
Nikolai Denissov

Prototype for Research Infrastructure
Databank Service

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

8.5.2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/161426915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Author(s)

Title

Number of Pages

Date

Nikolai Denissov

Prototype for Research Infrastructure

Databank Service

38 pages

Tuesday 8th May, 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s) Patrick Ausderau, Senior Lecturer

Stina Westman, D.Sc. (Tech.), Director

Data integration is a common process for projects aiming at reporting. National Research
Information Hub is an example of data integration projects, which aim to provide insight
and uncover interdependencies in the education field in Finland. A part of this project -
Research Infrastructure (RI) Databank Service - focuses on harvesting data related to
research infrastructures.

Recent changes in RI Databank Service scope introduced organizational and architec-
tural challenges implying automated integrations with partner universities’ systems. This
thesis aims to address new requirements by creating a prototype for the next improved
version of RI Databank Service application. The goal of the prototype implementation is
to evaluate architectural approach viability and to verify the technological compatibility
of the software components. The thesis is a report of lessons learnt during the service
development.

The results show that the application created in this project is able to integrate with com-
mon data format used in universities’ systems. Also, it is capable of adjusting to the
changing data model. Performance testing has confirmed that data transformation speed
satisfies the requirements. In contrast with the previous service version, the prototype is
simpler, despite the overall increase in the functionality. Usage of code generation tools
accelerated the development process. Built prototype will be used as a base for further
RI Databank Service project development at CSC.

Keywords Code generation, Data Integration, JPA, Mapping, XSLT, XML

parsing

Contents

1 Introduction 1

2 Current State Analysis 3

2.1 Research Infrastructure Databank Service 3

2.1.1 General description 3

2.1.2 Technical description 4

2.2 Data Management and Partner Systems 7

3 Theoretical background 10

3.1 Integration 10

3.2 Data formats and processing 11

3.3 Mapping 14

3.4 Code generation 14

4 Methods and materials 16

4.1 Methods 16

4.2 Requirements and development environment 17

5 Solution 20

5.1 Data processing 22

5.2 Data models 23

5.3 Mapping 24

5.4 REST API 25

5.5 Testing 26

6 Discussion 28

7 Conclusion 32

Bibliography 33

Abbreviations

API Application Programming Interface.

CERIF Common European Research Information Format.
CI/CD Continuous Integration and Continuous Deployment.
CRIS Current Research Information System.
CSC Finnish IT Center for Science Ltd.

DB Database.
DOM Document Object Model.
DTD Document Type Definition.

ETL Extract, Transform, Load.

HTML HyperText Markup Language.
HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.
IOW InterOperability Workbench.
IPUMS Integrated Public Use Microdata Series.

JAXB Java Architecture for eXtensible Markup Language (XML) Binding.
JDBC Java Database Connectivity.
JDK Java Development Kit.
JPA Java Persistence Application Programming Interface (API).
JRE Java Runtime Environment.
JSON JavaScript Object Notation.

OOP Object-Oriented Programming.
ORM Object-Relational Mapping.

PID Persistant Identifier.
PoC Proof of Concept.
POJO Plain Old Java Object.

REST Representational State Transfer.
RI Research Infrastructure.

SAX Simple API for XML.
SOAP Simple Object Access Protocol.
SQL Structured Query Language.
StAX Streaming API for XML.

TIPA Research Infrastructure Databank in Finnish: ”Tutkimusinfrastruktuurien tietopankki”.
TrAX Transformation API for XML.

UI User Interface.
UML Unified Modelling Language.

XML eXtensible Markup Language.
XSD XML Schema Definition.
XSL eXtensible Stylesheet Language.
XSLT eXtensible Stylesheet Language Transformations.

Glossary

.JAR (Java Archive) file format that enables to bundlemultiple files into a single
archive file. Typically a JAR file contains the class files and auxiliary
resources associated with applets and applications [1].

.WAR (Web application Archive) files used to distribute Java-based Web appli-
cations. A .WAR has the same file structure as a .JAR file, which is a
single compressed file that contains multiple files bundled inside it [2].

GitHub git-based source code repository service.

Java is a general-purpose, concurrent, strongly typed, class-based object-
oriented language [3].

JavaScript high-level, interpreted programming language.

Leaflet open-source JavaScript library for mobile-friendly interactive maps [4].
Liferay Java-based Digital Experience Platform.
Linked Data a paradigm for publishing data on the Web and collaborating with users

and machines [5].

Maven build automation tool for Java projects.

portlet application used by a portal website to receive requests from clients and
return information [6].

Service Builder model-driven code generation tool built by Liferay [7].
Spring Java platform that provides comprehensive infrastructure support for de-

veloping Java applications [8].
Spring Boot Spring solution based on convention over configuration principle for build-

ing production-ready Spring applications [9].
Swagger framework of API developer tools for the OpenAPI Specification (OAS).

TEKES Finnish Funding Agency for Innovation.

Vaadin Java User Interface (UI) framework for building single page Web appli-
cations.

Web Service software service or application used to communicate between devices
on a network in a standardized way [10].

1

1 Introduction

Data integration is a common process for projects aiming at reporting. However, collec-

tion, storage and modification of data from several sources might be performed in various

ways. A good example of such data integration projects is the National Research Informa-

tion Hub project, which aims at providing insight and uncovering interdependencies in the

education field in Finland. A part of this project - Research Infrastructure (RI) Databank

Service - focuses on harvesting data related to research infrastructures. The service is

developed at Finnish IT Center for Science Ltd (CSC).

CSC is a special task company in Finland. It is dedicated to support and provide ex-

pert ICT services for research, education, culture, public administration and enterprises.

Company employs approximately 320 experts in Espoo and Kajaani. Apart from doing

development project work for the Ministry of Culture and Education, universities and re-

search institutes the company is known for connecting Finland to the Internet and its

supercomputing capacity offer. [11]

Recent changes in RI Databank Service scope introduced organizational and technical

(architectural) challenges. For example, instead of manual data collection, automated

integrations with partner universities’ systems must be established. This thesis aims to

address new requirements by creating a prototype for the next improved version of RI

Databank Service application. Subtasks for the work are verifying selected technologies’

compatibility and exposing the issues faced during the implementation. Also, the viability

of the overall approach is tested.

The thesis is divided into two larger parts. In the first part, the current state of RI Data-

bank Service is described from both organizational and technical angles. In addition,

example-based description of integration partners’ Current Research Information System

(CRIS) is provided. Moreover, theoretical background is defined by introducing key rel-

evant concepts and tools suitable for the prototype development. The latter part of the

work is focused on the practical implementation aspects. The methodological approach

as well as development environment are described and details of the created solution

2

are presented. Finally, the project results are reported and discussed in the light of the

theoretical assumptions.

3

2 Current State Analysis

2.1 Research Infrastructure Databank Service

2.1.1 General description

Research Infrastructure Databank Service is a service developed as part of the Open

Science and Research Initiative 2014-2017 funded by the Ministry of Education and Cul-

ture in Finland [12]. As the name indicates, the initiative aimed at promoting research

information availability and open science. This was done through developing several col-

laboration approaches and provision of services. The key stakeholders of the initiative

were researchers, research organizations, Finnish institutions of higher education, fund-

ing bodies including Academy of Finland and TEKES as well as the National Library of

Finland [13]. As the service description documentation states, RIs are

”research facilities, equipment, materials and services that enable re-

search and development at various stages of innovation, while supporting or-

ganized research, research training and teaching, and developing research

and innovation capacity. [14]”

Research Infrastructure Databank Service became available in early 2016 as part of AVAA

publishing platform1 [13]. Until the end of 2017 the service was operating in a piloting

phase. The primary goal of the phase was to aggregate and provide open access to

the data related to the research infrastructures Finland owns or participates in. Potential

customers for the service are researchers, research infrastructure service providers and

funders [13]. Piloting phase aimed at finding out the existence of the required data at

the universities and other RI-handling organizations. Currently, the service contains data

on RIs, which are included into Finland’s Strategy and Roadmap for Research Infrastruc-

tures 2014-2020 [16]. Also, the service addressed an absence of common Persistant

Identifiers (PIDs) for Finnish RIs. The identifier solution the service has provided is a

generation of unique PIDs inside the application. The identifiers are exposed via RI Data-
1research information publishing platform offered by the Ministry of Education and Culture [15]

4

bank Application Programming Interface (API) and National Library of Finland identifier

resolution service [17]. The resulting registry owner is Academy of Finland. Information

management and component development are done by the service provider - CSC [13].

Since the end of the Open Science and Research Initiative, from the beginning of 2018,

the RI Databank Service was structurally moved under a larger development context -

the National Research Information Hub. The updated goal for the project is to act as a

data provider for the holistic access to research information in the field of science and

education. The source data and metadata are aggregated from different registers and

systems [18] [19]. In this new context, RI Databank will operate as data supplier and

system integrator. On the basis of the piloting phase results, project will be redeveloped

to establish real integrations with partners’ systems.

2.1.2 Technical description

RI Databank Service was initially implemented as a part of AVAA, technically a Liferay

portal application depending on diverse Database (DB) types. RI Databank Service is

one of the portlets in the AVAA application-rich environment. Application uses Java as the

main programming language. MariaDB database is used to preserve the data. Liferay’s

Service Builder framework is employed to build persistence and API layers. To create

a view layer, Vaadin open-source framework is used along with some extensions (e.g.

Leaflet). Apache Maven is responsible for building and packaging the application. The

ready made .WAR package is delivered to the platform via Liferay’s default deployment

mechanisms. In a wider context, RI Databank Service is a Java Rich Internet Application

with some usage of spatial data [20].

In compliance with the original initiative’s2 nature, open-source tools and technologies

were intensively utilized in the service development. Just as all the other application

codebases for AVAA platform, RI Databank Service’s source code is licensed under GNU

Affero General Public License terms and available on GitHub3 [21] by the name of Re-

search Infrastructure Databank in Finnish: ”Tutkimusinfrastruktuurien tietopankki” (TIPA).

2Open Science and Research Initiative 2014-2017
3available at https://github.com/avaa-csc/avaa-tipa/

https://github.com/avaa-csc/avaa-tipa/

5

Figure 1: Research Infrastructure Databank Service component schema. Extracted from
CSC’s internal documentation (2017) [22]

Diagram4 depicted in figure 1 represents the application structure layers. Borders are

painted black for the RI Databank Service functional parts existing by the end of 2017, and

components with dark blue borders represent the parts to be developed in the next project
4component diagram uses elements of the standard Unified Modelling Language (UML) notation

6

phase. The schema depicted in the figure 1 also demonstrates that service contains

a set of APIs opened for public consumption. API marked as ”out (JavaScript Object

Notation (JSON))” - is a rich API derived from Liferay’s Service Builder functionality [23].

API referred as ”out (eXtensible Markup Language (XML))” is a simple Representational

State Transfer (REST) API [24] providing an XML output. The endpoint exposes the link

between human-readable RI description Web page and its generated PIDs.

Figure 2: Research Infrastructure Databank Service simplified data model. Copied from
CSC’s InterOperability Workbench (IOW) tool user interface (2017) [25]

RI Databank Service simplified data model for the existing service in figure 2 shows the

basic conceptual entities and their interrelations. Model depicts relationships between

Research Infrastructures, Organizations and Services provided. Research Infrastructure

has a key role in the model. It contains data on PIDs, current and former names of the

Infrastructure, its type and references to the descriptive Web pages. The data model

7

along with semantic references are stored in a separate service called IOW. The service

is publicly available for the interested parties, enhancing interoperability in exchanging

research information within the domain and beyond. [25]

During the piloting stage, the actual application data was collected manually via Excel

spreadsheets. Collected data was converted into Structured Query Language (SQL) in-

sert statements and imported into the DB storage. Data also required manual purification.

Direct parsing of Excel spreadsheets was not possible due to poor data integrity. The ap-

proach rendered to be slow, error-prone and highly labour-intensive.

Manual data collection and processing phase of the project has confirmed the existence

of the target data for the service, but also brought up the issues associated with the source

data gathering approach. To address these issues and keep the information up to date,

establishing integrations with universities’ RI Management Systems was planned as a

next service development stage.

2.2 Data Management and Partner Systems

While preparing project continuation roadmap for 2018, a survey amidst Finnish universi-

ties was held. In the questionnaire, universities were asked to describe what CRIS they

are using, and give an estimate on the amount of the RIs related to their organization.

Results, produced by the survey are displayed in figure 3.

(a) Usage of different CRIS (b) Amount of maintained RI among respon-
dents

Figure 3: Results of the survey ”Suomen tutkimusinfrastruktuurit - palvelun tiedonsiirron
pilotointi”, conducted among the Finnish universities. Visualized based on Kainulainen
(2017) [26]

8

All of nine universities, which have taken part in the survey are either using or in the pro-

cess of implementing the CRIS solution [26]. Typically, CRIS systems are used to record

and manage research information on RIs or other entities such as publications, projects

etc., and can thus be used as a data source for RI Databank Service next development

stage. University of Helsinki actively contributed during the pilot stage of the project and

agreed to become the first partner for integration in the next project stage. The university

is using Elsevier Pure - a widely spread general-purpose CRIS in Finland [26].

Figure 4: Elsevier Pure conceptual structure. Copied from ”Pure hosted edition” brochure.
Elsevier (2014) [27]

Elsevier Pure is a research intelligence solution that helps organizing and managing data

as well as processes in the field of scientific research [28]. The solution has a modular

structure, which allows to support on-demand National Assessments for multiple countries

(UK, Netherlands, Australia) [29]. Key application modules are: Capture, Validate, Profile,

Identify, Report, Analyze, Monitor and Showcase [30].

Different point of view on modularizing is presented in the figure 4, which also shows pres-

ence of the system integration services module. This module supports diverse data export

formats as a standalone part of the system, which is a natural component for modern CRIS

solutions. Pure supports Common European Research Information Format (CERIF) XML

as well as more traditional Web Services approach. API calls provide results in two possi-

9

ble formats: XML and JSON. To ease the integration process, Elsevier Pure APIs are well

documented. According to the latest API description trends there is a Swagger-like doc-

umentation available for the REST API and a set of definitions for Simple Object Access

Protocol (SOAP) endpoints [31].

10

3 Theoretical background

3.1 Integration

As a term, integration in general, and a subterm Data Integration, have very wide defi-

nitions. For example IBM suggests [32] the following definition: ”Data integration is the

combination of technical and business processes used to combine data from disparate

sources into meaningful and valuable information”. Simple definition of integration, ap-

plicable for the software development context, describes it as a process of seamless

provision of end user with an aggregated data from various sources [33] [34]. Further

references to the term in the work use this simple definition of integration.

(a) Mediator model (b) Warehouse model (c) Federation model

Figure 5: Visualizations of Data integration models. Extracted from Ullman (2007) [35]

The concept of integration started to evolve since the early stages of distributed service

development. One of the first and influential projects in the field was Integrated Public Use

Microdata Series (IPUMS), where the data warehousing approach was introduced [36].

Later on, with the development of the Web, other major architectural approaches were

created: mediation and federation systems [37].

The main integration architectures are as follows [35]:

• Federation: each party directly communicates with others.

• (Data) Warehouse: original data is translated into higher level schema (often called

a global schema) and copied into common storage; querying of the data is direct.

• Mediator: similar to the Warehouse model, but the data persists at original sources

and is prompted via artificial gateway; corresponding parts of the query are redi-

11

rected to original sources and responses are aggregated.

The noteworthy aspects of data integration models are the physical location of the data,

required mapping efforts and the resulting querying speed. In the context of mapping

complexity, it is important to observe that models with central orchestrator are considered

to be more effective than the distributed ones. The role of the orchestrator is reducing

complexity5 fromO(N2) toO(N) [39, p. 9]. The visual representation of non-orchestrated

and orchestrated model types is shown in the figure 6.

Figure 6: Non-orchestrated and orchestrated model types for data integration. Adapted
from Ferreira (2011) [39, p. 9]

Additional dimension of the integration process is related to the nature of the data source.

Historically used unstructured data formats (files, databases query outputs, etc.) were

challenging from integration point of view as the data was not self-descriptive [40, pp. 2-

3]. Introduction of the first XML standard provoked rapid development in the industry as

it simplified data processing. Recent trends in the field are focused on unifying structured

data descriptions, e.g. advanced concepts such as Linked Data and Semantic Web6.

Such developments promote data auto-integration.

3.2 Data formats and processing

After several decades of the active usage, XML still remains a widely spread technology.

Even today, XML is being used as an internal (canonical)7 data model representation.
5Big O notation is used in Computer Science to describe the performance or complexity of an algorithm

[38]
6a proposed development of the World Wide Web in which data in Web pages is structured and tagged

in such a way that it can be read directly by computers [41]
7a new data handling format created solely for the integration purposes [39, pp. 105-106]

12

One of the XML definitions characterizes it as a self-descriptive markup language for the

data storage and transport [42]. The technology originates from the field of a large-scale

electronic publishing, subsequently achieving greater role in data interchange on the Web

and elsewhere. XML has become a de-facto standard format for the data transfer [43] [44,

p.291].

Benefits of using XML format are: ease of extensibility, standardization and compliance

with the Document Type Definition (DTD) or XML Schema Definition (XSD), which in prac-

tice significantly simplifies data validation [45]. Additionally XML processing (parsing) has

become a trivial task with plenty of decomposition approaches available. There are mul-

tiple implementations for different approaches, for example: Simple API for XML (SAX),

Streaming API for XML (StAX), Document Object Model (DOM), Transformation API for

XML (TrAX) [46].

Certain reasonable concerns exist when comparing the performance of XML to other com-

mon data transfer formats, for example JSON. Several sources confirm, that JSON over-

performs XML both in terms of processing speed and required resource usage [47] [48].

JSON, being a product of JavaScript environment, is easier to use with JavaScript appli-

cations [47]. On the other hand, XML as a data format has its own significant strengths

like improved security, great validation features as well as simplicity of debugging and

troubleshooting [48].

XML has a time-proven, feature saturated support among different programming lan-

guages. A practical example of such support in Java environment is the Java Architecture

for XML Binding (JAXB). In contrast with SAX, StAX, DOM and TrAX parsers, JAXB pro-

vides more convenient approach for processing XML by directly mapping the contents of

the document onto Java classes. The effort of the manual selecting and matching the

fields is thus significantly reduced. This process, however, assumes the existence of a

valid XSD [49]. Based on the schema, JAXB allows to complete several primary opera-

tions: marshalling8, unmarshalling9 and validation [51, p. 2]. Typical internal workflow for

XML to code mapping in JAXB is described in figure 7.
8process of gathering data and transforming it into a standard format before it is transmitted over a

network so that the data can transcend network boundaries [50]
9process opposite to marshalling

13

Figure 7: A mapping of XML to Java classes/objects. Copied from JAXB Specification,
Fialli (2003) [51]

After the introduction of JSON, there is no single dominating standard for data interchange

format any more. As follows, integration tools and technologies should support transfor-

mation of data in both formats. One of the options for data transformation in both formats is

eXtensible Stylesheet Language Transformations (XSLT) specification, where eXtensible

Stylesheet Language (XSL) is a member of the XML environment [52]. XSLT was initially

defined as ”a language for transforming XML documents into other XML documents, text

documents or HyperText Markup Language (HTML) documents” [53].

Figure 8: Processing with XSLT. Adaptation from W3C [53]

Since the specification version 3.0, XSLT is capable of processing additional formats

including JSON [54]. Transformation language is suitable for cases with changing re-

quirements for input and output data formats. Besides XSLT usage introduces addi-

tional abstraction layer into application architecture by decoupling inputs from internal

data model [55, p. 3]. Schematic process of data processing with XSLT is shown in the

figure 8.

14

3.3 Mapping

Implementation of objects mapping is often required during the software development

process, provided that different data models have to coexist inside the application. In

context of Object-Oriented Programming (OOP) languages, object mapping is defined as

matching data sets or their parts to each other [56] [57].

In case of Java applications, the naive approach is a manual creation of direct mapping

between classes’ fields. This, however, results in introducing significant amount of hard-

to-maintain verbose code. Several open source libraries have addressed this issue by

designing object mapping tools. Based on the functioning principle, these tools can be

conditionally divided into two large groups: reflection10 based mappers and the ones,

where the mapping code is generated on pre-compilation phase. Approaches differ in

speed and flexibility. Despite some advanced features like the ability to access private

fields, recursion (reflection) based libraries show significantly lower performance results

[60].

Modern mapping tools differ to the extent of community and Integrated Development En-

vironment (IDE) support as well as documentation level. An example of recent devel-

opments in the field is MapStruct library. It operates by processing annotations respon-

sible for mapping layer generation. Additionally, library is able to reduce the amount

of mapping-related runtime errors. This happens because code generation is moved to

pre-compilation phase and error-checking is therefore performed by compiler before the

runtime [61] [62].

3.4 Code generation

Code generation process can be hardly universally defined. One of the most generic

definitions explains it as a compiler’s internal process of translating semantic language

into ”machine” language (bytecode) [63] [64]. A different approach to code generation

originates from internal processes of the frameworks, where functionality of generated

code layer is hidden behind an API. Descriptive examples of such frameworks include
10Java language feature to scrutinize and modify runtime objects [58] [59]

15

Spring11 and Vaadin12. The compiler’s and frameworks’ code generation procedure are

similar in a way that once created, the generated code is either invisible or unreachable

for the developer.

Some frameworks - e.g. Liferay’s Service Builder - allowmanual modification of the gener-

ated code. Based on object-relational mapping technology, it creates a persistence layer,

also allowing to access the entities through an API. Additionally, generated code is in strict

compliance with a separation of concerns principle [65]. Previously discussed JAXB tool

also provides possibility of code generation with any further modification. JAXB can be

used for generation of Java classes (objects) from a well-formed XSD schema [49]. Gen-

erated classes act as accommodation objects for mapped XML data and can be adjusted

if needed.

The task of accessing and handling data stored in persistent storage (database) is to

some extent present in most of the modern applications and can be considered trivial. To

support this operation in Java environment Java Persistence API (JPA) was developed.

Framework contains a collection of standard interfaces which allow to represent database

information in a form of Plain Old Java Objects (POJOs) [66] [67]. These plain annotated

Java entities are generated from the database schema based on the selected implemen-

tation. JPA, however, adds an extra abstraction layer, that allows to use common API

regardless of the underlying implementation [68].

In general, code generation tools simplify software development process which is bene-

ficial for all the parties involved: managers, developers and customers. This is achieved

through consistent architectures, improved code quality of the output and a shorter time

to market [69].
11application logics are partly generated on the runtime
12most of the client side JavaScript code is generated from Java

16

4 Methods and materials

Recent RI Databank Service development plans described in chapter 2.1.1 result in sig-

nificant challenges to the service’s general architecture and components. Starting from

2018, the service will become a data provider and system integrator. For this stage real-

life integrations with partners’ CRIS systems were scheduled. Additionally, it was decided

to take an attempt to replace Liferay framework with more lightweight alternatives.

The aim of the thesis is to address the challenges of the new service by developing a Proof

of Concept (PoC) of the next major version of the application. The resulting prototype

has to verify the compatibility of the selected tools and frameworks as well as to ensure

service ability to process real CRIS API data. The two main objectives of the application

are: translating incoming XML data into canonical format and ensuring the persistent

storage of the result. The sample data for processing is prompted manually from one of

the partner’s CRIS (University of Helsinki). The project idea for the thesis originates from

the author’s experience working at CSC.

4.1 Methods

The research methodology of the thesis follows closely steps taken in the correspond-

ing project. Thesis is a report of lessons learnt [70] from developing a prototype of RI

Databank Service. The three main stages of the project are:

1. planning

2. implementation

3. results verification

During the first stage, both technical and non-technical requirements are gathered and

analyzed. Based on the results, the functional component schema draft is developed.

This subtask included arranging informal discussions with involved parties such as DB

administrators along with colleagues responsible for the software architecture and de-

17

sign. Additionally, previous version of the service is comprehensively analyzed to avoid

inheriting of any design faults and negative dependencies. On completion of the previous

steps, a research of available technologies is performed to select the most suitable ones.

The information is gathered from public sources such as frameworks’ and tools’ official

documentation pages, source code and message boards.

Second stage, implementation, focuses on actual development of the prototype. Themain

goal of the stage is to ensure compatibility of the software components and to document

possible drawbacks. As a part of the process, code generation functionality for several

tools is trialed to fit the project’s needs.

The last stage of the project is a verification of the results. This includes several types

of testing, benchmarking the general performance indicators and asking for a formal ap-

proval of the superior colleagues.

The order of described phases does not strictly reflect the application development flow.

This is caused by interdependencies of the stages. For example, during implementation

phase, better alternatives might be found and used for the planned software components.

Implementation and testing stages are overlapping, because unit testing is an inseparable

part of the software development process.

4.2 Requirements and development environment

As a result of the planning phase, the following requirements were formulated, separated

into functional and non-functional.

Functional requirements:

• input XML is processed into canonical format

• processed XML data objects are stored into a structured database

• stored data is exposed via REST API

• API is documented

18

Non-functional requirements:

• adaptability - ability to process various data in terms of the format and size

• flexibility - ability to adjust to internal data model modifications in the DB schema

• performance - data transformation average speed is at least 100 XML entities per

second

• portability - application is platform-agnostic (unlike Liferay portlets)

• testability - service components are automatically testable

An additional constraint for the application development was usage of the Java techno-

logical stack, due to team members competences. Tools and development environment

should be easy to set up, configure and maintain. Security of the application is excluded

from the requirements as the goal of the project is to build a prototype.

The following tools, frameworks and technologies were used while developing the appli-

cation:

• Intellij IDEA Ultimate IDE

• Java programming language version 8

• Spring Boot framework with DATA and REST extensions

• JavaEE JPA for Object-Relational Mapping (ORM)

• JAXB for XML processing support

• set of SpringFox libraries for Swagger API descriptions

• MapStruct entity mapping library

• JUnit unit testing framework

• Gradle application build tool

• XSLT for raw XML processing

• MySQL database for data persistent storage

To verify the conformity of the developed application with the requirements, several testing

approaches were used. The testing was performed in a local development environment.

Firstly, the stages of code generation were manually tested for the ability to compile and

initiate application context (start Spring Boot). These trials were made using default ap-

plication build tool Gradle. Service was started in Intellij IDEA development environment.

19

When developed component compiled without errors, its main logics were covered with

unit tests. JUnit based tests included general functionality tests as well as tests measuring

data processing performance. To assure that input data was successfully saved to per-

sistent storage (database), manual testing with IDE built-in REST client was performed.

20

5 Solution

As a result of this thesis project, a prototype for the new version of RI Databank Service

was created. The prototype is implemented as a Spring Boot13 application with MySQL

database as a persistent data storage. Native Java Database Connectivity (JDBC) con-

nector is used to transfer the data. Prototype expects a valid local or remote MySQL

database installation with necessary read-write permissions. The application is build with

the Gradle build tool, and unit tests are running during the build process. Although the

test coverage tool (JaCoCo) is introduced, target coverage level is not defined.

Software is packaged as .JAR and requires Java Development Kit (JDK) version 8 or

later to run in the hosting environment. Spring Boot has a build-in lightweight server

functionality, as such, Web Service package does not require a separate Web Server for

the deployment. The application is largely using Spring Boot default configurations. The

source code is stored in CSC’s internal git-based source code repository14.

Figure 9: TIPA service data flow schema. Derived from CSC’s service documentation
(2017) [22]

13version 1.5.4.RELEASE
14available at https://gitlab.csc.fi/ttv/tipa

https://gitlab.csc.fi/ttv/tipa

21

As displayed in figure 9, prototype data flow consists of the following stages:

1. manual query to partner’s CRIS API; results of the query are fetched from the appli-

cation source code bundle along with the specific call definition

2. input XML file is processed with the XSLT transformation to meet the requirements

of the service canonical XML format

3. representation object of the canonical XML is stored to the database

4. entities stored in the database are retrieved via REST API

Figure 10: RI Databank Service component schema.

An overview of the architectural design of the prototype is presented in the figure 10.

Application consists of the five conceptual modules and a database. XML processing

module is responsible for the initial data transformation. It contains functionality for parsing

the input XML data into its own canonical format and placing it into XML hosting layer

classes. XML hosting layer is a part of the application data model and contains XML

data representation classes. Mapper component is responsible for relation between XML

hosting layer objects and JPA handling layer objects. It also provides declarations for data

type conversions. JPA handling layer, as the name implies, is in charge of persisting and

storing data into the database. JPA and XML handling layers form application data model

layer. The last component is a REST API. This component utilizes the objects from JPA

layer and exposes them as a Swagger-style described REST endpoints.

22

5.1 Data processing

XML data processing module combines both data handling key functionalities: data con-

version from partner’s XML into application internal format and following parsing of the

output into Java code layer.

An important part of the data conversion functionality is implemented using XSLT

stylesheet depicted in listing 1. It is responsible for matching the relevant fields of the

input file and creation of the resulting canonical XML file. XSLT technology is suitable for

handling input data transformation flexibly. Such processing can handle cases of lacking

data, which are replaced with defaults, work with attributes and node values. Also, the

technology requires very little extra configuration to operate.

1 <xsl:stylesheet version="3.0"
2 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
3 xmlns:xalan="http://xml.apache.org/xalan">
4 <xsl:output method="xml" indent="yes" xalan:indent-amount="4"/>
5 <xsl:template match="/result">
6 <organizations>
7 <xsl:for-each select="externalOrganisation">
8 <organization>
9 <name>
10 <xsl:value-of select="name"/>
11 </name>
12 <customerId>
13 <xsl:value-of select='@uuid'/>
14 </customerId>
15 <country>
16 <xsl:choose>
17 <xsl:when test="address/country">
18 <xsl:value-of select='address/country'/>
19 </xsl:when>
20 <xsl:otherwise>default</xsl:otherwise>
21 </xsl:choose>
22 </country>
23 </organization>
24 </xsl:for-each>
25 </organizations>
26 </xsl:template>
27 </xsl:stylesheet>

Listing 1: XSLT schema for Organization entity conversion [71]

23

Further XML internal format conversion into Java objects is realized in Parser class. Its

methods are built to be generic15 and heavily utilize the features of Java XML processing

APIs. Implemented methods use SAX parsing algorithm underneath. Alternatives of the

overloaded methods16 for XML parsing public E parseXml(File xml, ...) allow to

process data with or without validation against the target XSD schema. In order to be

discoverable by Spring context, the described class is annotated as @Service.

5.2 Data models

The approaches and tools used for data model handling comply with the application flex-

ibility requirement, defined in subsection 4.2. The main data model for the application

is pushed to a database level making the SQL entity model a primary representation of

the information structure. Other layers related to the model, JPA and XML representation

layers, are derived from the application DB schema. This approach allows the application

to retain flexibility for future data model changes.

Figure 11: Configurations for generating JPA layer with Intellij IDEA. CSC (2018) [73]

The Intellij IDEA built-in features for code generation are widely used during the implemen-

tation of this module. The persistence support is handling the JPA layer generation and

JAXB features create the XML hosting layer. To produce the results, the tools required

minor to no adjustments to default configurations of code generation settings.

1 Caused by: org.hibernate.MappingException: Repeated column in mapping for
entity: fi.csc.tipa.model.jpa.PersonOrganization column: o_id (should
be mapped with insert="false" update="false") ...

Listing 2: Error message caused by JPA layer generation misconfiguration
15a class or interface that is parameterized over object types
16a feature that allows a class to have more than one method having the same name, if their argument

lists are different [72]

24

An example of the change to default configuration for the JPA layer establishment is il-

lustrated by figure 11. As shown in the figure, it is required to disable the generation of

foreign keys in the linking table representing many-to-many relation. Absence of this re-

configuration causes service failure at the start-up stage with the error shown in listing

2.

1 @XmlRootElement
2 public class Organization { ... }

Listing 3: Annotation required for JAXB class recognition. CSC (2018) [74]

XML hosting layer was also generated by the Intellij IDEA, based on the classes result-

ing from the JPA layer creation phase. During this process, another significant issue

was encountered. Resulting XML representation classes did not contain key annotation

(@XmlRootElement) that helps JAXB with the class recognition. Annotation had to be

manually added to the target object classes as shown on listing 3.

5.3 Mapping

To ensure smooth processing of data, JPA and XML Java objects had to be mapped to

each other. This was completed using MapStruct mapping library. The library is abstract-

ing away the verbose code creation to pre-compilation stage. As such, the mapping is

relatively easy to implement. A @Mapper annotated interface was created for every pair of

the entity classes with instantiation logics.

1 public interface DefaultTypeMapper {
2

3 fi.csc.tipa.model.jpa.Person personXmlToPersonJpa(Person personXml);
4

5 fi.csc.tipa.model.jpa.Organization
organizationXmlToOrganizationJpa(Organization organizationXml);

6

7 fi.csc.tipa.model.jpa.PersonOrganization
personOrganizationXmlToPersonOrganizationJpa(PersonOrganization
personOrganizationXml);

8 ...
9 }

Listing 4: MapStruct JPA and XML entities mapping interface. CSC (2018) [75]

During the testing phase, it was noticed, that methods for type conversion have to co-

locate inside the same interface, the DefaultTypeMapper interface was thus created.

25

Later it was extended by class-specific @Mapper annotated interfaces. This step allowed

to keep the conceptually different code for JPA and XML entities separate and meet tech-

nical requirements of the library. Otherwise, the MapStruct did not require any extra con-

figuration, was simple and fast to set up.

The benefit of using the described approach is a clear separation of concerns, where the

actual code responsible for layersmapping is redone on every compilation and is therefore

completely independent of the source and target classes’ structures. This is only possible

for cases, where the class fields are following similar naming patterns. Part of the code

base for mapping the three entities to each other is shown in listing 4. The fields of classes

are not present in the code being automatically matched by intelligent mapper. The only

mapping-related limitation, faced in context of the work, is the incompatibility of the latest

MapStruct library with the latest Spring Boot version17.

5.4 REST API

To generate a human-readable User Interface (UI), the prototype utilizes features of the

SpringFox Swagger framework. Two interfaces, one for each exposed entity were cre-

ated: PersonRepository and OrganizationRepository. Interfaces were configured

by extending one of the JPA repositories18 and marking them with a common Spring

@RestResource annotation. An @EnableSwagger2 annotation had to be added to the

Spring Boot application context class to enable the API description initialization. Addition-

ally, a SpringFox configuration Bean was created and annotated as @Bean. As a result of

these steps, the extendible skeleton for further API description was constructed. A set of

HyperText Transfer Protocol (HTTP) access methods is generated for the empty interface

by default. Swagger API description page contains UI block for trying out the methods.

Part of UI with generated description and corresponding source code are presented in the

figure 12.

The REST API implementation stage required a larger configuration effort. To properly
17MapStruct libraries: org.mapstruct:mapstruct-processor:1.2.0.Final, org.mapstruct:mapstruct-jdk8:

1.2.0.Final and Spring Boot version org.springframework.boot:spring-boot-starter-web:2.0.0.RELEASE are
incompatible as for March 2018

18CrudRepository, PagingAndSortingRepository or JpaRepository

26

Figure 12: Side-by-side presentation of the generated Swagger API description and orig-
inating source code

document Swagger API, every method should be extensively annotated19. Additional

annotations are required in the model classes to prevent certain fields from disclosure

(such as internal identifies). The Spring Boot REST component had to be prevented

from exposing default ”error” and ”profile” controllers using regex20. Also, an insufficient

SpringFox Swagger framework documentation and the absence of relevant examples

hindered the development process.

5.5 Testing

In order to verify the conformity of the application to the initial requirements, several types

of tests were performed. The first group, manual compilation tests, originated from the

nature of Java being a compiled language. After every code generation step or a sig-

nificant configurational change, the application was rebuilt and started as a Spring Boot.

This was done with IDE built-in tools and allowed to ensure that application is valid, at

least from a formal configuration standpoint.

Next type of tests, unit tests, covered parsing, transformation and mapping functionalities.

Two sources of data were used: dummy data, generated solely for the testing purposes,
19@SuppressWarnings(UNCHECKED) @ApiOperation(FETCHES_ALL_THE_ORGANIZATIONS) simple method

annotation example.
20in theoretical computer science and formal language theory, a sequence of characters that define a

search pattern [76]

27

and actual data from the partner’s CRIS. The results of the unit tests have shown that

selected tools and components(XSLT, XML MapStruct, JPA) integrate appropriately and

are thus fit to purpose21.

Figure 13: Results of real-life data XML processing

To ensure service accordance with quantitative requirements, XSLT processing perfor-

mance tests were run as a part of the unit testing stage. The results of the performance

tests are shown in figure 13. The graph uses a logarithmic scale, where horizontal axis

displays the amount of entities per source document and the vertical axis - the natural

logarithm of the mean time in milliseconds. The figure shows that significant amount of

time is spent on establishing the Transformer22 object, while XML processing is per-

formed fast, regardless of the size of the input file. Data conversion speed satisfies the

requirements23.
21ability of the commodity or service to do what it is designed for [77]
22an object used to process XML from a variety of sources and write the transformation output to a variety

of sinks [78]
23non-functional requirement for data transformation average speed at least 100 XML entities per second

is defined in section 4.2

28

6 Discussion

The result of the thesis project is a prototype of the next version of the RI Databank Ser-

vice. In contrast with the previous version, the architecture of the current application is

simpler, despite increase in the provided functionality. The prototype is able to handle

various input data types and is thus better prepared for further integration iterations.

Among the conceptually suitable options for orchestrator based24 integration architec-

tures, Data Warehouse was chosen in favour of the Mediator model. Warehouse archi-

tecture provides opportunities to modify the data contents. Furthermore, it improves data

quality by removing/aggregating data on the same entities and adding PIDs25. Another

reason for selecting the model is a common data storage. This is a technical requirement

of the National Research Information Hub project26: data should be kept in the same SQL

storage in order to be queried directly from the DB by Extract, Transform, Load (ETL) En-

gine.

The decision to substitute Liferay container with the Spring Boot helped to reduce ser-

vice architectural complexity and future maintenance burden. Another benefit of moving

away from the Liferay framework is higher flexibility, obtained through easier customiza-

tion of the components. For example, highly customizable SpringFox Swagger API de-

scription versus statically generated pages of the Liferay Service Builder API. Moreover,

the decision significantly increased application portability across environments and plat-

forms. This was achieved by decreasing technical requirements to the host system from

the massive Liferay container to a lightweight and common Java Runtime Environment

(JRE).

On the other hand, replacement of the powerful Service Builder framework of Liferay with

several standalone components (JPA, JAXB, MapStruct) demanded integration efforts

and might need deeper integration testing. Also, using multiple standalone components
24orchestrator based models are more effective than non-orchestrated ones, as discussed in section 3.1
25record linkage technique is a merging, that brings together information from two or more sources of

data with the object of consolidating facts concerning an individual or an event that are not available in any
separate record [79]

26an umbrella project for RI Databank Service

29

may cause problems with potential versions incompatibility. On the smaller scale, this

issue was already encountered at the implementation stage, where the latest Spring Boot

version could not be used, because of the missing MapStruct mapping library support.

However, upgrading Service Builder framework is inseparable from upgrading the Lif-

eray’s version, which may result in more complications and higher testing efforts27.

The benefits of the new service architecture would be hardly achievable without an in-

tense use of the code generation tools. JAXB and JPA allowed a generation of clean,

separable and extensible code layers. Code generation time is negligible compared to

the effort spent on the tools’ configurations. Further code regeneration for extended mod-

elling and developing production-grade application should not introduce any new obsta-

cles, but would still require certain amount of manual calibration. In general, utilization

of code generation tools has accelerated development of the application, as confirmed in

section 3.4. Nonetheless, generation of complex, multiple-level-nested entities, with JPA

and JAXB was not tried in scope of this work. As follows, further prototyping with such

entities is required along with a research on the related XSLT performance.

The XSLT technology proved to be simple and effective in use. Being an older technol-

ogy, it had most of the relevant use cases covered and produced no bugs during the

development and testing stages. Unfortunately, direct reuse of the XSLT transformation

created for the prototyping purposes is not possible for further application development.

A new schema must be created for every new partner’s data source. As such, only the

experience is transferable. Even so, the XSLT usage shifts the data mapping and con-

version outside Java code layers and simplifies thus the architecture in accordance with

the separation of concerns principle.

Modern IDEs provide extensive support for code generation tools and frameworks. How-

ever, exclusive reliance on the Intellij IDEA Ultimate might impose certain limitations on

the process. Limitations include a need for a paid license, as open-source version does

not support most of the used tools, and a natural vendor lock-in. Moreover, active usage

of the IDE UI and build-in tools (Gradle, DB management tool) during the development,

may lead to complications in the process automation, for example Continuous Integration

and Continuous Deployment (CI/CD) establishing.
27all the other AVAA applications would also require additional testing, because of using the same Liferay

container, as described in section 2.1.2

30

Considering design and implementation options for mapping component, MapStruct li-

brary was chosen. Being a pre-compilation type tool, it should theoretically provide a

fast entity mapping28. This helped to preserve the processing speed of the layer at the

acceptable level.

The resulting prototype has a rich REST API. It can act as a base for establishing UI

layer with any relevant front-end technology. This allows higher flexibility in the service

ecosystem so that the RI Databank Service and Research Information Hub could use it

as a base for UI layer creation. Additionally, the SpringFox’s generated API description

Web pages could be used to interactively promt the data via UI on their own. However,

due to a relatively tight coupling of the SpringFox library with the REST repositories layer,

API can not be externalized to a separate application, which could increase modularity.

Another important observation concerns the input data processing speed, which was set

as a non-functional requirement. Prototyping phase has shown, that there is no demand

for a faster than XML processed formats (like JSON) because of the satisfactory results of

performance testing. Nevertheless, the scope of the prototype did not include processing

of JSON as a source format. Additional tests should be performed in order to validate

format processing support with the XSLT version 3.0.

The developed version of the service could have several improvements. For example, the

application could fetch the API descriptions from an external source. The source could be

any collaborative tool29, wherein the data is collected by a plugin. This approach would

allow non-technical team members (analysts, product owners) to edit the descriptions

externally. Separating API descriptions from the source code would remove description

maintenance burden from the developers. Also, to ease the regeneration process, a script

to add missing annotations to certain generated classes could be created. Moreover, the

current version of the prototype could clearly have higher test coverage for data conver-

sion and mapping components’ methods.

Next planned step of the project is extending the prototype’s skeleton to accommodate

the variance of the real data sets from partners’ CRISs. Additionally, more tests must

be created to cover mapping and parsing functionalities. One more important step to-
28for comparison of mapping approaches see chapter 3.3
29for example Google Spreadsheet

31

wards the production-grade application would be configuring CI/CD pipelines for testing

with more data (including more complex entities) and load. To conceptually finalize the

project, a mechanism for deduplication30 of data received during integrations, should be

developed. These steps will increase operational stability of the service and offer the end

users added value by providing a homogeneous view on Finnish RIs.

The implemented application is strictly following the functional requirements defined ear-

lier in section 4.2. The prototype is satisfying most of the non-functional requirements as

well. The only requirement that is met partially is adaptability, which refers to the appli-

cation’s ability to adjust to various input data formats. The prototype’s design assumes

this feature, however, tests were performed for single format only (XML). The prototype

proves feasibility of the solution, it shows that chosen tools and technologies allow to meet

the project goals.

The result of the thesis is based on the real job task and provides therefore clear interest

for the employer. Developed PoC will shape the base for implementing the key software

component for the RI Databank Service project.

Due to a small team size, I acted both as a developer and the Scrum Master31 for the

project. This resulted in a significant development of soft and hard skills. At times, stake-

holders required assistance and guidance in shaping the project requirements. Helping

them in this process advanced the understanding of the service business domain and

its values for the customers. Additionally, documenting and managing the requirements

improved communication and technical writing skills. Not to mention, working on the pro-

totype had a positive impact on the team-work skills. Moreover, I have learnt better inte-

gration techniques using XSLT and JAXB. In addition, I got acquainted with sophisticated

code generation tools, identified nested advantages and disadvantages. Implementing

the JPA layer polished my existing programming skills. Furthermore, the knowledge of

the used tools’ (IDE, build tool) functionalities has increased.
30other names for deduplication are ”record linkage” and ”data linkage”
31Scrum Master is a person who, among other responsibilities, helps to improve interactions to maximize

the value created by the Scrum Team [80]

32

7 Conclusion

Due to changes in its development context, the RI Databank Service application faced

new functional requirements. As a response to this, a prototype for a new version of the

service had to be developed. The prototype implementation was completed as a work task

at CSC. The most important requirements for the application were the ability to integrate

with partner systems and preserve the overall architectural flexibility. The prototype has

benefitted from the application’s previous version as well as the best practices of the

software design. The created software actively utilized the concept of the code generation

which in turn accelerated development process.

During the implementation phase an overall approach viability analysis was completed.

In addition, the technological compatibility of the software components’ verification was

performed. This was achieved by comprehensive manual, unit and performance testing.

One limitation of the project is an absence of additional testing in production-like environ-

ments. This includes tests of processing the full variety of actual data, load testing and

configuring CI/CD pipelines.

The results show that the developed application is able to integrate with common CRIS

data format and capable of adjusting to the dynamic data model. Performance testing

stage has confirmed that data transformation speed satisfies the minimal speed require-

ments. In contrast with the previous version, the current application architecture is simpler,

despite the overall increase in its functionality. Built prototype will be used as a base for

further RI Databank Service project development at CSC.

Based on the results of this thesis, further study of the code generation tools compatibility

for integration purposes might be performed. It would be also interesting to investigate

the options and potential approaches for a record deduplication problem. The research

should aim at scenarios, where identifiers of the data entities, originating from various

sources are missing or non-unique.

33

Bibliography

1 Oracle. Packaging Programs in JAR Files; 2018. Available from:
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html [cited
2018-04-30].

2 Pivotal. Understanding WAR; 2018. Available from:
https://spring.io/understanding/WAR [cited 2018-04-30].

3 Oracle. Java™ Programming Language; 2018. Available from:
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
[cited 2018-04-30].

4 Agafonkin V. Leaflet - a JavScript library for interactive maps; 2017. Available
from: https://leafletjs.com/ [cited 2018-04-30].

5 Techopedia. What is Linked Data? - Definition from Techopedia; 2018.
Available from: https://www.techopedia.com/definition/5179/linked-data [cited
2018-04-30].

6 Google. Portlet Definition; 2018. Available from:
https://www.google.fi/search?q=portlet&oq=portlet&aqs=chrome.
.69i57j69i65j0j69i60l2j0.1059j1j4&sourceid=chrome&ie=UTF-8 [cited
2018-04-30].

7 Liferay. What is Service Builder? - Liferay Developers Network; 2018.
Available from: https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-
2/what-is-service-builder [cited 2018-04-30].

8 Pivotal. Introduction to Spring Framework ; 2018. Available from:
https://docs.spring.io/spring/docs/3.0.x/spring-framework-
reference/html/overview.html [cited 2018-04-30].

9 Pivotal. Spring Boot ; 2018. Available from:
https://projects.spring.io/spring-boot/ [cited 2018-04-30].

10 Techopedia. What is a Web Service? - Definition from Techopedia; 2018.
Available from: https://www.techopedia.com/definition/25301/web-service
[cited 2018-04-30].

11 CSC. About CSC; 2016. Available from: https://www.csc.fi/csc [cited
2018-03-29].

12 Open Science and Research Initiative. Research Infrastructure Databank
Service Report 2016; 2016. Available from: https://openscience.fi/documents/
10864/62537/20160823+Open+science+services-TIPA.pptx.

13 Research Infrastructure Database Service. Research Infrastructures / About;
2017. Available from: http://infras.openscience.fi/#!about [cited 2017-12-25].

https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
https://spring.io/understanding/WAR
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://leafletjs.com/
https://www.techopedia.com/definition/5179/linked-data
https://www.google.fi/search?q=portlet&oq=portlet&aqs=chrome..69i57j69i65j0j69i60l2j0.1059j1j4&sourceid=chrome&ie=UTF-8
https://www.google.fi/search?q=portlet&oq=portlet&aqs=chrome..69i57j69i65j0j69i60l2j0.1059j1j4&sourceid=chrome&ie=UTF-8
https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-2/what-is-service-builder
https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-2/what-is-service-builder
https://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/overview.html
https://projects.spring.io/spring-boot/
https://www.techopedia.com/definition/25301/web-service
https://www.csc.fi/csc
https://openscience.fi/documents/10864/62537/20160823+Open+science+services-TIPA.pptx
https://openscience.fi/documents/10864/62537/20160823+Open+science+services-TIPA.pptx
http://infras.openscience.fi/#!about

34

14 Open Science and Research Initiative. Data bank on RI; 2017. Available from:
https://openscience.fi/data-bank-on-ri [cited 2017-12-25].

15 CSC. AVAA - About AVAA; 2017. Available from:
https://avaa.tdata.fi/web/avaa/tietoa-palvelusta [cited 2018-03-16].

16 Academy of Finland, Finnish Research Infrastructures, Ministry of Education
and Culture. Finland’s strategy and roadmap for Research Infrastructures
2014–2020. 2014;Available from: http://www.aka.fi/globalassets/awanhat/
documents/firi/tutkimusinfrastruktuurien_strategia_ja_tiekartta_2014_en.pdf.

17 Open Science and Research Initiative. Research Infrastructure Databank
Service - Persistent Identifiers; 2017. Available from:
https://openscience.fi/ri-pid [cited 2017-12-25].

18 CSC. Research Information Hub - Eduuni-wiki; 2018. Available from:
https://wiki.eduuni.fi/display/CSCTTV/In+English [cited 2018-03-07].

19 Research Information Hub. Research Information Hub – Towards the Finnish
Research Information Hub 2020-; 2018. Available from: https://research.fi/
[cited 2018-03-07].

20 Oracle. Java Rich Internet Application Patterns; 2018. Available from:
https://docs.oracle.com/javase/7/docs/technotes/guides/jweb/index.html [cited
2018-03-16].

21 CSC. TIPA Project older version source code; 2017. Available from:
https://github.com/avaa-csc/avaa-tipa.

22 CSC. TIPA schemes - Eduuni Wiki; 2017. Available from:
https://wiki.eduuni.fi/display/att/TIPA+schemes.

23 AVAA. JSONWS API; 2017. Available from:
https://avaa.tdata.fi/api/jsonws?contextPath=/tupa-
portlet&signature=%2Ftupa-portlet%2FHelper%2Fget-capabilities-0 [cited
2017-12-25].

24 AVAA. REST API. 2017;Available from: https://avaa.tdata.fi/tupa-
portlet/api/infraservice/infra-URN-URL-identifier-location.xml.

25 CSC. TIPA IOW data model; 2017. Available from: http://iow.csc.fi/model/tipa/
[cited 2017-12-25].

26 Kainulainen A. Suomen tutkimusinfrastruktuurit - palvelun tiedonsiirron
pilotointi; 2017.

27 Elsevier. Pure Hosted Edition; 2014. Available from:
https://www.elsevier.com/__data/assets/pdf_file/0004/53437/pure-hosted-
edition-brochure-version2.01August2014.pdf.

28 Elsevier. Pure | Helps Research Managers at your Institution; 2018. Available
from: https://www.elsevier.com/solutions/pure [cited 2018-01-19].

29 Elsevier. Elsevier Pure Brochure; 2016.

https://openscience.fi/data-bank-on-ri
https://avaa.tdata.fi/web/avaa/tietoa-palvelusta
http://www.aka.fi/globalassets/awanhat/documents/firi/tutkimusinfrastruktuurien_strategia_ja_tiekartta_2014_en.pdf
http://www.aka.fi/globalassets/awanhat/documents/firi/tutkimusinfrastruktuurien_strategia_ja_tiekartta_2014_en.pdf
https://openscience.fi/ri-pid
https://wiki.eduuni.fi/display/CSCTTV/In+English
https://research.fi/
https://docs.oracle.com/javase/7/docs/technotes/guides/jweb/index.html
https://github.com/avaa-csc/avaa-tipa
https://wiki.eduuni.fi/display/att/TIPA+schemes
https://avaa.tdata.fi/api/jsonws?contextPath=/tupa-portlet&signature=%2Ftupa-portlet%2FHelper%2Fget-capabilities-0
https://avaa.tdata.fi/api/jsonws?contextPath=/tupa-portlet&signature=%2Ftupa-portlet%2FHelper%2Fget-capabilities-0
https://avaa.tdata.fi/tupa-portlet/api/infraservice/infra-URN-URL-identifier-location.xml
https://avaa.tdata.fi/tupa-portlet/api/infraservice/infra-URN-URL-identifier-location.xml
http://iow.csc.fi/model/tipa/
https://www.elsevier.com/__data/assets/pdf_file/0004/53437/pure-hosted-edition-brochure-version2.01August2014.pdf
https://www.elsevier.com/__data/assets/pdf_file/0004/53437/pure-hosted-edition-brochure-version2.01August2014.pdf
https://www.elsevier.com/solutions/pure

35

30 Elsevier. Features - Pure | Elsevier; 2018. Available from:
https://www.elsevier.com/solutions/pure/features [cited 2018-01-19].

31 University of Helsinki PURE System. PURE API longer descriptions; 2018.
Available from: https://tuhat.helsinki.fi/ws/api/510/api-
docs/documentation/Content/Topics/Web_Services_Intro.htm [cited
2018-01-19].

32 IBM. Data Integration; 2018. Available from:
https://www.ibm.com/analytics/data-integration [cited 2018-03-13].

33 Techopedia. What is Data Integration? - Definition from Techopedia; 2018.
Available from: https://www.techopedia.com/definition/28290/data-integration.

34 Gartner. Data Integration - Gartner IT Glossary; 2018. Available from:
https://www.gartner.com/it-glossary/data-integration-tools [cited 2018-01-18].

35 Ullman J. Information Integration Mediators Warehousing Answering Queries
Using Views; 2007. Available from:
http://infolab.stanford.edu/~ullman/fcdb/aut07/slides/integration.pdf.

36 IPUMS. IPUMS; 2017. Available from:
https://www.ipums.org/whatIsIPUMS.shtml [cited 2018-01-18].

37 Gagnon M. Ontology-Based Integration of Data Sources. 2007;Available from:
http:
//fusion.isif.org/proceedings/fusion07CD/Fusion07/pdfs/Fusion2007_1318.pdf?

38 Bell R. A beginner’s guide to Big O notation ; 2018. Available from:
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/ [cited
2018-04-30].

39 Ferreira DR. Enterprise systems integration: A process-oriented approach.
Springer-Verlag; 2013. Available from: https://link-springer-
com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-642-40796-3.pdf.

40 Fong JSP. Information Systems Reengineering, Integration and Normalization.
Springer Publishing; 2015. Available from:
https://link-springer-com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-319-
12295-3.pdfhttp://link.springer.com/10.1007/978-3-319-12295-3.

41 Google. Semantic Web - Google Search; 2018. Available from:
https://www.google.fi/search?ei=QijXWuboO8W3swH9zY2wBA&q=semantic+
web&oq=semantic+web&gs_l=psy-ab.3..35i39k1j0i20i263k1j0l8.2175.2175.0.
2588.1.1.0.0.0.0.70.70.1.1.0....0...1c.1.64.psy-ab..0.1.70....0.IjiPURIwONg
[cited 2018-03-15].

42 W3C. XML Introduction; 2018. Available from:
https://www.w3schools.com/xml/xml_whatis.asp [cited 2018-01-21].

43 W3C. Extensible Markup Language (XML); 2015. Available from:
https://www.w3.org/XML/ [cited 2018-01-21].

https://www.elsevier.com/solutions/pure/features
https://tuhat.helsinki.fi/ws/api/510/api-docs/documentation/Content/Topics/Web_Services_Intro.htm
https://tuhat.helsinki.fi/ws/api/510/api-docs/documentation/Content/Topics/Web_Services_Intro.htm
https://www.ibm.com/analytics/data-integration
https://www.techopedia.com/definition/28290/data-integration
https://www.gartner.com/it-glossary/data-integration-tools
http://infolab.stanford.edu/~ullman/fcdb/aut07/slides/integration.pdf
https://www.ipums.org/whatIsIPUMS.shtml
http://fusion.isif.org/proceedings/fusion07CD/Fusion07/pdfs/Fusion2007_1318.pdf?
http://fusion.isif.org/proceedings/fusion07CD/Fusion07/pdfs/Fusion2007_1318.pdf?
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://link-springer-com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-642-40796-3.pdf
https://link-springer-com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-642-40796-3.pdf
https://link-springer-com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-319-12295-3.pdf http://link.springer.com/10.1007/978-3-319-12295-3
https://link-springer-com.libproxy.aalto.fi/content/pdf/10.1007%2F978-3-319-12295-3.pdf http://link.springer.com/10.1007/978-3-319-12295-3
https://www.google.fi/search?ei=QijXWuboO8W3swH9zY2wBA&q=semantic+web&oq=semantic+web&gs_l=psy-ab.3..35i39k1j0i20i263k1j0l8.2175.2175.0.2588.1.1.0.0.0.0.70.70.1.1.0....0...1c.1.64.psy-ab..0.1.70....0.IjiPURIwONg
https://www.google.fi/search?ei=QijXWuboO8W3swH9zY2wBA&q=semantic+web&oq=semantic+web&gs_l=psy-ab.3..35i39k1j0i20i263k1j0l8.2175.2175.0.2588.1.1.0.0.0.0.70.70.1.1.0....0...1c.1.64.psy-ab..0.1.70....0.IjiPURIwONg
https://www.google.fi/search?ei=QijXWuboO8W3swH9zY2wBA&q=semantic+web&oq=semantic+web&gs_l=psy-ab.3..35i39k1j0i20i263k1j0l8.2175.2175.0.2588.1.1.0.0.0.0.70.70.1.1.0....0...1c.1.64.psy-ab..0.1.70....0.IjiPURIwONg
https://www.w3schools.com/xml/xml_whatis.asp
https://www.w3.org/XML/

36

44 Doan A, Halevy A, Ives Z. Principles of Data Integration - 15. Morgan
Kaufmann; 2012. Available from:
http://www.sciencedirect.com/science/article/pii/B9780124160446000156.

45 Tutorials Point. XML Overview (benefits); 2018. Available from:
https://www.tutorialspoint.com/xml/xml_overview.htm [cited 2018-01-21].

46 Oracle. Why StAX? (The Java™ Tutorials; Java API for XML Processing
(JAXP); Streaming API for XML); 2017. Available from:
https://docs.oracle.com/javase/tutorial/jaxp/stax/why.html [cited 2018-01-21].

47 Nurseitov N, Paulson M, Reynolds R, Izurieta C. Comparison of JSON and
XML Data Interchange Formats: A Case Study. Scenario. 2009;59715:1–3.
Available from: http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf.

48 Haq ZU, Khan GF, Hussain T. A Comprehensive analysis of XML and JSON
web technologies. New Developments in Circuits, Systems, Signal Processing,
Communications and Computers. 2014;p. 102–109. Available from:
http://www.inase.org/library/2015/vienna/bypaper/CSSCC/CSSCC-14.pdf.

49 Oracle. Java Architecture for XML Binding (JAXB); 2003. Available from:
http://www.oracle.com/technetwork/articles/javase/index-140168.html [cited
2018-02-23].

50 Webopedia. What is data marshalling? Webopedia Definition; 2018. Available
from: https://www.webopedia.com/TERM/D/data_marshalling.html.

51 Fialli J. The Java™ Architecture for XML Binding (JAXB) Java™ Architecture
for XML Binding (JAXB) Specification. 2003;Available from:
http://download.oracle.com/otn-pub/jcp/7196-jaxb-1.0-fr-spec-oth-JSpec/jaxb-
1_0-fr-spec.pdf.

52 W3C. XSL Introduction; 2018. Available from:
https://www.w3schools.com/xml/xsl_intro.asp [cited 2018-02-23].

53 W3C. Transformation (XSLT) - W3C; 2015. Available from:
https://www.w3.org/standards/xml/transformation [cited 2018-02-23].

54 W3C. XSL Transformations (XSLT) Version 3.0; 2017. Available from:
https://www.w3.org/TR/2017/REC-xslt-30-20170608/ [cited 2018-01-21].

55 Tidwell D. XSLT. O’Reilly Media; 2008. Available from:
https://books.google.fi/books?hl=en&lr=&id=VZaiiPkH94sC&oi=fnd&pg=PR7&
dq=xslt&ots=03HrwiNJUu&sig=5oOvQoQJ858O9dk94H2C4i8WwJE&redir_
esc=y#v=onepage&q=xslt&f=false.

56 Google. Mapping Definition - Google Search; 2018. Available from:
https://www.google.fi/search?ei=CVGqhttps:
//www.google.fi/search?ei=CVGqWqLwFYOA6QTSzYvgBg&q=mapping+
definition&oq=mapping+definition&gs_l=psy-ab.3..0i71k1l8.0.0.0.71382.0.0.0.
0.0.0.0.0..0.0....0...1c..64.psy-ab..0.0.0....0.Lxt_7Ztxz4Q [cited 2018-03-15].

57 Techopedia. What is Data Quality? - Definition from Techopedia; 2018.
Available from: https://www.techopedia.com/definition/6750/data-mapping.

http://www.sciencedirect.com/science/article/pii/B9780124160446000156
https://www.tutorialspoint.com/xml/xml_overview.htm
https://docs.oracle.com/javase/tutorial/jaxp/stax/why.html
http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf
http://www.inase.org/library/2015/vienna/bypaper/CSSCC/CSSCC-14.pdf
http://www.oracle.com/technetwork/articles/javase/index-140168.html
https://www.webopedia.com/TERM/D/data_marshalling.html
http://download.oracle.com/otn-pub/jcp/7196-jaxb-1.0-fr-spec-oth-JSpec/jaxb-1_0-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/7196-jaxb-1.0-fr-spec-oth-JSpec/jaxb-1_0-fr-spec.pdf
https://www.w3schools.com/xml/xsl_intro.asp
https://www.w3.org/standards/xml/transformation
https://www.w3.org/TR/2017/REC-xslt-30-20170608/
https://books.google.fi/books?hl=en&lr=&id=VZaiiPkH94sC&oi=fnd&pg=PR7&dq=xslt&ots=03HrwiNJUu&sig=5oOvQoQJ858O9dk94H2C4i8WwJE&redir_esc=y#v=onepage&q=xslt&f=false
https://books.google.fi/books?hl=en&lr=&id=VZaiiPkH94sC&oi=fnd&pg=PR7&dq=xslt&ots=03HrwiNJUu&sig=5oOvQoQJ858O9dk94H2C4i8WwJE&redir_esc=y#v=onepage&q=xslt&f=false
https://books.google.fi/books?hl=en&lr=&id=VZaiiPkH94sC&oi=fnd&pg=PR7&dq=xslt&ots=03HrwiNJUu&sig=5oOvQoQJ858O9dk94H2C4i8WwJE&redir_esc=y#v=onepage&q=xslt&f=false
https://www.google.fi/search?ei=CVGqhttps://www.google.fi/search?ei=CVGqWqLwFYOA6QTSzYvgBg&q=mapping+definition&oq=mapping+definition&gs_l=psy-ab.3..0i71k1l8.0.0.0.71382.0.0.0.0.0.0.0.0..0.0....0...1c..64.psy-ab..0.0.0....0.Lxt_7Ztxz4Q
https://www.google.fi/search?ei=CVGqhttps://www.google.fi/search?ei=CVGqWqLwFYOA6QTSzYvgBg&q=mapping+definition&oq=mapping+definition&gs_l=psy-ab.3..0i71k1l8.0.0.0.71382.0.0.0.0.0.0.0.0..0.0....0...1c..64.psy-ab..0.0.0....0.Lxt_7Ztxz4Q
https://www.google.fi/search?ei=CVGqhttps://www.google.fi/search?ei=CVGqWqLwFYOA6QTSzYvgBg&q=mapping+definition&oq=mapping+definition&gs_l=psy-ab.3..0i71k1l8.0.0.0.71382.0.0.0.0.0.0.0.0..0.0....0...1c..64.psy-ab..0.0.0....0.Lxt_7Ztxz4Q
https://www.google.fi/search?ei=CVGqhttps://www.google.fi/search?ei=CVGqWqLwFYOA6QTSzYvgBg&q=mapping+definition&oq=mapping+definition&gs_l=psy-ab.3..0i71k1l8.0.0.0.71382.0.0.0.0.0.0.0.0..0.0....0...1c..64.psy-ab..0.0.0....0.Lxt_7Ztxz4Q
https://www.techopedia.com/definition/6750/data-mapping

37

58 Oracle. Trail: The Reflection API; 2015. Available from:
http://docs.oracle.com/javase/tutorial/reflect/index.html [cited 2018-03-15].

59 Oracle. Using Java Reflection; 1998. Available from:
http://www.oracle.com/technetwork/articles/java/javareflection-1536171.html.

60 Hombergs T. Robust Java Object Mapping With Minimal Testing Overhead
Using reMap - Reflectoring; 2017. Available from:
https://reflectoring.io/autotmatic-refactoring-safe-java-mapping/ [cited
2018-03-15].

61 MapStruct. MapStruct – Java bean mappings, the easy way!; 2017. Available
from: http://mapstruct.org/ [cited 2018-03-15].

62 Wyszomierski M. Mapping Dozer vs MapStruct; 2016. Available from:
http://mariusz.wyszomierski.pl/en/mapping-dozer-vs-mapstruct/ [cited
2018-03-15].

63 Techopedia. What is Code Generation? - Definition from Techopedia; 2018.
Available from: https://www.techopedia.com/definition/6531/code-generation.

64 Fowler M. Code generation for dummies. Methods & Tools. 2009;p. 65–89.
Available from: http://www.methodsandtools.com/archive/archive.php?id=86.

65 Liferay. What is Service Builder? - Liferay 6.2 - Liferay Developer Network;
2017. Available from: https://dev.liferay.com/develop/tutorials/-
/knowledge_base/6-2/what-is-service-builder [cited 2018-03-07].

66 Oracle. Java Persistence API; 2018. Available from: http:
//www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
[cited 2018-03-15].

67 Oracle. Java Persistence/What is JPA?; 2017. Available from:
https://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F [cited
2018-03-15].

68 Williams NS. Professional Java® for Web Applications. John Wiley & Sons;
2014.

69 Herrington J. Code Generation in Action. Manning; 2003. Available from:
https://www.manning.com/books/code-generation-in-action.

70 Bjørnson FO, Dingsøyr T. Knowledge management in software engineering: A
systematic review of studied concepts, findings and research methods used.
Information and Software Technology. 2008;50(11):1055–1068. Available
from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502.5306&
rep=rep1&type=pdf.

71 CSC. TIPA XSLT Stylesheet source code; 2018. Available from: https://gitlab.
csc.fi/ttv/tipa/blob/poc/src/test/resources/HelsinkiUniversity/initial/ext-orgS.xslt
[cited 2018-03-21].

http://docs.oracle.com/javase/tutorial/reflect/index.html
http://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
https://reflectoring.io/autotmatic-refactoring-safe-java-mapping/
http://mapstruct.org/
http://mariusz.wyszomierski.pl/en/mapping-dozer-vs-mapstruct/
https://www.techopedia.com/definition/6531/code-generation
http://www.methodsandtools.com/archive/archive.php?id=86
https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-2/what-is-service-builder
https://dev.liferay.com/develop/tutorials/-/knowledge_base/6-2/what-is-service-builder
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://en.wikibooks.org/wiki/Java_Persistence/What_is_JPA%3F
https://www.manning.com/books/code-generation-in-action
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502.5306&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.502.5306&rep=rep1&type=pdf
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/test/resources/HelsinkiUniversity/initial/ext-orgS.xslt
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/test/resources/HelsinkiUniversity/initial/ext-orgS.xslt

38

72 BeginnersBook. Method Overloading in Java with examples; 2018. Available
from: https://beginnersbook.com/2013/05/method-overloading/ [cited
2018-04-30].

73 CSC. TIPA Project new version source code; 2018. Available from:
https://gitlab.csc.fi/ttv/tipa [cited 2018-03-21].

74 CSC. TIPA Organization Class source code; 2018. Available from:
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/model/xml/
Organization.java#L43-44 [cited 2018-03-21].

75 CSC. TIPA DefaultMapper Interface source code; 2018. Available from:
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/service/mappers/
DefaultTypeMapper.java [cited 2018-03-21].

76 Google. Regular Expression Definition; 2018. Available from:
https://www.google.fi/search?ei=R9juWpDYOYOUsgG85a_ADQ&q=regular+
expression+definition&oq=regular+expression+definition&gs_l=psy-
ab.3..0i7i30k1l10.4920.8459.0.8752.17.17.0.0.0.0.124.1047.14j1.15.0....0...1c.
1.64.psy-ab..3.14.990....0.att68VmBit4 [cited 2018-04-30].

77 WikiBooks. ITIL v3 (Information Technology Infrastructure Library)_Service
Operation - Wikibooks, open books for an open world; 2017. Available from:
https://en.wikibooks.org/wiki/ITIL_v3_(Information_Technology_Infrastructure_
Library)/Introduction [cited 2018-03-11].

78 Oracle. Transformer (Java Platform SE 8); 2014. Available from: https:
//docs.oracle.com/javase/8/docs/api/javax/xml/transform/Transformer.html
[cited 2018-03-24].

79 OECD. OECD Glossary of Statistical Terms; 2006. Available from:
http://stats.oecd.org/glossary/detail.asp?ID=3103 [cited 2018-03-25].

80 Scrum Alliance. The Scrum Guide - Scrum Alliance; 2014. Available from:
https://www.scrumalliance.org/learn-about-scrum/the-scrum-guide [cited
2018-03-28].

https://beginnersbook.com/2013/05/method-overloading/
https://gitlab.csc.fi/ttv/tipa
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/model/xml/Organization.java#L43-44
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/model/xml/Organization.java#L43-44
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/service/mappers/DefaultTypeMapper.java
https://gitlab.csc.fi/ttv/tipa/blob/poc/src/main/java/fi/csc/tipa/service/mappers/DefaultTypeMapper.java
https://www.google.fi/search?ei=R9juWpDYOYOUsgG85a_ADQ&q=regular+expression+definition&oq=regular+expression+definition&gs_l=psy-ab.3..0i7i30k1l10.4920.8459.0.8752.17.17.0.0.0.0.124.1047.14j1.15.0....0...1c.1.64.psy-ab..3.14.990....0.att68VmBit4
https://www.google.fi/search?ei=R9juWpDYOYOUsgG85a_ADQ&q=regular+expression+definition&oq=regular+expression+definition&gs_l=psy-ab.3..0i7i30k1l10.4920.8459.0.8752.17.17.0.0.0.0.124.1047.14j1.15.0....0...1c.1.64.psy-ab..3.14.990....0.att68VmBit4
https://www.google.fi/search?ei=R9juWpDYOYOUsgG85a_ADQ&q=regular+expression+definition&oq=regular+expression+definition&gs_l=psy-ab.3..0i7i30k1l10.4920.8459.0.8752.17.17.0.0.0.0.124.1047.14j1.15.0....0...1c.1.64.psy-ab..3.14.990....0.att68VmBit4
https://www.google.fi/search?ei=R9juWpDYOYOUsgG85a_ADQ&q=regular+expression+definition&oq=regular+expression+definition&gs_l=psy-ab.3..0i7i30k1l10.4920.8459.0.8752.17.17.0.0.0.0.124.1047.14j1.15.0....0...1c.1.64.psy-ab..3.14.990....0.att68VmBit4
https://en.wikibooks.org/wiki/ITIL_v3_(Information_Technology_Infrastructure_Library)/Introduction
https://en.wikibooks.org/wiki/ITIL_v3_(Information_Technology_Infrastructure_Library)/Introduction
https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/Transformer.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/Transformer.html
http://stats.oecd.org/glossary/detail.asp?ID=3103
https://www.scrumalliance.org/learn-about-scrum/the-scrum-guide

	Introduction
	Current State Analysis
	Research Infrastructure Databank Service
	General description
	Technical description

	Data Management and Partner Systems

	Theoretical background
	Integration
	Data formats and processing
	Mapping
	Code generation

	Methods and materials
	Methods
	Requirements and development environment

	Solution
	Data processing
	Data models
	Mapping
	REST API
	Testing

	Discussion
	Conclusion
	Bibliography

