positioned their index, middle, ring, and little fingers on a corresponding
button of the keypad.

Before starting the scanning session (on day 3), we assessed the degree
of automaticity in the performance of the overlearned associations. Au-
tomaticity was tested by means of a dual-task procedure, a standard
method to assess whether a given task could be performed with minimal
interference at the same time as another task (Passingham, 1996; Oliveira
et al.,, 1998). Our goal was to show that performance of the overlearned
associations suffered less interference from a concurrent task as com-
pared with performance of newly learned associations. Accordingly, we
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asked subjects to simultaneously execute the visuomotor associative task
and an overt verbal fluency task on every trial and to give priority to the
verbal fluency task. During the visuomotor associative task, subjects were
asked to retrieve either the previously learned visuomotor associations
(overlearning: already practiced over 2550 trials) (Fig. 1 B, set 1) or newly
learned visuomotor associations (learned: practiced for 300 trials before
the start of the dual-task procedure) (Fig. 1B, set 3). Note that during
overlearning and learned conditions, accuracy was indistinguishable
when tested under single-task conditions; that is, subjects produced vir-
tually error-free performances in both conditions. During the verbal
fluency task, subjects were asked to either repeat an auditorily presented
noun (repeat) or generate a verb semantically congruent with the noun
(generate). The auditory presentation of the noun was synchronous with
the visual presentation of the pattern instructing the finger movement.
The auditory stimuli were presented by speakers placed in front of the
subjects at both the left and right sides. The auditory stimuli and the
subjects’ vocal responses were recorded via a microphone on a digital
audio tape. This dual-task procedure involved the presence of two con-
current sensory inputs (auditory nouns and visual patterns) and two
concurrent motor responses (vocal utterances and finger presses), and
the subjects were given explicit instructions to give priority to the verbal
fluency task. Accordingly, here we have operationalized “overlearned
performance” in terms of differential interference effects evoked by the
verbal fluency task on visuomotor associations that were practiced exten-
sively or just learned. This can be contrasted with other uses of dual-task
techniques, as when one wants to show that the performance of a given
primary task is not affected by a secondary task (Poldrack et al., 2005).

On day 3, after the dual-task procedure, subjects participated in the
scanning session in which trials from three different conditions were
pseudorandomly intermixed. In the visuomotor overlearned condition
(overlearning) (Fig. 1B, set 1), subjects retrieved the visuomotor associ-
ations learned before scanning. In the visuomotor learning condition
(learning) (Fig. 1B, set 4), subjects learned novel visuomotor associa-
tions between four new characters (not present during the training) and
the four finger movements. In the continuous learning task (continu-
ous), subjects attempted to learn novel visuomotor associations. In this
latter condition, novel visual patterns (unseen during the training) were
introduced and removed from the stimulus set after a pseudorandom
and stepwise algorithm devised to keep subjects’ performance in a state of
initial learning over the whole scanning session. During the scanning
session, subjects performed a total of 160 trials for each of the three
conditions. Before the start of image acquisition, subjects practiced the
task in the scanner for 50 trials using a different set of stimuli for the
learning and continuous conditions and the same overlearned set for
the overlearning condition. During the scanning session, subjects lay
supine in the scanner. Head movements were minimized by a padded,
adjustable head holder. Subjects viewed the visual stimuli (visual angle,
~6°), which were projected onto a screen behind the subjects’ heads, via
amirror attached to the head coil. Motor responses were recorded via an
MR-compatible keypad (MRI Devices, Waukesha, WI) that was posi-
tioned on the right side of the subject’s abdomen with the four fingers of
the right hand on the four buttons. During the entire experiment, stim-
ulus presentation and response collection were controlled by a PC run-
ning Presentation 0.51 (Neurobehavioral Systems, San Francisco, CA).

Behavioral analysis. Mean RTs and error rates (ERs) measured during
the scanning session were analyzed separately and considered as inde-
pendent variables of a 3 X 8 repeated measures ANOVA with main
effects of task (three levels: overlearning, learning, and continuous) and
time (eight levels: blocks 1-8, arising from the subdivision of the RT time
series and the ER of each participant into eight equal-length blocks, after
removal of missed trials).

Subjects were considered as a random factor. Simple main effects were
tested with a least square difference post hoc test. The alevel was setat p =
0.05, using a multivariate approach (Pillai’s trace corrected).

For the dual task, RTs and ERs measured during performance of the
visuomotor associative task were analyzed in a 2 X 2 repeated measures
ANOVA with main effects of training (two levels: overlearning and
learned) and verbal fluency task (two levels: repeat and generate).

Image acquisition. Images were acquired with a 3T Trio scanner (17
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subjects) and a 1.5T Sonata scanner (1 subject) (Siemens, Erlangen, Ger-
many). Blood oxygen level-dependent (BOLD) sensitive functional im-
ages were acquired with a single shot gradient echo planar imaging se-
quence (repetition time, 2.56 s; echo time, 40 ms; 32 transverse slices;
interleaved acquisition; voxel size 3.5 X 3.5 X 3.5 mm). At the end of the
scanning session, structural images were acquired with a magnetization-
prepared rapid gradient-echo sequence (repetition time, 1960 ms; echo
time 5.59 ms; longitudinal relaxation time, 1100 ms; voxel size, 1 X 1 X
1 mm).

Image analysis. Functional data were preprocessed and analyzed with
Statistical Parametric Mapping (SPM2) (www.fil.ion.ucl.ac.uk/spm).
The first five volumes of each participant’s data set were discarded to
allow for longitudinal relaxation time equilibration. The image time se-
ries were spatially realigned with a sinc interpolation algorithm that es-
timates rigid body transformations (translations and rotations) by min-
imizing head movements between each image and the reference image
(Friston et al., 1994). The time series for each voxel were realigned tem-
porally to acquisition of the middle slice. Subsequently, images were
normalized onto a custom Montreal Neurological Institute (MNI)-
aligned echo planar imaging template (based on 28 male brains acquired
on the Siemens Trio at the F. C. Donders Centre) with both linear and 16
nonlinear transformations and resampled at an isotropic voxel size of 2
mm. Finally, the normalized images were spatially smoothed with an
isotropic 10 mm full-width—half-maximum Gaussian kernel. Each par-
ticipant’s structural image was spatially coregistered to the mean of the
functional images (Ashburner and Friston, 1997) and spatially normal-
ized by using the same transformation matrix applied to the functional
images.

The fMRI time series were analyzed with an event-related approach in
the context of the general linear model. Analysis of the imaging data
considered main effects of task and outcome [seven levels: overlearning
correct, overlearning incorrect (where applicable), learning correct,
learning incorrect, continuous correct, continuous incorrect, and trials
with responses exceeding the RT cutoff] and task X time interactions,
i.e., differential changes in activity over time between conditions. Each
effect was modeled on a trial-by-trial basis as a concatenation of square-
wave functions, with onsets time-locked to the presentation of the rele-
vant visual patterns and offsets time-locked to the corresponding motor
response. Each of these seven square-wave functions was then convolved
with a canonical hemodynamic response function and its temporal de-
rivative and down sampled at each scan to generate 14 regressors mod-
eling the main effects described above (Friston et al., 1994). This ap-
proach intrinsically accounted for trial-by-trial differences in trial
duration and allowed us to assess differences in intensity of the BOLD
signal between conditions over and above differences in BOLD signal
caused by differences in trial duration.

Time-dependent modulations of task-related activity (task X time
interactions) were modeled as first- and second-order parametric effects
of (scanning) time on the regressors describing the main effects of task
and outcome. Separate covariates including the first derivatives of the
head-related movements (as estimated by the spatial realignment proce-
dure) and a constant term over scans were also considered in the model.
Data were high-pass filtered (cutoff, 128 s) to remove low-frequency
confounds such as scanner drifts. Temporal autocorrelation was mod-
eled as an autoregressive process.

Statistical inference. The statistical significance of the estimated evoked
hemodynamic responses was assessed with T statistics in the context of a
multiple regression analysis. Contrasts of the parameter estimates for the
main effects and task X time interactions were calculated and entered
into a one-way, repeated measures ANOVA with subjects as a random
variable (Friston etal., 1999). Specifically, we were interested in assessing
differential modulation of time-related signal changes during perfor-
mance of overlearning and learning. Linear time-dependent changes in
activity during overlearning (correct trials only) were compared with the
corresponding effect during learning (correct trials only). For this pur-
pose, SPMs of the T statistic for these two linear time effects were created,
with the degrees of freedom corrected for nonsphericity at each voxel.

We report the results of a random effects analysis, with inferences
drawn at the cluster level, corrected for multiple comparisons with
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Figure 2.  Behavioral performance. Average ERs and RTs over scanning time (binned in
blocks of 20 trials; intersubject mean = SEM) for overlearning (@), learning ((J), and contin-
uous (O). During overlearning trials, performance was stable and virtually error free. During
learning, ERs dropped from chance level to 10%. During continuous, subjects’ learning rate was
reduced significantly as compared with learning.

family-wise error correction ( p < 0.05) (Friston etal., 1996). In addition
to the procedure described above, in three particular instances we have
constrained our inferences on the basis of independent anatomical infor-
mation by using a volume of interest (VOI) approach. We relied on
published stereotactical coordinates of areas that showed learning-
related changes during an equivalent task (Toni et al., 2001a) to position
VOIs along the PPC (—36, —50, 44), the striatum (—18, 18, 4), and the
middle temporal gyrus (60, —6, —18), and we used the full-width—half-
maximum of our statistical images to define the radius of the VOIs (12
mm). Finally, on the basis of the results obtained from the main analysis
described above (differential modulation of time-related signal changes
during performance of overlearning and learning), we performed post
hoc comparisons on differential time-related effects between overlearn-
ing and continuous and between learning and continuous (correct trials
only).

For some areas displaying significant learning-related effects, we plot-
ted the BOLD signal time course during the scanning session for each
condition separately. In particular, we calculated the intersubject average
and SE of the peak BOLD response for each of eight consecutive blocks of
trials equally spaced along the whole scanning session.

Anatomical inference. Anatomical details of significant signal changes
were obtained by superimposing the SPMs on the structural images of
each subject in MNI coordinates. The atlas of Duvernoy et al. (1991) was
used to identify relevant anatomical landmarks. When applicable, Brod-
mann areas were assigned on the basis of the SPM anatomy toolbox
(Eickhoff et al., 2005); i.e., the anatomical position of our significant
clusters and local maxima was formally tested against published three-
dimensional probabilistic cytoarchitectonic maps.

Brain—behavior correlations. We assessed correlations between
changes in BOLD signal and degree of automaticity during overlearning
trials. Cerebral effects were indexed by the subjects’ rate of change of
BOLD signal evoked in the PPC during the overlearning trials. This
corresponds to the standardized parameter estimates (SE units) of the
linear time-dependent changes in activity during overlearning (correct
trials only). Behavioral effects were indexed by subjects’ performance
during the dual-task test. This corresponds to the difference in error rates
evoked during overlearning and learned trials when a word is generated
as compared with simply being repeated (training X task interaction)
(see Fig. 3). Note that rather than using group-averaged indexes, this
analysis exploited the intersubject variability in behavioral and cerebral
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Figure3. Dual-task performance. Before starting the fMRI measurements, we used a dual-
task procedure to assess the degree of automaticity of overlearning performance. This test
required concurrent performance of the visuomotor associative task and a verbal fluency task
(see Materials and Methods). This figure shows the average ERs (intersubject mean == SEM)
(light gray, incorrect responses; black, missed responses) and RTs (intersubject mean == SEM) of
the visuomotor associative task for both overlearned associations (left) and newly learned
associations (right) during concurrent performance of a noun repetition task (repeat) and a verb
generation task (generate). During overlearning trials, subjects were faster and made fewer
errors compared with the learned condition. Note that on each trial of the dual-task procedure,
there were two concurrent sensory inputs (auditory nouns and visual patterns) and two concur-
rent motor responses (vocal utterances and finger presses). Furthermore, the subjects were
given explicit instructions to give priority to the verbal fluency task. Accordingly, our goal here
was to show that performance of the overlearned associations suffered less interference from a
concurrent task as compared with performance of newly learned associations. This can be
contrasted with other uses of dual-task techniques, as when one wants to show that perfor-
mance of a given primary task is not affected by a secondary task (Poldrack et al., 2005).
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performance. The purpose of this analysis was to test whether the cere-
bral increases reported below (see Results) might saturate when perfor-
mance is highly automatic. A simple linear or quadratic function would
not be adequate to capture a possible transient increase in cerebral activ-
ity related to a particular stage of automaticity followed by a state during
which cerebral activity does not change as automaticity increases. There-
fore, we fit the data of the cerebral—behavioral scatterplot (see Fig. 5) to a
fourth-order polynomial function.

Results

Behavioral performance

Figure 2 illustrates the mean RT and ER as a function of time
during the three experimental conditions. The data indicate that
our design was successful in manipulating the degree of learning
achieved by the participants during the scanning session. Subjects
were faster and made fewer errors in the overlearning than in the
learning and continuous conditions [main effect of task (RT:
Fiag = 169.8; p < 0.01; ER: F(, 5,y = 121.2;p < 0.01)]. RT and
ER decreased over time during both learning and continuous, but
not during overlearning [task X time interaction (RT: F(,, 534) =
7.4;5p < 0.01; ER: F(14535) = 13.6; p < 0.01)]. Post hoc compari-
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sons indicated that during learning the error rate decreased faster
over time than during continuous ( p < 0.007).

Figure 3 illustrates the mean RT and ER during the dual-task
procedure. The data indicate that the extensive training induced
a high degree of automaticity in the performance of extensively
trained associations (overlearning condition). Subjects were
faster and made fewer errors during the overlearning condition
than during the learned condition (RT: F(, ;) = 69.8; p < 0.01;
ER: F(, 7y = 17.7; p < 0.01). Subjects were faster and made fewer
errors during word repetition than during word generation (RT:
F17)=49.9;p <0.01;ER: F, ,, = 44.6; p <0.01). The increase
in RT and ER during word generation in comparison with word
repetition was significantly larger during the learned condition
than during the overlearning condition [training X task interac-
tion (RT: F, 1, = 6.6, p < 0.02; ER: F; 1, = 3.8; p = 0.068)].

Imaging data

We isolated BOLD signals showing differential learning effects
during the overlearning and learning conditions by testing, over
the whole brain, for time-dependent increases and time-
dependent decreases in activity during correct performance of
overlearning and learning trials, respectively. By looking specifi-
cally at the differences in temporal modulation of the effects
evoked in these two tightly matched conditions, we were able to
isolate genuine learning-related changes rather than mere time-
related effects such as fatigue, habituation, or sensitization.

A small volume correction analysis on the posterior parietal
VOI revealed a cluster along the intraparietal sulcus (—36, —48,
46; p < 0.049; cluster-level corrected) that increased its activity
during the overlearning condition and modestly decreased its
activity during learning, as illustrated in Figure 4 A. The intrapa-
rietal activity is caudal to the 10% probabilistic boundary of cy-
toarchitectonically defined Brodmann area (BA) 2 (Eickhoff et
al., 2005). There was no change in activity over time during the
continuous condition, a further indication that the changes ob-
served during learning and overlearning are related to learning
rather than nonspecific effects of time.

We found significant task X time interactions (overlearning
vs learning; correct responses only) in two clusters along the left
superior frontal gyrus and in the left inferior frontal gyrus (Table
1). The superior frontal cluster consisted of maxima in the dorsal
precentral sulcus, in the mesial aspects of the superior frontal
gyrus, and in the paracingulate sulcus. The dorsal precentral ac-
tivity (Fig. 4 B) is located within the 60% probabilistic boundary
of cytoarchitectonically defined BA 6 (Eickhoff et al., 2005) and
rostral to the anterior border of BA 4. The inferior frontal cluster
consisted of maxima in the left inferior frontal gyrus, stretching
toward the inferior frontal sulcus, the frontal operculum, and the
insula. The inferior frontal activity (Fig. 4C) is located within the
20 and 40% probabilistic border of cytoarchitectonically defined
BA 45 and BA 44, respectively, and rostral to BA 6 (Eickhoffetal.,
2005).

Figure 4 Billustrates the portion of the dorsal precentral sulcus
(—20, 2, 62) that increased its activity over time during the over-
learning condition and decreased during the learning condition
(correct trials only; Z-score = 3.54). Figure 4C shows a similar
pattern of activity along the inferior frontal sulcus (—40, 28, 28),
although the learning increase levels out in the second half of the
scanning session (Z-score = 3.66).

A small-volume correction analysis on the striatal VOI (Fig.
4 D) showed activity (bilaterally) around the head of the caudate
nucleus (p < 0.016; family-wise error-corrected). This region
increased its activity during overlearning and quickly decreased
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Figure4. Imaging results. Differential time-related changes of cerebral activity across con-
ditions, relative to the contrast between time-dependent increases and time-dependent de-
creases in activity during correct performance of overlearning and learning trials. Right column,
Peak BOLD signal change over scanning time (binned in blocks of 20 trials; intersubject mean ==
SEM) for overlearning (red), learning (green), and continuous (blue). Left column, SPM{t} of the
relevant contrast superimposed on anatomical sections of a representative subject. 4, Left
intraparietal sulcus (—36, —48, 46); B, left superior precentral sulcus (—20, 2, 62); C, left
inferior frontal sulcus (—40, 28, 28); D, left caudate nucleus (—10, 12, —2). a.u., Arbitrary
units.

its activity during the first half of the learning condition converg-
ing onto the time course of overlearning.

We also assessed time-dependent increases and time-
dependent decreases in activity during correct performance of
learning and overlearning trials, respectively (Table 2). A cluster
spanning the right fusiform gyrus and the parahippocampal gy-
rus increased its activity over time during learning but not during
continuous, whereas overlearning activity decreased over time.
Activity in the lingual gyrus and in the middle temporal gyrus was
somewhat increasing during learning and continuous, with a
strong decrease during the overlearning condition.

Relation between behavioral and cerebral effects
We have used a post hoc correlational analysis to test whether the
increase in parietal activity observed during overlearning might
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Table 1. Differential signal changes over time between overlearning and learning
(correct trials only)

Cluster size Stereotactic
Anatomical region (voxels) 1-score coordinates
Left superior precentral sulcus 556 3.54 —20,2,62
Left superior frontal gyrus 3.78 —4,8,60
Left paracingulate sulcus 3.51 —2,20,44
Left inferior frontal sulcus 816 3.66 —40,28,28

3.36 —44,6,26

Left intraparietal sulcus” 601 3.07 —36, —48, 46
Left caudate nucleus (head)” (76) 3.80 -10,12, -2

List of significant local maxima (p << 0.05; corrected for multiple comparisons) showing time-related increases
during overlearning and decreases during learning.

“Corrected for multiple comparisons within a predefined search volume (see Materials and Methods).

Table 2. Differential signal changes over time between learning and overlearning
(correct trials only)

Stereotactic
Anatomical region Cluster size (voxels) I-score coordinates
Left inferior occipital gyrus 1071 435 —24,—90,—8
Right fusiform gyrus 4075 434 28, —70, —14
Right parahippocampal gyrus 4.01 28, —56, —12
Right middle temporal gyrus 280 3.62 56,4, —22

List of significant local maxima (p << 0.05; corrected for multiple comparisons) showing time-related increases
during learning and decreases during overlearning.

eventually saturate. We found that the degree of automaticity
achieved in the overlearning condition across subjects explained
a considerable portion of the intersubject variance in the rate of
change in parietal activity (R> = 0.41) (Fig. 5). It can be seen that
parietal activity decreased over time (negative cerebral effect) for
those subjects with a poor degree of automaticity during over-
learning (negative behavioral effect; this indicates that the verb
generation task hampered performance of the learned trials less
than performance of the overlearning trials). Conversely, parietal
activity increased over time (positive cerebral effect) for those
subjects with a good degree of automaticity during overlearning
(moderately positive behavioral effects). Importantly, parietal ac-
tivity remained constant over time (zero cerebral effect) for those
subjects with an excellent degree of automaticity during over-
learning (Fig. 5) (extremely positive behavioral effects). Finally,
this nonlinear relationship between changes in BOLD signal and
automaticity of the visuomotor transformation might be region-
ally specific, insofar as this characteristic was not observed in the
other regions showing time-related increases during the over-
learning trials. The inferior frontal sulcus and the dorsal precen-
tral sulcus revealed lower R* values (0.20 and 0.18, respectively).
The R? value observed for the striatum was higher (R* = 0.31),
but it was driven by one outlier, and the brain—behavior relation-
ship was not comparable with the one observed in the PPC. Over-
all, these results suggest that the increase in parietal activity re-
ported in this study might be transitory and could reflect a
particular stage of the overlearning process, which is critically
dependent on the degree of automaticity achieved during the
training procedure.

Discussion

We have assessed the neural consequences of overlearning arbi-
trary visuomotor associations, testing whether and where
changes in cerebral activity support the automatization of perfor-
mance as compared with initial learning of new associations
(learning). Rather than comparing the average strength of the
neurovascular signal evoked during these two conditions, we
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Figure 5.  Relation between behavioral and cerebral effects. Relation between the time-

related change in cerebral activity observed during overlearning trials and the degree of auto-
maticity of the visuomotor transformation evoked in that condition. The cerebral effect  y-axis)
denotes the variation in signal over time for each subject, as indexed by the standardized (SE
units) parameter estimate of the linear change over time in BOLD signal. The behavioral effect
(x-axis) denotes the amount of interference generated by the dual-task procedure for each
subject, asindexed by the difference in error rates evoked during overlearning and learned trials
when a word is generated as compared with being simply repeated. This figure illustrates a
significant nonlinear relationship between dual-task performance and parietal increase in BOLD
signal (@). Parietal activity decreased over time (negative cerebral effect) for those subjects
with a poor degree of automaticity during overlearning (negative behavioral effect; this indi-
cates that the verb generation task hampered performance of the learned trials less than per-
formance of the overlearning trials). Conversely, parietal activity increased over time (positive
cerebral effect) for those subjects with a good degree of automaticity during overlearning
(moderately positive behavioral effects). Importantly, parietal activity remained constant over
time (zero cerebral effect) for those subjects with an excellent degree of automaticity during
overlearning (extremely positive behavioral effects). The dashed line indicates the least square
fit of a fourth-order polynomial (R* = 0.41).

have isolated differential time-dependent modulations to define
cerebral activity associated with the dynamic process of learning
and overlearning arbitrary visuomotor associations. Frontal, stri-
atal, and intraparietal regions revealed consistent time-
dependent increases in activity while subjects were performing
overlearned associations. Learning or attempting to learn novel
associations (Fig. 2) resulted in decreased or stable activity in
these same areas, together with increases in ventral occipital and
temporal regions. These results suggest that different but not
completely segregated circuits support visuomotor mappings at
different stages of task proficiency. Importantly, the dynamics of
parietal activity indicate that, once the mappings are becoming
automatic, this region might join frontostriatal circuits and con-
tribute to the performance of arbitrary visuomotor associations.

Behavioral performance

During scanning, subjects performed arbitrary visuomotor map-
pings at three different levels of proficiency (Fig. 2). During over-
learning trials, performance was stable, virtually error free, and
more resistant to interference (Fig. 3). During learning trials,
performance improved from chance level to occasional errors.
During continuous trials, subjects attempted to learn novel map-
pings, but the rapid stimulus turnover significantly reduced their
average learning rate.

PPC
Previous studies have reported learning-related increases in the
PPC during tasks in which the visual cue guides the movement
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through an appropriate spatial transformation (Grafton et al.,
2001; Eliassen et al., 2003); however, here the location of the
stimuli was not related to the motor response, and PPC activity
showed a learning-related decrease during initial learning (Fig.
4 A), confirming previous reports (Deiber et al., 1997; Toni et al.,
2001a). Importantly, this same PPC cluster increased its activity
during overlearned performance. These changes in activity can-
not be attributed to variations in behavior, because performance
did not change during overlearning (Fig. 2). Variations in reward
rate cannot explain overlearning changes, because we distin-
guished correct from incorrect trials. The instruction cues were
presented briefly and intermixed pseudorandomly; therefore,
overlearning changes cannot be caused by time-dependent alter-
ations of saccadic behavior or preparatory activity. Changes in
activity during overlearning cannot be a by-product of novelty
effects, because during continuous, the subjects were exposed to a
larger number of novel patterns than during learning or over-
learning, yet the BOLD signal during continuous did not change.
Finally, the overlearning-related increase in parietal activity (as
indexed by the rate of change in BOLD signal) is unlikely to be a
by-product of changes in task difficulty or stimulus familiarity (as
indexed by the decrease in error rate during learning trials), be-
cause these two parameters were not correlated across subjects
(R*=0.01;p = 0.55).

It might be argued that the learning-related changes that we
observed are an instance of consolidation of procedural memo-
ries, known to induce state-dependent increases in neurovascular
activity during learning of motor skills (Shadmehr and Holcomb,
1997); however, when considering the average activity measured
during overlearning as compared with new learning, the parietal
signal decreases. In fact, here we have focused on the changes in
trial-by-trial activity between learning stages. By this measure,
cerebral activity in the PPC increases during the performance of
overlearned visuomotor associations. This result confirms that,
in some circumstances, imaging can provide more sensitive mea-
sures of cognitive changes than behavior (Wilkinson and Halli-
gan, 2004). Because there were no obvious time-dependent be-
havioral adjustments during the overlearning trials, however, one
might wonder whether the changes in cerebral activity observed
during those trials are specifically related to learning. Although
learning-related neural adjustments can continue after behav-
ioral signs of learning have disappeared (Chen and Wise, 1996;
Wise et al., 1998; Hadj-Bouziane and Boussaoud, 2003), it is
implausible that neural activity could steadily increase over a
prolonged period of stable behavior. Accordingly, we have tested
whether the increase in parietal activity reported in this study is
transitory in nature. Figure 5 suggests that the group-related
changes in parietal activity during overlearning might depend on
the degree of automaticity achieved during the training proce-
dure; i.e., these changes might reflect a particular stage of the
overlearning process. Additional experiments are necessary to
confirm the learning-related nature of the cerebral changes re-
ported here.

The contrasting patterns of change observed during over-
learning and learning might reflect a transition in the sensorimo-
tor mapping encoded in this region. During learning, the PPC
might have attempted to find an appropriate spatial transforma-
tion for mapping stimuli to responses. Because the location of the
visual patterns was not related to the motor response, this proce-
dure was not reinforced, leading to decreased PPC activity over
time. During overlearned performance, the stimulus-response
statistics would have become stable, allowing slow Hebbian plas-
ticity to emerge (Houk and Wise, 1995). In this scenario, BOLD
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signal could increase by virtue of the increases in synchronous
firing associated with Hebbian learning (Paulsen and Sejnowski,
2000; Singh et al., 2002; Niessing et al., 2005), generating the
dynamic changes in PPC activity observed during overlearning.
Although speculative, this account suggests that once visuomotor
associations become robust to interference, a portion of the PPC
might start to convey relevant sensory information toward the
motor cortex. It remains to be seen whether this information
relates to the identity of the visual cue or to the selection of the
motor response, and whether this activity is necessary for over-
learned performance of arbitrary visuomotor mappings.

Premotor cortex

There has been a surprising consistency in the failure of previous
imaging studies to find significant learning-related changes of
neurovascular activity in the dorsal precentral region (Deiber et
al., 1997; Toni and Passingham, 1999; Toni et al., 2001a; Boettiger
and D’Esposito, 2005), yet we know that the firing rate of precen-
tral neurons changes during the learning of novel arbitrary visuo-
motor associations (Mitz et al., 1991; Chen and Wise, 1995; Wal-
lis and Miller, 2003) and that precentral tissue is necessary for
relearning previously acquired associations (Passingham, 1985).
Our findings suggest that previous negative reports might have
resulted from merging different learning epochs into a single
experimental unit. Figure 4 B illustrates the opposite dynamics
generated in dorsal premotor cortex during different learning
stages, confirming that this region contributes to both initial
learning and retention of arbitrary visuomotor associations
(Halsband and Freund, 1990; Kurata and Hoffman, 1994; Pet-
rides, 1997).

Striatum

Electrophysiological studies of striatal and precentral activity
during learning of arbitrary visuomotor associations have shown
persistent changes in neural activity even during stable behavioral
performance (Hadj-Bouziane and Boussaoud, 2003; Brasted and
Wise, 2004) but also rapid changes during initial learning of the
same associations (Hadj-Bouziane and Boussaoud, 2003; Pasu-
pathy and Miller, 2005). Our results provide independent evi-
dence supporting both early and late changes in striatal responses
(Fig. 4 D), confirming the role of the striatum during overlearned
performance of arbitrary visuomotor associations (Nixon et al.,
2004b). Furthermore, our study reveals that, in contrast with the
linear pattern of changes observed in other cortical structures,
during initial learning the striatum displays a rapid decrease fol-
lowed by an increase in BOLD signal. It has been suggested that
reward-prediction signals processed in the striatum (Seymour et
al., 2004; Tobler et al., 2005) might support the generation of
rapid stimulus—response associations during the early stages of
learning (Pasupathy and Miller, 2005). In this potential scenario,
it is conceivable that as learning of novel associations progresses,
the temporal difference signal carried by dopamine afferents to
the striatum is extinguished (Suri, 2002), and the local synaptic
activity indexed by BOLD could decrease (Lauritzen, 2005). This
might explain the rapid signal decrease that we observed in the
striatum; however, we also know that this region increases its
coupling with frontal areas during learning of novel arbitrary
mappings (Toni et al., 2002), and this increased (or more effec-
tive) afferent activity might possibly lead, in turn, to the increas-
ing BOLD signal observed once performance becomes less de-
pendent on error feedback (Fig. 4D).



124 - ). Neurosci., January 4, 2006 - 26(1):117-125

Inferior frontal gyrus

In macaques, disconnection of ventrolateral and orbital prefron-
tal cortex [i.e., areas 46/9v, 47/12, and 45/44 of Petrides and Pan-
dya (2002)] from inferior temporal regions severely impairs both
the acquisition and retention of novel visuomotor associations
(Bussey et al., 2002). Figure 4C illustrates a clear and specific
time-dependent decrease in BOLD signal during learning, local-
ized within the probabilistic borders of BA 44/45 (Eickhoff et al.,
2005), followed by an increase during the first blocks of auto-
matic performance. Our findings confirm and localize the con-
tribution of this region to both the initial learning and the long-
term retention of arbitrary visuomotor associations. Given that
this region has been linked with a particular class of arbitrary
visuomotor transformations, i.e., orthographic-to-phonologic
transformations (Indefrey and Levelt, 2004; Nixon et al., 2004a),
the pattern of activity that we observed could reflect the labeling
of the visual cues with verbal tags; however, this account does not
explain why the increase in signal seen during overlearning trials
disappeared during the second half of the scanning session (Fig.
4C). An alternative interpretation is suggested by the contribu-
tions of this region to rule-based and prospective behavior
(Rainer et al., 1999; White and Wise, 1999; Bunge et al., 2003;
Wallis and Miller, 2003); i.e., it is conceivable that this region
might abstract cue-finger pairs, not only in terms of stimulus—
response mappings but also in terms of response—stimulus map-
pings. Accordingly, establishing novel stimulus-response map-
pings would imply the updating of the existing response—
stimulus mappings, because novel stimuli map into a constant
number of fingers. By this account, improvements in learning
performance are meant to induce the updating of response—stim-
uli pairs during overlearning while they reduce the amount of
possible mappings during learning. The concurrent flattening of
both learning error rate and overlearning BOLD changes (Fig.
4C) is consistent with this interpretation.

Conclusions

Our results indicate that overlearned performance of arbitrary
visuomotor associations involves not only striatofrontal circuits
but also parietal regions. We suggest that once visuomotor asso-
ciations become robust to interference, PPC might start to con-
vey relevant sensory information toward the motor cortex.
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